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Rooted binary phylogenetic networks

a    b    c   d    e    f    g    h   i     j    k

leaves bijectively labeled by current species
+ internal vertices (extinct species) :

- root
- split vertices (speciation)
- hybrid vertices (hybridization,
   horizontal gene transfer)



  

Rooted binary phylogenetic networks

a    b    c   d    e    f    g    h   i     j    k

Model: each gene comes from one parent:

Gene 1      Gene 2

a    b    c   d    e    f    g    h   i     j    k a    b    c   d    e    f    g    h   i     j    k



  

Rooted binary phylogenetic networks

a    b    c   d    e    f    g    h   i     j    k

Model: each gene comes from one parent:

Gene 1      Gene 2

a    b    c   d    e    f    g    h   i     j    k a    b    c   d    e    f    g    h   i     j    k

gene loss



  

G1     G2

species 1 : AATTGCAG TAGCCCAAAAT
species 2 : ACCTGCAG TAGACCAAT
species 3 : GCTTGCCG TAGACAAGAAT
species 4 : ATTTGCAG AAGACCAAAT
species 5 :          TAGACAAGAAT
species 6 : ACTTGCAG TAGCACAAAAT
species 7 : ACCTGGTG TAAAAT

{gene sequences}

{trees}

T1   
  

T2

Combinatorial phylogenetic network reconstruction

HOGENOM database
Dufayard, Duret, Penel, Gouy, 
Rechenmann & Perrière, BioInf, 2005



  

G1     G2

species 1 : AATTGCAG TAGCCCAAAAT
species 2 : ACCTGCAG TAGACCAAT
species 3 : GCTTGCCG TAGACAAGAAT
species 4 : ATTTGCAG AAGACCAAAT
species 5 :          TAGACAAGAAT
species 6 : ACTTGCAG TAGCACAAAAT
species 7 : ACCTGGTG TAAAAT

{gene sequences}

{trees}

T1   
  

T2

Combinatorial phylogenetic network reconstruction

network

contains the trees
+ “optimal”

HOGENOM database
Dufayard, Duret, Penel, Gouy, 
Rechenmann & Perrière, BioInf, 2005



  

G1     G2

species 1 : AATTGCAG TAGCCCAAAAT
species 2 : ACCTGCAG TAGACCAAT
species 3 : GCTTGCCG TAGACAAGAAT
species 4 : ATTTGCAG AAGACCAAAT
species 5 :          TAGACAAGAAT
species 6 : ACTTGCAG TAGCACAAAAT
species 7 : ACCTGGTG TAAAAT

{gene sequences}

{trees}

T1   
  

T2

Combinatorial phylogenetic network reconstruction

network

contains the trees
+ “optimal”

NP-complete for 2 rooted trees

HOGENOM database
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G1     G2

species 1 : AATTGCAG TAGCCCAAAAT
species 2 : ACCTGCAG TAGACCAAT
species 3 : GCTTGCCG TAGACAAGAAT
species 4 : ATTTGCAG AAGACCAAAT
species 5 :          TAGACAAGAAT
species 6 : ACTTGCAG TAGCACAAAAT
species 7 : ACCTGGTG TAAAAT

{gene sequences}

{trees}

T1   
  

T2

Combinatorial phylogenetic network reconstruction

network

contains the trees
+ “optimal”

NP-complete for 2 rooted trees

HOGENOM database
Dufayard, Duret, Penel, Gouy, 
Rechenmann & Perrière, BioInf, 2005
> 500 species, >70 000 trees

Bordewich & Semple, DAM, 2007



a   b   c   d   e

a
f

b c

de

Reconstruction from triplets / quartets

{gene sequences}

{trees}

network

{triplets} {quartets}

contains the quartets/triplets + “optimal”
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f
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Reconstruction from triplets / quartets

{gene sequences}

{trees}

network

{triplets} {quartets}

triplet a|ce
a    b    c    d    e

contains the quartets/triplets + “optimal”
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a
f

b c

de

Reconstruction from triplets / quartets

{gene sequences}

{trees}

network

{triplets} {quartets}

triplet a|ce
a    b    c    d    e

a
f

b c

e d

quartet ab|ce

contains the quartets/triplets + “optimal”



  

Reconstruction from triplets / quartets

Checking the solution:

Finding all triplets of a rooted network: O(n3)
Byrka, Gawrychowski, Huber & Kelk, JDA, 2010



  

Reconstruction from triplets / quartets

Checking the solution:

Finding all triplets of a rooted network: O(n3)
Byrka, Gawrychowski, Huber & Kelk, JDA, 2010

Finding all quartets of an unrooted network?
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Reconstruction from triplets / quartets

Byrka, Gawrychowski, Huber & Kelk, JDA, 2010

quartet ab|cd

2-disjoint paths
a-b,c-d

a

b c

d
e

f

ghi

Checking the solution:

Finding all triplets of a rooted network: O(n3)

Finding all quartets of an unrooted network?



