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• Tag and word clouds
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• Enhanced tag clouds
• Tree clouds
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• Built from a set of tags
• Font size related to frequency

Tag clouds

What is considered the 
first tag cloud, from

D. Coupland: Microserfs, 
HarperCollins, Toronto, 

1995



  

• Gained popularity with Flickr

• Built from a set of tags
• Font size related to frequency

Tag clouds

Flickr's all time most popular tags
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• shared tags in red on del.icio.us

Add information from the text:
• color intensity to express recency in Amazon

Enhanced tag / word clouds

• optimize blank space and semantic proximity
Kaser & Lemire, WWW'07

• “topigraphy”: 2D placement according to cooccurrence
Fujimura, Fujimura, Matsubayashi, Yamada & Okuda, WWW'08

• group together cooccurring tags on the same line
Hassan-Montero & Herrero-Solana, InScit'06
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Extract semantic information from a text

• natural language processing:
sense desamibiguation

Véronis (Hyperlex)

• literature analysis:
philological approach: only consider the text

Brody

• text mining:
semantic graph

Grimmer (Wordmapper)

• discourse analysis:
tree analysis or cooccurrence graph, geodesic projection

Brunet (Hyperbase), Viprey (Astartex) 
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Extract semantic information from a text

• natural language processing:
word sense disamibiguation

Véronis (Hyperlex)

• literature analysis:
philological approach: only consider the text

Brody

• text mining:
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Grimmer (Wordmapper)

• discourse analysis:
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Keita et Touré,

JADT'08



  

Extract semantic information from a text

• natural language processing:
word sense disamibiguation

Véronis (Hyperlex)

• literature analysis:
philological approach: only consider the text

Brody

• text mining:
semantic graph

Grimmer (Wordmapper)

Peyrat-Guillard,
Analyse du discours

syndical sur l’entreprise, 
JADT'08

• discourse analysis:
tree analysis or cooccurrence graph, geodesic projection

Brunet (Hyperbase), Viprey (Astartex) 



  

Extract semantic information from a text

• natural language processing:
word sense disambiguation

Véronis (Hyperlex)

• literature analysis:
philological approach: only consider the text

Brody

• text mining:
semantic graph

Grimmer (Wordmapper)

Disambiguation of word 
“barrage”: dam, play-off, 

roadblock, police cordon.

Véronis, HyperLex:
Lexical Cartography for 

Information Retrieval, 2004

• discourse analysis:
tree analysis or cooccurrence graph, geodesic projection

Brunet (Hyperbase), Viprey (Astartex) 



  

Tag cloud + tree = tree cloud

GPL-licensed Treecloud in Python,
available at http://www.treecloud.org

Built with 
TreeCloud and

SplitsTree: Huson 1998, 
Huson & Bryant 2006



  

The first tree cloud

Tree cloud of the blog posts containing “Laurence Ferrari”
from 25/11/2007 to 10/12/2007, by Jean Véronis

http://aixtal.blogspot.com/2007/12/actu-une-ferrari-dans-un-arbre.html



  

Building a tree cloud – extracting the words

Extract words with frequency:

• stoplist?
without stoplist with stoplist



  

Building a tree cloud – extracting the words

Extract words with frequency:

• lemmatization?

• groups words with similar meaning?

70 most frequent words in
Obama's campaign speeches,

winsize=30, distance=dice, NJ-tree.

no lemmatization...
sometimes interesting



  

Building a tree cloud – dissimilarity matrix

Many semantic distance formulas based on cooccurrence



  

Building a tree cloud – dissimilarity matrix

Many semantic distance formulas based on cooccurrence

sliding
window S

Text                                                                                      

width w
sliding 
step s

cooccurrence matrices
O

11
, O

12
, O

21
, O

22

semantic dissimilarity 
matrix
chi squared, mutual 
information, liddel, dice, 
jaccard, gmean, hyperlex, 
minimum sensitivity, odds 
ratio, zscore, log likelihood, 
poisson-stirling...

