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Abstract or explicit networks

An explicit phylogenetic network is a phyogenetic 
network where all reticulations can be interpreted as precise 
biological events.

An abstract network reflects some phylogenetic signals 
rather than explicitly displaying biological reticulation events.



  

Abstract or explicit networks

An explicit phylogenetic network is a phyogenetic 
network where all reticulations can be interpreted as precise 
biological events.

An abstract network reflects some phylogenetic signals 
rather than explicitly displaying biological reticulation events.

Explicit phylogenetic 
network representing the 
Theory of Evolution as 
described by Mrs 
Garrison in South Park 
S10E12.



  

Abstract or explicit networks

An explicit phylogenetic network is a phyogenetic 
network where all reticulations can be interpreted as precise 
biological events.

An abstract network reflects some phylogenetic signals 
rather than explicitly displaying biological reticulation events.



  

Hierarchy of network subclasses

http://www.lirmm.fr/~gambette/RePhylogeneticNetworks.php



  

Phylogenetic networks: a current topic

http://www.lirmm.fr/~gambette/PhylogeneticNetworks

Publications about phylogenetic networks:

Visits on the Who's who in Phylogenetic Networks:

France,
USA,
Germany,
United Kingdom,
New Zealand, 
Netherlands, 
Spain,
Canada, 
Romania, 
Israel...



  

Phylogenetic networks: a clustered topic

The size 
represents the 
number of 
publications 
about 
phylogenetic 
networks, 
weighted by the 
number of 
coauthors on 
each publication.

Tag cloud of authors on phylogenetic networks:



  

Phylogenetic networks: a clustered topic

made with Tree Cloud and SplitsTree - http://www.lirmm.fr/~gambette/ProgTreeCloud.php

The size 
represents the 
number of 
publications 
about 
phylogenetic 
networks, 
weighted by the 
number of 
coauthors on 
each publication.

Tree cloud of the main authors on phylogenetic networks:
Authors with at least 2 
publications on 
phylogenetic networks



  

Phylogenetic networks: a clustered topic

made with Tree Cloud and SplitsTree - http://www.lirmm.fr/~gambette/ProgTreeCloud.php

The size 
represents the 
number of 
publications 
about 
phylogenetic 
networks, 
weighted by the 
number of 
coauthors on 
each publication.

Tree cloud of the main authors on phylogenetic networks:
Authors with at least 5 
publications on 
phylogenetic networks



  

Phylogenetic networks: a clustered topic

Tree cloud of the main authors on phylogenetic networks:
Authors with at least 5 
publications on 
phylogenetic networks

How to build robust tree clouds?
- which cooccurrence distance?
- which tree reconstruction method?
Ongoing work with Jean Véronis (Aix-en-Provence, Computational Linguistics)
and Delphine Amstutz (Paris, XVIIth Century Literature Analysis)
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Level-k phylogenetic networks

An level-k phylogenetic network N on a set X of n taxa is a 
multidigraph in which:
- exactly one vertex has indegree 0 and outdegree 2: the root,
- all other vertices have either:

- indegree 1 and outdegree 2: split vertices,
- indegree 2 and outdegree ≤ 1: reticulation vertices,
- or indegree 1 and outdegree 0: leaves labeled by X,

- any blob has at most k reticulation vertices.

a  b  c  d  e  f   g  h  i   j   k

N

All arcs are 
oriented 
downwards

In collaboration with Vincent Berry (Montpellier, Bioinformatics) and Christophe Paul 
(Montpellier, Graph Theory)
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Level-k phylogenetic networks

An level-k phylogenetic network N on a set X of n taxa is a 
multidigraph in which:
- exactly one vertex has indegree 0 and outdegree 2: the root,
- all other vertices have either:

- indegree 1 and outdegree 2: split vertices,
- indegree 2 and outdegree ≤ 1: reticulation vertices,
- or indegree 1 and outdegree 0: leaves labeled by X,

- any blob has at most k reticulation vertices.

a  b  c  d  e  f   g  h  i   j   k

N
A blob is a maximal 
biconnected 
component of the 
underlying undirected 
graph, that is a maximal 
subgraph which remains 
connected after the 
removal of one of its 
vertices.
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Level-k phylogenetic networks

An level-k phylogenetic network N on a set X of n taxa is a 
multidigraph in which:
- exactly one vertex has indegree 0 and outdegree 2: the root,
- all other vertices have either:

- indegree 1 and outdegree 2: split vertices,
- indegree 2 and outdegree ≤ 1: reticulation vertices,
- or indegree 1 and outdegree 0: leaves labeled by X,

- any blob has at most k reticulation vertices.

a  b  c  d  e  f   g  h  i   j   k

N A blob is a maximal 
biconnected 
component of the 
underlying undirected 
graph, that is a maximal 
subgraph which remains 
connected after the 
removal of one of its 
vertices.N has level 2.