  

Reconstruction from triplets / quartets

Byrka, Gawrychowski, Huber & Kelk, JDA, 2010

Finding all quartets of an unrooted network: O(n6)
2-Disjoint Paths in a graph of degree ≤3: O(n(1+α(n,n)))

quartet ab|cd

2-disjoint paths
a-b,c-d

a

b c

d
e

f

ghi

Tholey, SOFSEM'09, 2009

Checking the solution:

Finding all triplets of a rooted network: O(n3)
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level: how “far” is the network from a tree ?
small level  tree structure fast algorithms

level =
maximum number of hybrid vertices 
by bridgeless component (blob) of 
the underlying undirected graph.

level-2 network

h
1 h

3

a    b    c   d    e    f    g    h   i     j    k

Level-k networks

Choy, Jansson, Sadakane & Sung, TCS, 2005

h
2



level-1 network
(“galled tree”)

Level-k networks

a    b    c   d    e    f    g    h   i     j    k

a    b    c   d    e    f    g    h   i     j    k

level =
maximum number of hybrid vertices 
by blob.

level: how “far” is the network from a tree ?
small level  tree structure fast algorithms

level-2 network



  

a

b c

d
e

f

ghi

Unrooted level-k networks

level: how “far” is the network from an unrooted tree ?
small level  tree structure fast algorithms

unrooted level-2 network

level =
maximum number of edges to 
remove, by blob, to obtain a tree.

Gambette, Berry & Paul, manuscript, 2011



  

a

b c

d
e

f

ghi

Unrooted level-k networks

level: how “far” is the network from an unrooted tree ?
small level  tree structure fast algorithms

unrooted level-2 network

level =
maximum number of edges to 
remove, by blob, to obtain a tree.
= maximum cyclomatic number of 
the blobs



  

a

b c

d
e

f

ghi

Unrooted level-k networks

level: how “far” is the network from an unrooted tree ?
small level  tree structure fast algorithms

unrooted level-1 network
(unrooted galled tree)

level =
maximum number of edges to 
remove, by blob, to obtain a tree.

tree of cycles



  

Equivalence between rooted and unrooted level

a

b c

d
e

f

ghi

a     b     c     d     e     f     g     h     i

rooting

Rooting:
- choosing a root
- choosing an orientation for the edges

Gambette, Berry & Paul, manuscript, 2011
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Equivalence between rooted and unrooted level

a

b c

d
e

f

ghi

a     b     c     d     e     f     g     h     i

rooting

Rooting:
- choosing a root
- choosing an orientation for the edges

- many possible rootings (possibly exponential in the level)
- same level (invariant)

Gambette, Berry & Paul, manuscript, 2011



Phylogenetic network subclass hierarchy

rooted binary phylogenetic networks

regular

normal

level ktree-sibling

explicit
rooted

tree

level-1

level-2tree-child

unicyclic

simple
level-1

galled
network nested

http://www.lirmm.fr/~gambette/RePhylogeneticNetworks.php

contains



http://www.lirmm.fr/~gambette/RePhylogeneticNetworks.php

regular

normal

level ktree-sibling

explicit
rooted

tree

level-1

level-2tree-child

unicyclic

simple
level-1

galled
network nested

contains rooted binary phylogenetic networks

efficient 
reconstruction 
algorithms 
(polynomial for 
fixed k)

Jansson, Nguyen & Sung 
2006,  van Iersel et al. 

2009, To & Habib 2009, 
van Iersel & Kelk 2010, 

van Iersel et al. 2010

Phylogenetic network subclass hierarchy
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Decomposition of level-k networks

We formalize the decomposition into blobs:

a  b  c  d  e  f   g  h  i   j   k a  b  c  d  e  f   g  h  i   j   k
N decomposed as a tree of simple 
graph patterns: generators.

N, level-k network.

Generators introduced by van Iersel & al (Recomb 2008) for the restricted class 
of simple level-k networks.



  

Level-k generators

A level-k generator is a level-k network with no cut arc.

