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Abstract or explicit networks

An explicit phylogenetic network is a phyogenetic 
network where all reticulations can be interpreted as precise 
biological events.

An abstract network reflects some phylogenetic signals 
rather than explicitly displaying biological reticulation events.

Doolittle : Uprooting the Tree of Life, Scientific American (Feb..2000)



  

Abstract or explicit networks

An explicit phylogenetic network is a phyogenetic 
network where all reticulations can be interpreted as precise 
biological events.

An abstract network reflects some phylogenetic signals 
rather than explicitly displaying biological reticulation events.

Abstract phylogenetic network of 
mushroom species, www.splitstree.org



  

Hierarchy of network subclasses

http://www.lirmm.fr/~gambette/RePhylogeneticNetworks.php



  

Level-k phylogenetic networks

= level 0 

level 1 =

http://www.lirmm.fr/~gambette/RePhylogeneticNetworks.php



  

Level-k phylogenetic networks

Motivation to generalize “galled trees” (= level-1) :

Arenas, Valiente, Posada : 
Characterization of 
Phylogenetic Reticulate
Networks based on the 
Coalescent with
Recombination, Molecular 
Biology and Evolution, to 
appear.
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Level-k phylogenetic networks

A level-k phylogenetic network N on a set X of n taxa is a 
multidigraph in which:
- exactly one vertex has indegree 0 and outdegree 2: the root,
- all other vertices have either:

- indegree 1 and outdegree 2: split vertices,
- indegree 2 and outdegree ≤ 1: reticulation vertices,
- or indegree 1 and outdegree 0: leaves labeled by X,

- any blob has at most k reticulation vertices.

a  b  c  d  e  f   g  h  i   j   k

N

All arcs are 
oriented 
downwards
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Level-k phylogenetic networks

A level-k phylogenetic network N on a set X of n taxa is a 
multidigraph in which:
- exactly one vertex has indegree 0 and outdegree 2: the root,
- all other vertices have either:

- indegree 1 and outdegree 2: split vertices,
- indegree 2 and outdegree ≤ 1: reticulation vertices,
- or indegree 1 and outdegree 0: leaves labeled by X,

- any blob has at most k reticulation vertices.

a  b  c  d  e  f   g  h  i   j   k

N A blob is a maximal 
induced connected 
subgraph with no cut 
arc.

A cut arc is an arc 
which disconnects the 
graph.
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Level-k phylogenetic networks

A level-k phylogenetic network N on a set X of n taxa is a 
multidigraph in which:
- exactly one vertex has indegree 0 and outdegree 2: the root,
- all other vertices have either:

- indegree 1 and outdegree 2: split vertices,
- indegree 2 and outdegree ≤ 1: reticulation vertices,
- or indegree 1 and outdegree 0: leaves labeled by X,

- any blob has at most k reticulation vertices.

a  b  c  d  e  f   g  h  i   j   k

N A blob is a maximal 
induced connected 
subgraph with no cut 
arc.

A cut arc is an arc 
which disconnects the 
graph.

N has level 2.
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Decomposition of level-k networks

We formalize the decomposition into blobs:

a  b  c  d  e  f   g  h  i   j   k a  b  c  d  e  f   g  h  i   j   k
N decomposed as a 
tree of simple graph 
patterns: generators.

N, a level-k network.

Generators were introduced by van Iersel & al (Recomb 2008) 
for the restricted class of simple level-k networks.



  

Level-k generators

A level-k generator is a level-k network with no cut arc.

G0 G1 2a     2b     2c     2d

The sides of the generator are:
- its arcs
- its reticulation vertices of outdegree 0



  

Decomposition theorem of level-k networks

N is a level-k network

iff

there exists a sequence (l
j
)

jϵ[1,r]
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j
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Decomposition theorem of level-k networks
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Decomposition theorem of level-k networks
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Decomposition theorem of level-k networks

This decomposition is not unique!

