UEA Spring Phylogenetics Norwich - 17/04/2012

Structure and enumeration of level-k phylogenetic networks

Philippe Gambette

Outline

- Phylogenetic motivations
- Level-k network reconstruction
- Structure of level-k networks
- Counting level- 1 and 2 networks

Outline

- Phylogenetic motivations
- Level-k network reconstruction
- Structure of level-k networks
- Counting level-1 and 2 networks

Rooted binary phylogenetic networks

leaves bijectively labeled by current species

+ internal vertices (extinct species) :
- root
- split vertices (speciation)
- hybrid vertices (hybridization, horizontal gene transfer)

Model: each gene comes from one parent:

Gene 2

Model: each gene comes from one parent:

Combinatorial phylogenetic network reconstruction

```
species 1 : AATTGCAG TAGCCCAAAAT
species 2 : ACCTGCAG TAGACCAAT
species 3 : GCTTGCCG TAGACAAGAAT
species 4 : ATTTGCAG AAGACCAAAT
species 5 : TAGACAAGAAT
species 6 : ACTTGCAG TAGCACAAAAT
species 7 : ACCTGGTG TAAAAT
```

G1 G2
\{gene sequences\}

T2
 Rechenmann \& Perrière, Biolnf, 2005

Combinatorial phylogenetic network reconstruction

```
species 1 : AATTGCAG TAGCCCAAAAT
species 2 : ACCTGCAG TAGACCAAT
species 3 : GCTTGCCG TAGACAAGAAT
species 4 : ATTTGCAG AAGACCAAAT
species 5 : TAGACAAGAAT
species 6 : ACTTGCAG TAGCACAAAAT
species 7 : ACCTGGTG TAAAAT
```

G1 G2
\{gene sequences\}

T2
 Rechenmann \& Perrière, Biolnf, 2005

network
contains the trees

+ "optimal"

Combinatorial phylogenetic network reconstruction

```
species 1 : AATTGCAG TAGCCCAAAAT species 2 : ACCTGCAG TAGACCAAT species 3 : GCTTGCCG TAGACAAGAAT species 4 : ATTTGCAG AAGACCAAAT species 5 : TAGACAAGAAT species 6 : ACTTGCAG TAGCACAAAAT species 7 : ACCTGGTG TAAAAT
```

G1 G2
\{gene sequences\}

T2
 Rechenmann \& Perrière, Biolnf, 2005

network
contains the trees

+ "optimal"
NP-complete for 2 rooted trees

Combinatorial phylogenetic network reconstruction

```
species 1 : AATTGCAG TAGCCCAAAAT species 2 : ACCTGCAG TAGACCAAT species 3 : GCTTGCCG TAGACAAGAAT species 4 : ATTTGCAG AAGACCAAAT species 5 : TAGACAAGAAT species 6 : ACTTGCAG TAGCACAAAAT species 7 : ACCTGGTG TAAAAT
```

G1 G2
\{gene sequences\}

T2

Rechenmann \& Perrière, Biolnf, 2005
> 500 species, >70 000 trees

network
contains the trees

+ "optimal"
NP-complete for 2 rooted trees

Reconstruction from triplets / quartets

Reconstruction from triplets / quartets

Reconstruction from triplets / quartets

Reconstruction from triplets / quartets

Checking the solution:
Finding all triplets of a rooted network: $O\left(n^{3}\right)$

Reconstruction from triplets / quartets

Checking the solution:
Finding all triplets of a rooted network: $O\left(n^{3}\right)$
Byrka, Gawrychowski, Huber \& Kelk, JDA, 2010

Finding all quartets of an unrooted network?

Reconstruction from triplets / quartets

Checking the solution:
Finding all triplets of a rooted network: $O\left(n^{3}\right)$
Byrka, Gawrychowski, Huber \& Kelk, JDA, 2010

Finding all quartets of an unrooted network?