G0 G1 2a     2b     2c     2d

The sides of the generator are:
- its arcs
- its reticulation vertices of outdegree 0



  

Decomposition theorem of level-k networks

N is a level-k network

iff

there exists a sequence (l
j
)

jϵ[1,r]
 of r locations

(arcs or reticulation vertices of outdegree 0)
and a sequence (G

j
)

jϵ[0,r]
 of generators of level at most k, such that:

- N = Attach
k
(l

r
,G

r
,Attach

k
(... Attach

k
(l

2
,G

2
,Attach

k
(l

1
,G

1
,G

0
))...)),

- or N = Attach
k
(l

r
,G

r
,Attach

k
(... Attach

k
(l

2
,G

2
,SplitRoot

k
(G

1
,G

0
))...)).
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Attach
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G
i
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i
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l
i

G
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Decomposition theorem of level-k networks
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This decomposition is not unique!

recursive decomposition later, for level-1...

Decomposition theorem of level-k networks

N is a level-k network
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Construction of level-k generators

Case analysis by van Iersel & al to find the 4 level-2 generators
Exponential algorithm by Steven Kelk to find the 65 level-3 generators.



Construction of level-k generators

Construction rules of level-(k+1) generators from level-k generators

Gambette, Berry & Paul, CPM 2009
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e
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Construction of level-k generators

Construction rules of level-(k+1) generators from level-k generators

Gambette, Berry & Paul, CPM 2009
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Upper bound on the number of level-k generators

R
1
 and R

2
 can be applied at most on all pairs of sides

A level-k generator has at most 5k slides:

g
k+1

 < 50 k² g
k

Upper bound:
g

k
 < k!² 50k

Theoretical corollary:
There is a polynomial algorithm to build the set of level-(k+1) generators 
from the set of level-k generators.
 → polynomial time algorithms to reconstruct level-k networks with fixed k

Kelk, Scornavacca & van Iersel, TCBB, 2011

Practical corollary:
g

4
 < 28350

 → it is possible to enumerate all level-4 generators.



Construction of level-k generators

Problem:
Some of the level-(k+1) generators obtained from level-k generators are 
isomorphic!

Gambette, Berry & Paul, CPM 2009

h
3

h
2

h
1

h
2

h
1 h

3

R
1
(N,h

1
,e

2
) R

1
(N,h

2
,e

1
)

 → difficult to count
 → possible generation up to level 5 :

1, 4, 65, 1993, 91454

http://www.lirmm.fr/~gambette/ProgGenerators.php



  

Lower bound on the number of level-k generators

Lower bound:
g

k
 ≥ 2k-1

There is an exponential number of generators!

Idea:
Code every number between 0 and 2k-1-1 by a level-k generator.



  

Lower bound on the number of level-k generators

Lower bound:
g

k
 ≥ 2k-1

There is an exponential number of generators!

Idea:
Code every number between 0 and 2k-1-1 by a level-k generator.

0 1

0 1

k = 1



  

Lower bound on the number of level-k generators

Lower bound:
g

k
 ≥ 2k-1

There is an exponential number of generators!

Idea:
Code every number between 0 and 2k-1-1 by a level-k generator.

0 1

10

0 1

1 0

0 1 2 3

k = 2



  

Lower bound on the number of level-k generators

Lower bound:
g

k
 ≥ 2k-1

There is an exponential number of generators!

Idea:
Code every number between 0 and 2k-1-1 by a level-k generator.

Practical corollary:
Phylogenetic reconstruction algorithms based on generators are not 
practical.

0 1

10

0 1

1 0

0 1 2 3

k = 2



  

a

b c

d
e

f

ghi

Unrooted level-k networks

unrooted level-k network

level =
maximum number of edges to 
remove, by blob, to obtain a tree.

tree of blobs
tree of generators of level ≤k

Unrooted level-k generators: bridgeless loopless 3-regular multigraphs with
2k-2 vertices

level-3 generatorslevel-2 generator

Berry, Bouvel, Gambette & Paul, manuscript, 2011
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Counting labeled level-k networks

Unrooted level-1 networks:
explicit formula for n leaves, c cycles, m edges involved in the cycles.

Semple & Steel, TCBB, 2006



  

Counting labeled unrooted level-1 networks

Unrooted level-1 networks:
explicit formula for n leaves, c cycles, m edges involved in the cycles.

Pointing + bijection:
Bijection between labeled unrooted level-1 networks with n+1 leaves and
labeled pointed level-1 networks with n leaves.

Semple & Steel, TCBB, 2006



  

Counting labeled unrooted level-1 networks

Unrooted level-1 networks:
explicit formula for n leaves, c cycles, m edges involved in the cycles.

Pointing + bijection:
Bijection between labeled unrooted level-1 networks with n+1 leaves and
labeled pointed level-1 networks with n leaves.

Recursive decomposition of pointed level-1 networks with n leaves:

Exponential generating function:

G = x +    G² + 

or or

G²
(1-G)

1
2

1
2

Semple & Steel, TCBB, 2006



  

Counting labeled unrooted level-1 networks

Unrooted level-1 networks:
explicit formula for n leaves, c cycles, m edges involved in the cycles.