N is a level-k network
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Decomposition theorem of level-k networks

Unique “graph-labeled tree” decomposition:

Possible applications:
- exhaustive generation of level-k networks
- counting of level-k networks

3
1

2
1

a  b  c  d  e  f   g  h  i

N

a   b  c   d  e   f   g   h   i

1h
1 h

2 h
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Construction of the generators
Van Iersel & al build the 4 level-2 generators by a case 
analysis, generalized by Steven Kelk into an exponential 
algorithm to find all 65 level-3 generators.



  

Construction of the generators

Van Iersel & al give a simple case analysis for level-2.

We give rules to build level-(k+1) from level-k generators.
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Construction of the generators

Construction rules of level-k+1 generators
from level k-generators:
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Construction of the generators
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Construction rules of level-k+1 generators
from level k-generators:
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Construction of the generators

Problem!
Some of the level-k+1 generators obtained from level-k 
generators are isomorphic!
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Construction of the generators

Problem!
Some of the level-k+1 generators obtained from level-k 
generators are isomorphic!
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 → difficult to count!
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Upper bound

R
1
 and R

2
 can be applied at most on all pairs of sides

A level-k generator has at most 5k slides:

g
k+1

 < 50 k² g
k

Upper bound:
g

k
 < k!² 50k

Theoretical corollary:
There is a polynomial algorithm to build the set of level-
k+1 generators from the set of level-k generators.

Practical corollary:
g

4
 < 28350

 → it is possible to enumerate all level-4 generators.



  

Number of level-k generators

http://www.lirmm.fr/~gambette/ProgramGenerators

It is possible to enumerate all level-4 generators.

Isomorphism of graphs of bounded valence:
polynomial

(Luks, FOCS 1980)

Practical algorithm?
Simple backtracking exponential algorithm sufficient for 
level 4 :

go through both graphs from their root in parallel and
identify their vertices: O(n2n-h)

 → g
4
 = 1993

 → g
5
 > 71000



  

Number of level-k generators



  

Lower bound:
g

k
 ≥ 2k-1

There is an exponential number of generators!

Idea:
Code every number between 0 and 2k-1-1 by a level-k 
generator.

Lower bound



  

Lower bound

0 1

0 1

k = 1

Lower bound:
g

k
 ≥ 2k-1

There is an exponential number of generators!

Idea:
Code every number between 0 and 2k-1-1 by a level-k 
generator.



  

Lower bound

0 1

10

0 1

1 0

0 1 2 3

k = 2

Lower bound:
g

k
 ≥ 2k-1

There is an exponential number of generators!

Idea:
Code every number between 0 and 2k-1-1 by a level-k 
generator.
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Simulated level-k networks

http://www.lirmm.fr/~gambette/ProgramGenerators

Simulate 1000 phylogenetic networks using the coalescent 
model with recombination.

Arenas, Valiente, Posada 2008
Program Recodon

How many are level-1,2,3... networks?
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Simulated level-k networks

level

number of 
reticulations

0   5        9

9

5

0

Simulate 1000 phylogenetic networks using the coalescent 
model with recombination.

Link between level and number of reticulations:

http://www.lirmm.fr/~gambette/ProgramGenerators



  

Summary on the level parameter

Advantages:
• natural structure for all explicit phylogenetic networks
• global tree-structure used algorithmically
• finite graph patterns to represent blobs: generators

Limits:
• number of generators exponential in the level
• complex structure of generators
• when recombination is not local, level doesn't help



  

Questions?
Thank you for your attention!

TreeCloud available at http://treecloud.org - Slides available at http://www.lirmm.fr/~gambette/RePresentationsENG.php

Split network and reticulogram of the 50 most frequent 
words in CPM titles, hyperlex cooccurrence distance,
data provided by Thierry Lecroq.

TreeCloud

TreeCloud T-Rex

http://treecloud.org/
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