  

Level-k phylogenetic networks

= level 0 

level 1 =



  

Decomposition of level-k networks

We formalize the decomposition into biconnected components:

a  b  c  d  e  f   g  h  i   j   k a  b  c  d  e  f   g  h  i   j   k
N decomposed as a 
tree of generators.

N, a level-k network.

Generators were introduced by van Iersel & al (Recomb 2008) 
for a restricted class of level-k networks.



  

Level-k generators

A level-k generator is a biconnected level-k network.

G0 G1 2a     2b     2c     2d

The sides of the generator are:
- its arcs
- its reticulation vertices of outdegree 0

S
k
 is the set of generators of level at most k.



  

Decomposition theorem of level-k networks

N is a level-k network

iff

there exists a sequence (l
j
)

jϵ[1,r]
 of r locations

(arcs or reticulation vertices of outdegree 0)
and a sequence (G

j
)

jϵ[0,r]
 of generators of level at most k, such that:

- N = Attach
k
(l

r
,G

r
,Attach

k
(... Attach

k
(l

2
,G

2
,Attach

k
(l

1
,G

1
,G

0
))...)),

- or N = Attach
k
(l

r
,G

r
,Attach

k
(... Attach

k
(l

2
,G

2
,SplitRoot

k
(G

1
,G

0
))...)).
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Decomposition theorem of level-k networks
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N is a level-k network
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Decomposition theorem of level-k networks

N is a level-k network

iff

there exists a sequence (l
j
)

jϵ[1,r]
 of r locations

(arcs or reticulation vertices of outdegree 0)
and a sequence (G

j
)

jϵ[0,r]
 of generators of level at most k, such that:

- N = Attach
k
(l

r
,G

r
,Attach

k
(... Attach

k
(l

2
,G

2
,Attach

k
(l

1
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1
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0
))...)),

- or N = Attach
k
(l

r
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r
,Attach
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(... Attach
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(l

2
,G

2
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G
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Decomposition theorem of level-k networks

Attach
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Construction of the generators

Van Iersel & al give a simple case analysis for level-2.

We give rules to build level-(k+1) from level-k generators.
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Construction of the generators

We give rules to build level-(k+1) from level-k generators.

N is a level-k generator.
R

1
(N,X,Y) is obtained by:

- choosing two sides X and Y of N, such that if X = Y then X 
is not a reticulation node (i.e. it is an arc),
- hanging a new reticulation node under X and Y.
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Construction of the generators

We give rules to build level-(k+1) from level-k generators.

N is a level-k generator.
R

2
(N,X,Y) is obtained by:

- choosing a side X of N, and an arc Y of N,
- adding an arc from X to Y (which creates a reticulation node 
inside arc Y).

e
1

e
2

h
2

h
1

R
2
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1
,e

2
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Construction of the generators

We give rules to build level-(k+1) from level-k generators.

For any level-k generator N, and any two sides X and Y of 
N, if R

1
(N,X,Y) (resp. R

2
(N,X,Y)) exists,

then R
1
(N,X,Y) (resp. R

2
(N,X,Y)) is a level-(k+1) generator.

For any level-(k+1) generator N, there exists a level-k 
generator N

0
, and some sides X and Y of N

0
 such that

N = R
1
(N

0
,X,Y) or N = R

2
(N

0
,X,Y).



  

Construction of the generators

We give rules to build level-(k+1) from level-k generators.

For any level-k generator N, and any two sides X and Y of 
N, if R

1
(N,X,Y) (resp. R

2
(N,X,Y)) exists,

then R
1
(N,X,Y) (resp. R

2
(N,X,Y)) is a level-(k+1) generator.

For any level-(k+1) generator N, there exists a level-k 
generator N

0
, and some sides X and Y of N

0
 such that

N = R
1
(N

0
,X,Y) or N = R

2
(N

0
,X,Y).