Evert,
Statistics of words cooccurrences, 

PhD Thesis, 2005



  

Building a tree cloud – dissimilarity matrix

Transformations needed on the dissimilarity:

• transform similarity into dissimilarity

• linear normalization for positive matrices to get distances 
in [0,1]

• affine normalization for matrices with positive or negative 
numbers, to get distances in [α,1] (for example α=0.1)



  

Building a tree cloud – tree reconstruction

Many existing methods:

• Neighbor-Joining
Saitou & Nei, 1987

• Addtree variants
Barthelemy & Luong, 1987

• Quartet heuristic
Cilibrasi & Vitanyi, 2007



  

Building a tree cloud – tree decoration

Choice of word sizes:

• computed directly from frequency (apply a log!)

or

• computed from frequency ranking (exponential distribution)

or

• statistical significance with respect to a reference corpus



  

Building a tree cloud – tree decoration

Colors: chronology

150 most frequent words in
Obama's campaign speeches, 
winsize=30, distance=oddsratio, 
color=chronology, NJ-tree.

old
recent

Built with 
TreeCloud and



  

Building a tree cloud – tree decoration

Colors: dispersion

standard
deviation
of the position

150 most frequent words in
Obama's campaign speeches, 
winsize=30, distance=oddsratio, 
color=dispersion, NJ-tree.

sparse
dense

too blue?



  

Building a tree cloud – tree decoration

Colors: dispersion

standard
deviation
of the position   
word frequency

150 most frequent words in
Obama's campaign speeches, 
winsize=30, distance=oddsratio, 
color=norm-dispersion, NJ-tree.

sparse
dense

too red?



  

Building a tree cloud – tree decoration

Edge color or thickness:
quality of the induced
cluster.

150 most frequent words in
Obama's campaign speeches, 
winsize=30, distance=oddsratio, 
color=chronology, NJ-tree.



  

Quality control

Is there an objective quality measure of tree clouds?



  

Quality control

Is there an objective quality measure of tree clouds?

What is the best method to build a tree cloud from my data?



  

Quality control

Is there an objective quality measure of tree clouds?

What is the best method to build a tree cloud from my data?

Tree cloud variations if small changes?
bootstrap to evaluate:

- stability of the result
- robustness of the method



  

Quality control

Is there an objective quality measure of tree clouds?

What is the best method to build a tree cloud from my data?

Tree cloud variations if small changes?
bootstrap to evaluate:

- stability of the result
- robustness of the method

Still, is there a more direct method?
arboricity to show whether the distance matrix 
fits with a tree, which should imply stability?

Guénoche & Garreta, 2001
Guénoche & Darlu, 2009



  

Quality control – bootstrap

• Randomly delete words with probability 50%.

• Built tree cloud of original text, and altered text.

• Compute similarity of both trees (1-normalized RobinsonFoulds)

chisquared
mi

liddell
dice

jaccard
gmean

hyperlex
ms

oddsratio
zscore

loglikelihood
poissonstirling

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

similarity

4 altered versions of 10 
Obama's speeches, 

3000 words in average,
width=30, NJ-tree.



  

Quality control – arboricity

Relationship between “bootstrap quality” and arboricity:

0,52 0,54 0,56 0,58 0,6 0,62 0,64 0,66 0,68 0,7
0

10

20

30

40

50

60

70

80

arboricity (%)

bootstrap quality



  

Quality control – arboricity

Relationship between “bootstrap quality” and arboricity:

0,52 0,54 0,56 0,58 0,6 0,62 0,64 0,66 0,68 0,7
0

10

20

30

40

50

60

70

80

correlation 
coefficient: 
0.64

arboricity 
below 
50%: 
danger!

arboricity (%)

bootstrap quality



  

Perspectives

• Make the tool available on a web interface

• Evaluate tree clouds for discourse analysis

• Build the daily tree cloud of people popular on blogs,

with

http://labs.wikio.net

http://www.treecloud.org



  

Thank you for your attention!

http://www.treecloud.org - http://www.splitstree.org 

Tree cloud of the words appearing
twice or more in the IFCS 2009 call for paper

lemmatization, width=20, distance=dice, NJ-tree.

http://www.treecloud.org/
http://www.splitstree.org/


  

Tree clouds focused on one word

http://www.treecloud.org - http://www.splitstree.org 

Tree cloud of the neighborhood of “McCain” in 
Obama's campaign speeches

http://www.treecloud.org/
http://www.splitstree.org/


  

Tree clouds focused on one word

http://www.treecloud.org - http://www.splitstree.org 

Tree cloud of the neighborhood of “Bush” in 
Obama's campaign speeches

http://www.treecloud.org/
http://www.splitstree.org/


  

Tree clouds focused on one word

http://www.treecloud.org - http://www.splitstree.org 

Tree cloud of the neighborhood of “world” in 
Obama's campaign speeches

http://www.treecloud.org/
http://www.splitstree.org/
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