> Phylogenetics Workshop,
> Isaac Newton Institute for Mathematical Sciences
> Cambridge $-21 / 06 / 2011$

# Quartets and unrooted level-k networks 

Philippe Gambette

## Outline

- Abstract and explicit phylogenetic networks
- Level-k networks
- Unrooted level-1 networks and circular split systems
- Reconstruction from triplets and quartets


## Outline

- Abstract and explicit phylogenetic networks
- Level-k networks
- Unrooted level-1 networks and circular split systems
- Reconstruction from triplets and quartets


## Abstract and explicit phylogenetic networks

Abstract phylogenetic networks:
Visualize reticulate evolution data


Explicit phylogenetic networks: Each node can be interpreted as a current or ancestral species

galled network


## Split networks

Abstract phylogenetic networks: Visualize reticulate evolution data

## Split network:

Visualize a set of splits


## Split networks

Abstract phylogenetic networks: Visualize reticulate evolution data

## Split network:

Visualize a set of splits


## Split networks

Abstract phylogenetic networks: Visualize reticulate evolution data

## Split network:

Visualize a set of splits


## Network subclass hierarchy


split systems

explicit rooted networks

## Network subclass hierarchy


split systems

explicit rooted networks

## Outline

- Abstract and explicit phylogenetic networks
- Level-k networks
- Unrooted level-1 networks and circular split systems
- Reconstruction from triplets and quartets


## Level-k networks

level: how "far" is the network from a tree ?
small level $\Rightarrow$ tree structure $\Rightarrow$ fast algorithms

level $=$
maximum number of reticulations by bridgeless component (b/ob) of the underlying undirected graph.

## Level-k networks

level: how "far" is the network from a tree ? small level $\Rightarrow$ tree structure $\Rightarrow$ fast algorithms

level $=$
maximum number of reticulations by blob.
level-1 network
("galled tree")


## Unrooted level-k networks

level: how "far" is the network from an unrooted tree ? small level $\boldsymbol{\Rightarrow} \boldsymbol{t}$ tree structure $\boldsymbol{\rightarrow} \boldsymbol{f}$ fast algorithms

level $=$ maximum number of edges to remove, by blob, to obtain a tree.
unrooted level-2 network

## Unrooted level-k networks

level: how "far" is the network from an unrooted tree ? small level $\Rightarrow$ tree structure $\Rightarrow$ fast algorithms

level = maximum number of edges to remove, by blob, to obtain a tree. = maximum cyclomatic number of the blobs
unrooted level-2 network

## Unrooted level-k networks

level: how "far" is the network from an unrooted tree ? small level $\boldsymbol{\Rightarrow}$ tree structure $\boldsymbol{\rightarrow}$ fast algorithms

level = maximum number of edges to remove, by blob, to obtain a tree.
unrooted level-1 network $\Rightarrow$ tree of cycles (unrooted galled tree)

## Unrooted level-k networks



Unrooted level-k generators: bridgeless loopless 3-regular multigraphs with $2 k$ 2 vertices
level-2 generator

level-3 generators

## Counting labeled level-k networks

Unrooted level-1 networks:
explicit formula for $n$ leaves, $c$ cycles, $m$ edges across cycles

## Counting labeled level-k networks

## Unrooted level-1 networks:

explicit formula for $n$ leaves, $c$ cycles, $m$ edges across cycles Semple \& Steel, TCBB, 2006

+ asymptotic evaluation for $n$ leaves: $\approx 0.207 \frac{n^{n-1}}{1.890^{n}}$
Rooted level-1 networks :
Explicit formula for $n$ leaves, $c$ cycles, $m$ edges across cycles + asymptotic evaluation for $n$ leaves: $\approx 0.1342 .943^{n} n^{n-1}$

Unrooted level-2 networks :


| number of leaves | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| unrooted level-1 | - | 2 | 15 | 192 | 3450 | 79740 |
| rooted level-1 | 3 | 36 | 723 | 20280 | 730755 | 32171580 |
| unrooted level-2 | - | 9 | 282 | 14697 | 1071720 | 100461195 |

Equivalence between rooted and unrooted level


Rooting:


- choosing a root
- choosing an orientation for the edges

Equivalence between rooted and unrooted level


Rooting:


- choosing a root
- choosing an orientation for the edges


## Equivalence between rooted and unrooted level



Rooting:

- choosing a root
- choosing an orientation for the edges
- many possible rootings (possibly exponential in the level)
- same level (invariant)


## Outline

- Abstract and explicit phylogenetic networks
- Level-k networks
- Unrooted level-1 networks and circular split systems
- Reconstruction from triplets and quartets


## Splits in unrooted level-k networks

## Split:

$\Rightarrow$ Split of a tree contained in the network?
Woolley, Posada \& Crandall, PLoS One, 2008
$\Rightarrow$ Leaves separated by a minimal cut in the network?
$\approx$ Brandes \& Cornelsen, DAM, 2009


## Splits in unrooted level-k networks

Bipartition :
$\Rightarrow$ Split of a tree contained in the network
equivalent!


Representing splits by unrooted networks


Representing splits by unrooted networks


Representing splits by unrooted networks

cde|abfghi bcd|aefghi


## Splits in unrooted level-1 networks

Splits $\Sigma(N)$ of a level-1 network


Circular split system $\Sigma$


## Splits in unrooted level-1 networks

Splits $\Sigma(N)$ of a level-1 network $\Rightarrow \Sigma(N)$ circular


## Splits in unrooted level-1 networks

Splits $\Sigma(N)$ of a level-1 network $\Rightarrow \Sigma(N)$ circular


## Outline

- Abstract and explicit phylogenetic networks
- Level-k networks
- Unrooted level-1 networks and circular split systems
- Reconstruction from triplets and quartets


## Combinatorial phylogenetic network reconstruction

```
species 1 : AATTGCAG TAGCCCAAAAT
species 2 : ACCTGCAG TAGACCAAT
species 3 : GCTTGCCG TAGACAAGAAT
species 4 : ATTTGCAG AAGACCAAAT
species 5 : TAGACAAGAAT
species 6 : ACTTGCAG TAGCACAAAAT
species 7 : ACCTGGTG TAAAAT
```

G1 G2
\{gene sequences\}


T2
 Rechenmann \& Perrière, BioInf, 2005

network
contains the trees

+ "optimal"


## Combinatorial phylogenetic network reconstruction

```
species 1 : AATTGCAG TAGCCCAAAAT species 2 : ACCTGCAG TAGACCAAT species 3 : GCTTGCCG TAGACAAGAAT species 4 : ATTTGCAG AAGACCAAAT species 5 : TAGACAAGAAT species 6 : ACTTGCAG TAGCACAAAAT species 7 : ACCTGGTG TAAAAT
```

G1 G2
\{gene sequences\}


T2


Rechenmann \& Perrière, BioInf, 2005
> 500 species, >70 000 trees

network
contains the trees

+ "optimal"
NP-complete for 2 rooted trees


## Reconstruction from triplets / quartets



## Reconstruction from triplets / quartets



## Reconstruction from triplets / quartets



## Reconstruction from triplets / quartets


$N^{\prime}=N$ ?

## Reconstruction from triplets / quartets

A network containing all quartets of a tree $T$ does not always contain $T$.


$N$ contains all quartets of $T$ but not $T$

## Reconstruction from triplets / quartets



## Reconstruction from triplets / quartets

Finding all triplets of a rooted network: $O\left(n^{3}\right)$

## Reconstruction from triplets / quartets

Finding all triplets of a rooted network: $O\left(n^{3}\right)$
Byrka, Gawrychowski, Huber \& Kelk, JDA, 2010

Finding all quartets of an unrooted network?


## Reconstruction from triplets / quartets

Finding all triplets of a rooted network: $O\left(n^{3}\right)$
Byrka, Gawrychowski, Huber \& Kelk, JDA, 2010

Finding all quartets of an unrooted network?