Reconstruction from triplets / quartets

Checking the solution:
Finding all triplets of a rooted network: $O\left(n^{3}\right)$

Finding all quartets of an unrooted network: $O\left(n^{6}\right)$ 2-Disjoint Paths in a graph of degree $\leq 3: O(n(1+\alpha(n, n)))$

Plan

- Phylogenetic motivations
- Level-k network reconstruction
- Structure of level-k networks
- Counting level-1 and 2 networks

Level-k networks

level: how "far" is the network from a tree ?
small level \Rightarrow tree structure \Rightarrow fast algorithms

level $=$
maximum number of hybrid vertices by bridgeless component (blob) of the underlying undirected graph.

Level-k networks

level: how "far" is the network from a tree ? small level \Rightarrow tree structure \Rightarrow fast algorithms

level $=$
maximum number of hybrid vertices by blob.
level-1 network
("galled tree")

Unrooted level-k networks

level: how "far" is the network from an unrooted tree ? small level $\boldsymbol{\Rightarrow}$ tree structure $\boldsymbol{\rightarrow}$ fast algorithms

level $=$ maximum number of edges to remove, by blob, to obtain a tree.
unrooted level-2 network

Unrooted level-k networks

level: how "far" is the network from an unrooted tree ? small level \Rightarrow tree structure \Rightarrow fast algorithms

level = maximum number of edges to remove, by blob, to obtain a tree. = maximum cyclomatic number of the blobs
unrooted level-2 network

Unrooted level-k networks

level: how "far" is the network from an unrooted tree ? small level $\boldsymbol{\Rightarrow}$ tree structure $\boldsymbol{\rightarrow}$ fast algorithms

level = maximum number of edges to remove, by blob, to obtain a tree.
unrooted level-1 network \Rightarrow tree of cycles (unrooted galled tree)

Equivalence between rooted and unrooted level

Rooting:

- choosing a root
- choosing an orientation for the edges

Equivalence between rooted and unrooted level

Rooting:

- choosing a root
- choosing an orientation for the edges

Equivalence between rooted and unrooted level

Rooting:

- choosing a root
- choosing an orientation for the edges
- many possible rootings (possibly exponential in the level)
- same level (invariant)

Phylogenetic network subclass hierarchy

Phylogenetic network subclass hierarchy

Plan

- Phylogenetic motivations
- Level-k network reconstruction
- Structure of level- k networks
- Counting level-1 and 2 networks

Decomposition of level-k networks

We formalize the decomposition into blobs:

Generators introduced by van lersel \& al (Recomb 2008) for the restricted class of simple level-k networks.

Level-k generators

A level-k generator is a level-k network with no cut arc.

The sides of the generator are:

- its arcs
- its reticulation vertices of outdegree 0

Decomposition theorem of level-k networks

N is a level-k network

iff

 there exists a sequence $\left(/ l_{j}\right)_{j \in[1, r]}$ of r locations (arcs or reticulation vertices of outdegree 0) and a sequence $\left(G_{j}\right)_{j \in[0, r]}$ of generators of level at most k, such that:$-N=\operatorname{Attach}_{k}\left(I_{1}, G_{1} \operatorname{Attach}_{k}\left(\ldots \operatorname{Attach}_{k}\left(I_{2^{2}}, G_{2^{2}}, \operatorname{Attach}_{k}\left(I_{1_{1}}, G_{1}, G_{0}\right)\right) \ldots\right)\right)$,
$-\operatorname{or} N=\operatorname{Attach}_{k}\left(I, G_{r}, \operatorname{Attach}_{k}\left(\ldots \operatorname{Attach}_{k}\left(I_{L^{\prime}} G_{2}, \operatorname{SplitRoot}_{k}\left(G_{1}, G_{0}\right)\right) \ldots\right)\right)$.