Corollary:
g

k
: number of level-k generators.

g
k+1

 ≤ 50 k² g
k



  

Construction of the generators

For any level-k generator N, and any two sides X and Y of 
N, if R

1
(N,X,Y) (resp. R

2
(N,X,Y)) exists,

then R
1
(N,X,Y) (resp. R

2
(N,X,Y)) is a level-(k+1) generator.

For any level-(k+1) generator N, there exists a level-k 
generator N

0
, and some sides X and Y of N

0
 such that

N = R
1
(N

0
,X,Y) or N = R

2
(N

0
,X,Y).

Corollary:
g

k
: number of level-k generators.

g
k+1

 ≤ 50 k² g
k

Some of the level-(k+1) generators obtained from level-k 
generators are isomorphic!

 
→ find lower and upper bounds for g

k
→ generate level-4 generators (65 level-3 generators)



  

Reconstruction from triplets

A triplet x|yz is a rooted phylogenetic tree on 3 taxa {x,y,z} 
such that x, and the father of y and z, are sons of the root.

z  y  x



  

Reconstruction from triplets

A triplet x|yz is a rooted phylogenetic tree on 3 taxa {x,y,z} 
such that x, and the father of y and z, are sons of the root.

{y,z} is then called the cherry of x|yz.

Restriction of T to X: T
|X
 = { t ϵ T | t on taxa x,y,z ϵ X }

xz  y



  

Reconstruction from triplets

A triplet x|yz is a rooted phylogenetic tree on 3 taxa {x,y,z} 
such that x, and the father of y and z, are sons of the root.

z  y  x

A triplet x|yz is compatible with a level-k phylogenetic 
network N if:
- N contains two nodes u and v
- and pairwise internally vertex-disjoint paths:

- from u to y,
- from u to z,
- from v to u,
- and from v to x.

a  b  c  d  e  f   g  h  i   j   k

N
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Reconstruction from triplets

A triplet x|yz is a rooted phylogenetic tree on 3 taxa {x,y,z} 
such that x, and the father of y and z, are sons of the root.

z  y  x

A triplet x|yz is compatible with a level-k phylogenetic 
network N if:
- N contains two nodes u and v
- and pairwise internally vertex-disjoint paths:

- from u to y,
- from u to z,
- from v to u,
- and from v to x.

k|gh compatible with N.
a  b  c  d  e  f   g  h  i   j   k

N
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Reconstruction from triplets

A triplet x|yz is a rooted phylogenetic tree on 3 taxa {x,y,z} 
such that x, and the father of y and z, are sons of the root.

z  y  x

A triplet x|yz is compatible with a level-k phylogenetic 
network N if:
- N contains two nodes u and v
- and pairwise internally vertex-disjoint paths:

- from u to y,
- from u to z,
- from v to u,
- and from v to x.

h|gk compatible with N.
a  b  c  d  e  f   g  h  i   j   k

N
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Reconstruction from triplets

A triplet x|yz is a rooted phylogenetic tree on 3 taxa {x,y,z} 
such that x, and the father of y and z, are sons of the root.

z  y  x

A triplet x|yz is compatible with a level-k phylogenetic 
network N if:
- N contains two nodes u and v
- and pairwise internally vertex-disjoint paths:

- from u to y,
- from u to z,
- from v to u,
- and from v to x.

g|hk compatible with N.

a  b  c  d  e  f   g  h  i   j   k

N



  

Reconstruction from triplets

Why use triplets as input of a tree or network 
reconstruction algorithm?

Under a coalescent model, an inferred tree on strictly
more than three taxa, is most likely to be wrong because of 
discrepancies in gene and species tree.

(Degnan & Rosenberg, 2006)

Who uses triplets as input of a tree or network reconstruction 
algorithms?
- ???
- people who use trees as input?
- people will when it is implemented in Dendroscope or 
SplitsTree?



  

G

Reconstruction from triplets: BUILD

The set T(N) of all triplets compatible with a level-k network 
N can be computed in O(|T(N)|) = O(n3)

(dynamic programming, Byrka, Gawrychowski, Huber, Kelk, 2008)

A tree T compatible with a set T of triplets can be 
reconstructed in O(|T|+n² log n).