## Reconstruction from triplets / quartets

Finding all triplets of a rooted network: $O\left(n^{3}\right)$
Byrka, Gawrychowski, Huber \& Kelk, JDA, 2010

Finding all quartets of an unrooted network: $O\left(n^{6}\right)$ 2-Disjoint Paths in a graph of degree $\leq 3: O(n(1+\alpha(n, n)))$


## Tree reconstruction



## Reconstruction of level-k networks

|  | unrooted from quartets | rooted from triplets |  |
| :---: | :---: | :---: | :---: |
| general | level 1 <br>  <br> Spillner, DAM, 2009 | level $\mathbf{k > 1}$ | level 1 |

## Quartet set decomposition

$A \mid \bar{A} \mathbf{S N}$-split of the quartet set $Q$ :
For all leaves $x, y \in A, z, t \in A$, The only quartet of $Q$ on $\{x, y, z, t\}$ is $x y \mid z t$

Rooted context:
SN-set
$Q$ is a dense quartet set

SN-splits of $Q$ are compatible (can be represented by an unrooted tree)

Computing the SN-splits: $O\left(n^{4}\right)$
variant of the $\mathrm{Q}^{*}$ algorithm
Berry \& Gascuel, TCS, 2001

Rooted context:
Computing the SN-sets: $O\left(n^{3}\right)$
Jansson, Nguyen \& Sung, TCS, 2006

## Quartet set decomposition

$Q(N)$, the set of all quartets contained in an unrooted level-k network $N$

SN-splits of $Q(N)$ are bijectively associated with cut-edges of $N$.


## Blob reconstruction from quartets

We can separate the blobs of $N$ from $Q(N)$. How to reconstruct each blob of $N$ ?

Level-1 network reconstruction from the complete quartet set: $N$, level-1 network
Finding an ordering of the leaves around the cycle: $O\left(n^{2}\right)$


Quartet "circular puzzling"
Fix four leaves $a, b, c, d$ :
$a b \mid c d$
$a d \mid b c$

## Blob reconstruction from quartets

We can separate the blobs of $N$ from $Q(N)$. How to reconstruct each blob of $N$ ?

Level-1 network reconstruction from the complete quartet set:
$N$, level-1 network
Finding an ordering of the leaves around the cycle: $O\left(n^{2}\right)$


Quartet "circular puzzling"
Fix four leaves $a, b, c, d(a b|c d, a d| b c)$
For each other leaf:
[For each possible position on the cycle:
[ Test in $O(1)$ if it is the correct one.

## Blob reconstruction from quartets

We can separate the blobs of $N$ from $Q(N)$. How to reconstruct each blob of $N$ ?

Level-1 network reconstruction from the complete quartet set:
$N$, level-1 network
Finding an ordering of the leaves around the cycle: $O\left(n^{2}\right)$


Quartet "circular puzzling"
Fix four leaves $a, b, c, d(a b|c d, a d| b c)$ For each other leaf:
[For each possible position on the cycle:
[Test in $O(1)$ if it is the correct one.

$$
b a|x d+a x| d b ?
$$

## Link with non-Betweenness

## Betweenness:

Input:

- set $X$ of elements
- set $C$ of betweenness constraints:
$a$ between $b$ and $c$


## Output:

- ordering $\sigma$ which respects the constraints of $C$


## Link with non-Betweenness

## Non-Betweenness:

Input:

- set $X$ of elements
- set $C$ of non-betweenness constraints:
$a$ not between $b$ and $c$


## Output:

- ordering $\sigma$ which respects the constraints of $C$


## Link with non-Betweenness

## Circular Non-Betweenness:

Input:

- set $X$ of elements
- set $C$ of circular non-betweenness constraints:
seen from $d, a$ not between $b$ and $c$


## Output:

- circular ordering $\sigma$ which respects the constraints of $C$



## Link with non-Betweenness

## Circular Non-Betweenness:

Input:

- set $X$ of elements
- set $C$ of circular non-betweenness constraints:
seen from $d, a$ not between $b$ and $c$


## Output:

- circular ordering $\sigma$ which respects the constraints of $C$

equivalent to unrooted level-1 blob reconstruction from quartets


## Link with non-Betweenness



## Thank you!

Coauthors of these results:
Vincent Berry \& Christophe Paul (Montpellier), Mathilde Bouvel (Bordeaux)