Decomposition theorem of level-k networks

N is a level-k network

 (arcs or reticulation vertices of outdegree 0) and a sequence $\left(G_{j}\right)_{j \in[0, r]}$ of generators of level at most k, such that:$-N=\operatorname{Attach}_{k}\left(I_{1}, G_{1} \operatorname{Attach}_{k}\left(\ldots \operatorname{Attach}_{k}\left(I_{2^{2}}, G_{2^{2}}, \operatorname{Attach}_{k}\left(I_{1_{1}}, G_{1}, G_{0}\right)\right) \ldots\right)\right)$,

- or $N=\operatorname{Attach}_{k}\left(I, G_{r}, \operatorname{Attach}_{k}\left(\ldots \operatorname{Attach}_{k}\left(I_{2^{\prime}} G_{2}\right.\right.\right.$, SplitRoot $\left.\left.\left._{k}\left(G_{1}, G_{0}\right)\right) \ldots\right)\right)$.

SplitRoot ${ }_{k}\left(G_{1}, G_{0}\right)$

Decomposition theorem of level-k networks

N is a level-k network

iff

 there exists a sequence $\left(l_{j}\right)_{j \in[1, r]}$ of r locations (arcs or reticulation vertices of outdegree 0) and a sequence $\left(G_{j}\right)_{j \in[0, r]}$ of generators of level at most k, such that:$-N=\operatorname{Attach}_{k}\left(I_{1}, G_{1} \operatorname{Attach}_{k}\left(\ldots \operatorname{Attach}_{k}\left(I_{2^{\prime}} G_{2^{\prime}}, \operatorname{Attach}_{k}\left(I_{1^{1}}, G_{1^{\prime}}, G_{0}\right)\right) \ldots\right)\right)$,
$-\operatorname{or} N=\operatorname{Attach}_{k}\left(I, G_{r}, \operatorname{Attach}_{k}\left(\ldots \operatorname{Attach}_{k}\left(I_{2^{\prime}} G_{2^{\prime}} \operatorname{SplitRoot}_{k}\left(G_{1^{\prime}} G_{0}\right)\right) \ldots\right)\right)$.
l_{i} is an arc of N

Attach ${ }_{k}\left(I_{i}, G_{i}, N\right)$

Decomposition theorem of level-k networks

N is a level-k network

iff there exists a sequence $\left(l_{j}\right)_{j \in[1, r]}$ of r locations (arcs or reticulation vertices of outdegree 0) and a sequence $\left(G_{j}\right)_{j \in[0, r]}$ of generators of level at most k, such that:
$-N=\operatorname{Attach}_{k}\left(I_{1}, G_{1} \operatorname{Attach}_{k}\left(\ldots \operatorname{Attach}_{k}\left(I_{2^{\prime}}, G_{2^{\prime}}, \operatorname{Attach}_{k}\left(I_{1^{1}}, G_{1^{\prime}}, G_{0}\right)\right) \ldots\right)\right)$,
$-\operatorname{or} N=\operatorname{Attach}_{k}\left(I, G_{r}, \operatorname{Attach}_{k}\left(\ldots \operatorname{Attach}_{k}\left(I_{2^{\prime}} G_{2^{\prime}} \operatorname{SplitRoot}_{k}\left(G_{1^{\prime}} G_{0}\right)\right) \ldots\right)\right)$.
I_{i} is a reticulation vertex of N

Attach $_{k}(I, G, N)$

Decomposition theorem of level-k networks

N is a level-k network

iff
there exists a sequence $\left(l_{j}\right)_{j \in[1, r]}$ of r locations (arcs or reticulation vertices of outdegree 0) and a sequence $\left(G_{j}\right)_{j \in[0, r]}$ of generators of level at most k, such that:
$-N=\operatorname{Attach}_{k}\left(I_{1}, G_{1} \operatorname{Attach}_{k}\left(\ldots \operatorname{Attach}_{k}\left(I_{2^{2}}, G_{2^{2}}, \operatorname{Attach}_{k}\left(I_{1_{1}}, G_{1}, G_{0}\right)\right) \ldots\right)\right)$,
$-\operatorname{or} N=\operatorname{Attach}_{k}\left(I, G_{r}, \operatorname{Attach}_{k}\left(\ldots \operatorname{Attach}_{k}\left(I_{L^{\prime}} G_{2}, \operatorname{SplitRoot}_{k}\left(G_{1}, G_{0}\right)\right) \ldots\right)\right)$.