(BUILD, top-down algorithm, Aho, Sagiv, Szymanski, Ullman, 1981)
(efficient implementation by Henzinger, King, Warnow, 1999)

Recursive algorithm on X:
- build the following graph G:

- taxa as vertices,
- edge {x,y} if ƎtϵT

|X
such that {x,y} is a cherry of t.

- vertices in ≠ connected components are in ≠ subtrees
- apply algorithm on each connected component

T
|X
= {a|cd,a|ce,

c|ab,d|ab,c|de}

X={a,b,c,d,e} c
d

eb

a

{a,b} {c,d,e}



  

Reconstruction from triplets: BUILD

The set T(N) of all triplets compatible with a level-k network 
N can be computed in O(|T(N)|) = O(n3)

(dynamic programming, Byrka, Gawrychowski, Huber, Kelk, 2008)

A tree T compatible with a set T of triplets can be 
reconstructed in O(|T|+n² log n).

(BUILD, top-down algorithm, Aho, Sagiv, Szymanski, Ullman, 1981)
(efficient implementation by Henzinger, King, Warnow, 1999)

Recursive algorithm on X:
- build the following graph G:

- taxa as vertices,
- edge {x,y} if ƎtϵT

|X
such that {x,y} is a cherry of t.

- vertices in ≠ connected components are in ≠ subtrees
- apply algorithm on each connected component

T
|X
= {c|de}

X={c,d,e} c
d

e {a,b} {d,e}c
G



  

Reconstruction from triplets: BUILD

The set T(N) of all triplets compatible with a level-k network 
N can be computed in O(|T(N)|) = O(n3)

(dynamic programming, Byrka, Gawrychowski, Huber, Kelk, 2008)

A tree T compatible with a set T of triplets can be 
reconstructed in O(|T|+n² log n).

(BUILD, top-down algorithm, Aho, Sagiv, Szymanski, Ullman, 1981)
(efficient implementation by Henzinger, King, Warnow, 1999)

Recursive algorithm on X:
- build the following graph G:

- taxa as vertices,
- edge {x,y} if ƎtϵT

|X
such that {x,y} is a cherry of t.

- vertices in ≠ connected components are in ≠ subtrees
- apply algorithm on each connected component

T
|X
= {}

X={a,b} a

b c
G

a b {d,e}



  

Reconstruction from triplets: BUILD

The set T(N) of all triplets compatible with a level-k network 
N can be computed in O(|T(N)|) = O(n3)

(dynamic programming, Byrka, Gawrychowski, Huber, Kelk, 2008)

A tree T compatible with a set T of triplets can be 
reconstructed in O(|T|+n² log n).

(BUILD, top-down algorithm, Aho, Sagiv, Szymanski, Ullman, 1981)
(efficient implementation by Henzinger, King, Warnow, SODA 1996)

Recursive algorithm on X:
- build the following graph G:

- taxa as vertices,
- edge {x,y} if ƎtϵT

|X
such that {x,y} is a cherry of t.

- vertices in ≠ connected components are in ≠ subtrees
- apply algorithm on each connected component

T
|X
= {}

X={d,e} d

e
G

a  b  c  d  e



  

Reconstruction from triplets

The problem of reconstructing a level-1 network 
compatible with a set of triplets is NP-complete.

(Jansson, Nguyen, Sung, 2004)

A level-1 network compatible with a dense set of triplets can 
be reconstructed in O(|T(N)|) = O(n3).
dense = at least 1 triplet on each set of 3 leaves exists in T.

(Jansson, Nguyen, Sung, 2004)

A level-2 network compatible with a dense set of triplets can 
be reconstructed in O(n8).

(van Iersel et al, Recomb 2008)

Based on a decomposition of the triplet set with SN-sets, 
which corresponds to some decomposition of the network.



  

The obstruction approach

Idea:
- reduce global conflicts in the triplet set to local conflicts,
- if no local conflict, build the local configuration of the 
network.



  

The obstruction approach

Idea:
- reduce global conflicts in the triplet set to local conflicts,
- if no local conflict, build the local configuration of the 
network.

Requirements:
- enough information on the triplet set to find the conflicts
 → dense set.
- enough information to build the local configuration
 → extremely dense set, i.e. no triplet is missing (input=T(N)).