Pointing + bijection:
Bijection between labeled unrooted level-1 networks with n+1 leaves and
labeled pointed level-1 networks with n leaves.

Recursive decomposition of pointed level-1 networks with n leaves:

Exponential generating function:

G = x +    G² + 

or or

G²
(1-G)

1
2

1
2

Seq
≥2

, any direction

Semple & Steel, TCBB, 2006



  

Counting labeled unrooted level-1 networks

Exponential generating function:

G = z +    G² + 

Using the Singular Inversion Theorem (Theorem VI.6 of                                  ):

g
n
 ≈ 0.2074 (1.8904)n nn-1

G²
(1-G)

1
2

1
2

Berry, Bouvel, Gambette & Paul, manuscript, 2012



  

Counting labeled unrooted level-1 networks

Exponential generating function:

G = z +    G² + 

Using the Singular Inversion Theorem (Theorem VI.6 of                                  ):

g
n
 ≈ 0.2074 (1.8904)n nn-1

Proof :
We write G = z φ(G), with φ(z) = 

Then g
n
 ≈  n!        ,       with  ρ = τ / φ(τ)

and τ is the solution of φ(z)-zφ'(z)=0

G²
(1-G)

1
2

1
2

Berry, Bouvel, Gambette & Paul, manuscript, 2012

1

1 – ½ z (1+1/(1-z))
φ(τ)

2φ''(τ)
ρ−n

π n3



  

Counting labeled unrooted level-2 networks

Recursive decomposition of pointed level-2 networks with n leaves:

z R²1
2

1
2

R²
1-R

sym
sym

Seq
≥1

, any direction
Seq

≥2
, any direction

Seq
≥1

Seq
≥2

horizontal symmetry with 
new orientation for lower 
edgesedge symmetry

simple edge

or...



  

Counting labeled unrooted level-2 networks

Recursive decomposition of pointed level-2 networks with n leaves:

sym symsym sym

sym

sym

z

sym

R²1
2

1
2

R²
1-R

R²
1-R

1
2

R²
1-R

1
2

R
1-R

²R
1-R

²

R²1
2

1
2

R²
1-R R

sym

1
4

R²
1-R

² 1
2

R
1-R

3 1
4

R
1-R

41
2

R
1-R

3

sym
sym

Seq
≥1

, any direction
Seq

≥2
, any direction

Seq
≥1

Seq
≥2

horizontal symmetry with 
new orientation for lower 
edgesedge symmetry

simple edge



  

Counting labeled unrooted level-2 networks

Recursive decomposition of pointed level-2 networks with n leaves:

Rewrite:

Berry, Bouvel, Gambette & Paul, manuscript, 2011



  

Counting labeled unrooted level-2 networks

Recursive decomposition of pointed level-2 networks with n leaves:

Rewrite:

Lagrange inversion:

Taylor expansions of φ
n
(λ):

number of leaves    2   3    4       5        6      7
unrooted level-2     -   9 282  14 697 1 071 750  100 467 405

Berry, Bouvel, Gambette & Paul, manuscript, 2011



  

Counting labeled unrooted level-2 networks

Recursive decomposition of pointed level-2 networks with n leaves:

Rewrite:

Lagrange inversion:

Taylor expansions + Newton formula:

Berry, Bouvel, Gambette & Paul, manuscript, 2011



  

Counting labeled level-k networks

Unrooted level-1 networks:
explicit formula for n leaves, c cycles, m edges involved in the cycles

+ asymptotic evaluation for n leaves: ≈ 0.207 
Semple & Steel, TCBB, 2006

number of leaves    2   3    4       5        6      7
unrooted level-1     -    2  15     192    3 450 79 740
rooted level-1         3  36 723  20 280  730 755     32 171 580
unrooted level-2     -   9 282  14 697 1 071 750  100 467 405

Rooted level-1 networks :
Explicit formula for n leaves, c cycles, m edges across cycles
+ asymptotic evaluation for n leaves: ≈ 0.134 2.943n nn-1

nn-1

1.890n

Unrooted level-2 networks :
Explicit formula for n leaves : n+i-1  4i+j-1  i    k   p   q   -3 s  9 i  -23 k         -10 q

    i          j       k   p   q   s   20    2     9              23 (n-1)!              (-1)pΣ
0≤s≤q≤p≤k≤i≤n-1
j=n-1-i-k-p-q-s≥0

i≠0

 

Berry, Bouvel, Gambette & Paul, manuscript, 2011
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Thank you for your attention!

Co-authors of these results...
A level-3 network
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