This decomposition is not unique!
recursive decomposition later, for level-1...

Construction of level-k generators

Case analysis by van lersel \& al to find the 4 level-2 generators Exponential algorithm by Steven Kelk to find the 65 level-3 generators.

Greetings from The On-Line Encyclopedia of Integer Sequences!
$\boxed{1.4 .65}$ Search Hints

Construction of level-k generators

Construction rules of level- $(k+1)$ generators from level- k generators

Construction of level-k generators

Construction rules of level- $(k+1)$ generators from level- k generators

$R_{1}\left(N, h_{1}, h_{2}\right)$

$$
R_{1}\left(N, h_{1}, e_{2}\right)
$$

Construction of level-k generators

Construction rules of level- $(k+1)$ generators from level- k generators

$$
R_{2}\left(N, e_{1}, e_{2}\right)
$$

Upper bound on the number of level-k generators

R_{1} and R_{2} can be applied at most on all pairs of sides
A level- k generator has at most $5 k$ slides:

$$
g_{k+1}<50 k^{2} g_{k}
$$

Upper bound:

$$
g_{k}<k!^{2} 50^{k}
$$

Theoretical corollary:
There is a polynomial algorithm to build the set of level- $(k+1)$ generators
from the set of level-k generators.
\rightarrow polynomial time algorithms to reconstruct level- k networks with fixed k

Practical corollary:

$$
g_{4}<28350
$$

\rightarrow it is possible to enumerate all level-4 generators.

Construction of level-k generators

Problem:

Some of the level- $(k+1)$ generators obtained from level- k generators are isomorphic!

$R_{1}\left(N, h_{1}, e_{2}\right)$

$$
R_{1}\left(N, h_{2}, e_{1}\right)
$$

\rightarrow difficult to count
\rightarrow possible generation up to level 5 :
1, 4, 65, 1993, 91454

Construction of level-k generators

Problem:

Some of the level- $(k+1)$ generators obtained from level- k generators are isomorphic!

$R_{1}\left(N, h_{1}, e_{2}\right)$

$$
R_{1}\left(N, h_{2}, e_{1}\right)
$$

\rightarrow difficult to count
\rightarrow possible generation up to level 5 :
1, 4, 65, 1993, 91454

```
#ATAT Infeger Sequences RESEARCH
```

Greetings from The On-Line Encyclopedia of Integer Sequences!

Lower bound on the number of level-k generators

Lower bound:

$$
g_{k} \geq 2^{k-1}
$$

There is an exponential number of generators!
Idea:
Code every number between 0 and $2^{k-1}-1$ by a level- k generator.

Lower bound on the number of level-k generators

Lower bound:

$$
g_{k} \geq 2^{k-1}
$$

There is an exponential number of generators!
Idea:
Code every number between 0 and $2^{k-1}-1$ by a level- k generator.

$$
k=1
$$

Lower bound on the number of level-k generators

Lower bound:

$$
g_{k} \geq 2^{k-1}
$$

There is an exponential number of generators!
Idea:
Code every number between 0 and $2^{k-1}-1$ by a level- k generator.

Lower bound on the number of level-k generators

Lower bound:

$$
g_{k} \geq 2^{k-1}
$$

There is an exponential number of generators!
Idea:
Code every number between 0 and $2^{k-1}-1$ by a level- k generator.

Practical corollary:
Phylogenetic reconstruction algorithms based on generators are not practical.

Unrooted level-k networks

Unrooted level-k networks

Unrooted level-k generators: bridgeless loopless 3-regular multigraphs with $2 k$-2 vertices
level-2 generator

Berry, Bouvel, Gambette \& Paul, manuscript, 2012

Plan

- Phylogenetic motivations
- Level-k network reconstruction
- Structure of level-k networks
- Counting level-1 and 2 networks

Counting labeled unrooted level-1 networks

Unrooted level-1 networks:
explicit formula for n leaves, c cycles, m edges involved in the cycles.

Counting labeled unrooted level-1 networks

Unrooted level-1 networks:
explicit formula for n leaves, c cycles, m edges involved in the cycles.

