PEPS-C1P meeting

13/09/2012 - Paris

Linearity and contiguity, a generalization of the C1P property

Philippe Gambette LIGM
Université Paris-Est Marne-la-Vallée

Outline

- Contiguity and linearity
- Basic properties
- Links with other graph classes
- Bounds

Contiguity \& linearity

Closed Contiguity:

$$
\begin{aligned}
& \mathrm{cc}(G)=\min _{\sigma \in S_{n}}\{\mathrm{cc}(G, \sigma)\} \\
& \mathrm{cc}(G, \sigma)=\max _{x \in G}\left\{\mathrm{cc}_{G, \sigma}(x)\right\}
\end{aligned}
$$

$$
\mathrm{CC}_{G, \sigma}(x)=\min _{\substack{P(x)=\left\{l_{j} \text { intervals of } \sigma\right\} \\ N[x]=\cup_{1} \in \mathrm{P}(\mathrm{x})^{j}}}\{|\mathrm{P}(\mathrm{x})|\}
$$

$$
\begin{array}{lll}
N[a]: & \text { adbcefhg } & \mathrm{cc}_{G, \sigma}(a)=2 \\
N[b]: & \text { adbcefhg } & \mathrm{Cc}_{G, \sigma}(b)=2 \\
N[c]: & \text { adbcefhg } & \mathrm{cc}_{G, \sigma}(c)=2
\end{array}
$$

$N[d]: \quad a d b c e f h g$
$\mathrm{CC}_{G, \sigma}(d)=2$
$N[e]: \quad a d b c e f h g$
$\mathrm{CC}_{G, \sigma}(e)=2$
$N[f]: \quad a d b c e f h g$
$\mathrm{cc}_{G, \sigma}(f)=1$
$N[g]: \quad a d b c \underline{\underline{e} f g}$
$\mathrm{CC}_{G, \sigma}(g)=2$
$N[h]: \quad \underline{a} d b c \underline{e f h g}$
$\mathrm{Cc}_{G, \sigma}(h)=2$

Contiguity \& linearity

Open Contiguity:

$$
o c(G, \sigma)=\max _{x \in G}\left\{\text { oc }_{G, \sigma}(x)\right\}
$$

$$
\begin{aligned}
& N(a): \quad a \underline{d b c e f} \underline{h} \\
& N(b): \quad \text { adbcefhg } \\
& \mathrm{oc}_{G, 0}(a)=2 \\
& N(c): \quad a d \underline{b} c e f h g \\
& \mathrm{oc}_{G, \sigma}(b)=2 \\
& \text { adbcefhg } \\
& \mathrm{oc}_{G, \sigma}(d)=2 \\
& N(e): \quad a \underline{d b c e f h g} \quad \mathrm{oc}_{G, o}(e)=2 \\
& N(f): \quad a d b \underline{c e f h g} \quad o_{G, \sigma}(f)=2 \\
& N(g): \quad a d b c \underline{e} f \underline{h} g \quad o_{G, \sigma}(g)=2 \\
& N(h): \underline{a} d b c \underline{e f h} \underline{g} \quad o_{G, o}^{o}(h)=3
\end{aligned}
$$

Basic properties

For any graph $G, \mathrm{cl}(G) \leq \mathrm{ol}(G)+1 \leq \mathrm{oc}(G)+1 \leq \mathrm{cc}(G)+2$

Complement: For any graph $G, \operatorname{cc}(\bar{G}) \leq \mathrm{cc}(G)+1$

Substitution-composition: For any graphs G and H,

$$
\begin{aligned}
& \operatorname{cc}\left(G_{x \leftarrow H}\right) \leq \max (\operatorname{cc}(G), \operatorname{cc}(H))+1 \\
& \operatorname{oc}\left(G_{x \leftarrow H}\right) \leq \max (\operatorname{oc}(G), \operatorname{oc}(H))+1 \\
& \operatorname{cl}\left(G_{x \leftarrow H}\right) \leq \max (\mathrm{cl}(G), \mathrm{cl}(H))+1 \\
& \mathrm{ol}\left(G_{x \leftarrow H}\right) \leq \max (\mathrm{ol}(G), \mathrm{ol}(H))+1
\end{aligned}
$$

Possibly, the neighborhood interval of x containing x is broken by the substitution composition
(add x \& friends in the end of each line) to realize their own closed neighborhood + one line to include them in the neighborhood of all their neighbors in G-H

Link with other graph classes

$c c(G)=1 \Leftrightarrow$ unit interval graph
$o c(G)=1 \quad G$ biconvex graph
Given a fixed $k, \mathrm{Cc}(G)=k$? $\mathrm{oc}(G)=k$? NP-complete
Wang, Lau \& Zhao, DAM, 2007
For any graph $G, \mathrm{cc}(G) \leq n / 4+O(\sqrt{n \log n})$
Gavoille \& Peleg, SIAM JoDM, 1999

Link with other graph classes

G unit k-track graph $=>\mathrm{cl}(G) \leq k$
Proof : each track coded by one order

Bounds for contiguity

Lower bound for interval graphs and permutation graphs:
There is a family of interval graphs and permutation graphs with n vertices having contiguity at least $\mathrm{O}(\log (n))$

Crespelle \& Gambette, 2009
Bounds for cographs:
Every cograph has contiguity at most $\mathrm{O}(\log (n))$.
There is a family of cographs with n vertices having contiguity at least $\mathrm{O}(\log (n))$ Crespelle \& Gambette, 2009

Approximation algorithm for cographs:
There is a constant factor approximation algorithm (approx. ratio 23) to compute the contiguity of cographs .

Crespelle \& Gambette, 2012

Tightness of the bounds

Closed contiguity:

The algorithm provides the exact contiguity for any cograph G with a binary complete cotree with n vertices: $c c(G)=\log (n) / 2+1$