Pointing + bijection:
Bijection between labeled unrooted level-1 networks with $n+1$ leaves and labeled pointed level-1 networks with n leaves.

Counting labeled unrooted level-1 networks

Unrooted level-1 networks:
explicit formula for n leaves, c cycles, m edges involved in the cycles.

Pointing + bijection:
Bijection between labeled unrooted level-1 networks with $n+1$ leaves and labeled pointed level-1 networks with n leaves.

Recursive decomposition of pointed level-1 networks with n leaves:

Exponential generating function:

$$
G=\mathrm{z}+\frac{1}{2} G^{2}+\frac{1}{2} \frac{G^{2}}{(1-G)}
$$

Counting labeled unrooted level-1 networks

Unrooted level-1 networks:
explicit formula for n leaves, c cycles, m edges involved in the cycles.

Pointing + bijection:
Bijection between labeled unrooted level-1 networks with $n+1$ leaves and labeled pointed level-1 networks with n leaves.

Recursive decomposition of pointed level-1 networks with n leaves:

Exponential generating function:
$G=z+\frac{1}{2} G^{2}+\frac{1}{2} \frac{G^{2}}{(1-G)}<$

Counting labeled unrooted level-1 networks

Exponential generating function:
$G=z+\frac{1}{2} G^{2}+\frac{1}{2} \frac{G^{2}}{(1-G)}$

$g_{n} \approx 0.2074(1.8904)^{n} n^{n-1}$

Counting labeled unrooted level-1 networks

Exponential generating function:
$G=z+\frac{1}{2} G^{2}+\frac{1}{2} \frac{G^{2}}{(1-G)}$

Using the Singular Inversion Theorem (Theorem VI. 6 of
$g_{n} \approx 0.2074(1.8904)^{n} n^{n-1}$

Proof:
We write $G=z \varphi(G)$, with $\varphi(z)=$

$$
\frac{1}{1-1 / 2 z(1+1 /(1-z))}
$$

Then $g_{n} \approx n!\sqrt{\frac{\varphi(\tau)}{2 \varphi^{\prime \prime}(\tau)}} \frac{\rho^{-n}}{\sqrt{\pi \mathrm{n}^{3}}}$, with $\rho=\tau / \varphi(\tau)$ and τ is the solution of $\varphi(z)-z \varphi^{\prime}(z)=0$

Counting labeled unrooted level-2 networks

Recursive decomposition of pointed level-2 networks with \boldsymbol{n} leaves:
$z \frac{1}{2} R^{2} \quad \frac{1}{2} \frac{R^{2}}{1-R} \quad$ or...

horizontal symmetry with
$\underset{\text { sym }}{>}$ new orientation for lower edges

Counting labeled unrooted level-2 networks

Recursive decomposition of pointed level-2 networks with \boldsymbol{n} leaves:

Counting labeled unrooted level-2 networks

Recursive decomposition of pointed level-2 networks with \boldsymbol{n} leaves:

$$
\begin{aligned}
R & =z+\frac{R^{2}}{2}+\frac{R^{2}}{2(1-R)}+\frac{R^{2}}{1-R}+\frac{R^{2}}{2(1-R)}+\frac{R^{2}}{(1-R)^{2}}+\frac{R^{2}}{2(1-R)^{2}} \\
& +\frac{R^{2}}{2}+\frac{R^{3}}{2(1-R)}+\frac{R^{4}}{4(1-R)^{2}}+\frac{R^{3}}{2(1-R)^{3}}+\frac{R^{3}}{2(1-R)^{3}}+\frac{R^{4}}{4(1-R)^{4}}
\end{aligned}
$$

Rewrite:
Rewrite:
$R=z \phi(R)$ where $\phi(R)=\frac{1}{1-\frac{3 r^{5}-20 r^{4}+46 r^{3}-46 r^{2}+18 r}{4(r-1)^{4}}}$

Counting labeled unrooted level-2 networks

Recursive decomposition of pointed level-2 networks with \boldsymbol{n} leaves:

$$
\begin{aligned}
R & =z+\frac{R^{2}}{2}+\frac{R^{2}}{2(1-R)}+\frac{R^{2}}{1-R}+\frac{R^{2}}{2(1-R)}+\frac{R^{2}}{(1-R)^{2}}+\frac{R^{2}}{2(1-R)^{2}} \\
& +\frac{R^{2}}{2}+\frac{R^{3}}{2(1-R)}+\frac{R^{4}}{4(1-R)^{2}}+\frac{R^{3}}{2(1-R)^{3}}+\frac{R^{3}}{2(1-R)^{3}}+\frac{R^{4}}{4(1-R)^{4}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Rewrite: } \\
& R=z \phi(R) \text { where } \phi(R)=\frac{1}{1-\frac{3 r^{5}-20 r^{4}+46 r^{3}-46 r^{2}+18 r}{4(r-1)^{4}}}
\end{aligned}
$$

Lagrange inversion:
$r(n)=n!\left[z^{n}\right] R(z)=\frac{n!}{n}\left[\lambda^{n-1}\right] \phi^{n}(\lambda)$,
Taylor expansions of $\varphi^{n}(\lambda)$:

number of leaves	2	3	4	5	6	7
unrooted level-2	-	9	282	14697	1071750	100467405

Counting labeled unrooted level-2 networks

Recursive decomposition of pointed level-2 networks with \boldsymbol{n} leaves:

$$
\begin{aligned}
R & =z+\frac{R^{2}}{2}+\frac{R^{2}}{2(1-R)}+\frac{R^{2}}{1-R}+\frac{R^{2}}{2(1-R)}+\frac{R^{2}}{(1-R)^{2}}+\frac{R^{2}}{2(1-R)^{2}} \\
& +\frac{R^{2}}{2}+\frac{R^{3}}{2(1-R)}+\frac{R^{4}}{4(1-R)^{2}}+\frac{R^{3}}{2(1-R)^{3}}+\frac{R^{3}}{2(1-R)^{3}}+\frac{R^{4}}{4(1-R)^{4}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Rewrite: } \\
& R=z \phi(R) \text { where } \phi(R)=\frac{1}{1-\frac{3 r^{5}-20 r^{4}+46 r^{3}-46 r^{2}+18 r}{4(r-1)^{4}}}
\end{aligned}
$$

Lagrange inversion:
$r(n)=n!\left[z^{n}\right] R(z)=\frac{n!}{n}\left[\lambda^{n-1}\right] \phi^{n}(\lambda)$,
Taylor expansions + Newton formula:

$$
r(n)=(n-1)!\sum_{\substack{0 \leq s \leq q \leq p \leq k \leq i \leq n-1 \\ j=n-1-i-k-p-q-s \geq 0 \\ i \neq 0}}\binom{n+i-1}{i}\binom{4 i+j-1}{j 21}\binom{i}{k}\binom{k}{p}\binom{p}{q}\binom{q}{s}
$$

Counting labeled level-k networks

Unrooted level-1 networks:

explicit formula for n leaves, c cycles, m edges involved in the cycles
Semple \& Steel, TCBB, 2006

+ asymptotic evaluation for n leaves: $\approx 0.207(1.890)^{n} n^{n-1}$
Rooted level-1 networks :
Explicit formula for n leaves, c cycles, m edges across cycles
+ asymptotic evaluation for n leaves: $\approx 0.134(2.943)^{n} n^{n-1}$
Unrooted level-2 networks :

number of leaves	2	3	4	5	6	7
unrooted level-1	-	2	15	192	3450	79740
rooted level-1	3	36	723	20280	730755	32171580
unrooted level-2	-	9	282	14697	1071750	100467405

Thank you for your attention!

Co-authors of these results
Vincent Berry \& Christophe Paul (LIRMM, Montpellier)
Mathilde Bouvel (LABRI, Bordeaux)
Thanks to the LABRI for their Junior Guest grant in April 2011!

Thank you for your attention!

Co-authors of these results...
A level-2 network?

Thank you for your attention!

Co-authors of these results...
A level-3 network