  

Characterization of trees from triplets
A dense triplet set T is compatible with a tree T

iff

no set of three leaves is present in two different triplets of T, 
and all triplet sets on four leaves are isomorphic:
- either to {x

1
|x

2
x

3
,x

1
|x

2
x

4
,x

1
|x

3
x

4
,x

2
|x

3
x

4
} (case 1)

- or to {x
1
|x

3
x

4
,x

2
|x

3
x

4
,x

3
|x

1
x

2
,x

4
|x

1
x

2
} (case 2)

iff

T does not contain any triplet set isomorphic to any of the four 
following obstructions:
{a|bc,c|ab}, {a|bc,c|bd,d|ab}, {a|bc,c|bd,d|ac}, {a|bc,a|bd,d|ac}.

Similar characterizations were found by Dress (1997), 
Guillemot & Berry (2007).

x
1
 x

2
 x

3
 x

4

x
1
 x

2
 x

3
 x

4



  

Consequences of the characterization
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

Certifying algorithms return, with each output,
an easily checked certificate that the output has
not been compromised by a bug.

The certificate we provide is:
- the tree, if it can be reconstructed,

- an obstruction on 4 triplets, otherwise.



  

Consequences of the characterization
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

Certifying algorithms return, with each output,
an easily checked certificate that the output has
not been compromised by a bug.

The certificate we provide is:
- the tree, if it can be reconstructed,
 → checking that all the input triplets are compatible with the tree is easy!
- an obstruction on 4 triplets, otherwise.
 → checking that it is isomorphic to one of the 4 obstructions is easy!



  

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

 
to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.



  

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

 
to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

CBA

E

D

a         b         c
A:{a|bc,b|ax,c|ax,x|bc}
B:{a|bc,a|bx,a|cx,c|bx}
C:{a|bc,a|bx,a|cx,b|cx}
D:{a|bc,x|ab,x|ac,x|bc}
E:{a|bc,a|bx,a|cx,x|bc}



  

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

 
to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

CBA

E

D

a         b         c
A:{a|bc,b|ax,c|ax,x|bc}
B:{a|bc,a|bx,a|cx,c|bx}
C:{a|bc,a|bx,a|cx,b|cx}
D:{a|bc,x|ab,x|ac,x|bc}
E:{a|bc,a|bx,a|cx,x|bc}

No zone is correct? Obstruction!

A triplet is not compatible? Obstruction!



  

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

 
to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

X={a,b,c,d,e,f,g,h,i,j,k}



  

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

 
to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

X={a,b,c,d,e,f,g,h,i,j,k}

a                  f                   k  

b,c,
   d,ea|f,k

   g,
 h,i,j



  

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

 
to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

X={b,c,d,e,f}

a              f                  k  

b,c,
   d,eb|de

b   d   e

c f

   g,
 h,i,j



  

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

 
to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

X={b,c}

a              f                  k  

b,c,
   d,e

b  c  d  e
f

   g,
 h,i,j



  

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

 
to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

X={e,f}

a              f                  k  

b,c,
   d,e

b c d e  f

   g,
 h,i,j



  

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

 
to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

a              f                  k  

b,c,
   d,e

b c d e  f

X={b,c,d,e,f}

   g,
 h,i,j



  

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

 
to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

a                   f              k  

   g,
 h,i,j

X={b,c,d,e,f}

b c d e



  

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

 
to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

a                   f              k  

   g,
 h,i,j

X={f,g,h,i,j}

b c d e

j|fg

f   g         j 

h,i
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The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

 
to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

a                   f              k  

   g,
 h,i,j

X={h,i,j}

b c d e

h|ij

f   g         j 

h,i

h       i      j 



  

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

 
to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

a                   f              k  

   g,
 h,i,j

X={h,i,j}

b c d e

f  g  h  i   j



  

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

 
to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

a                   f              k  

   g,
 h,i,j

X={f,g,h,i,j}

b c d e

f  g  h  i   j



  

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

 
to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

a                   f  g h i  j    k  

X={f,g,h,i,j}

b c d e



  

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

 
to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

a  b  c  d e f  g h i  j  k  

X={a,b,c,d,e,f,g,h,i,j,k}
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b  c  d  e 

h  i   j 

k 

f   g

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

 
to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

O(n²)

O(n3)

O(n) leaves
→ O(n) edges
→ O(n) non-overlapping 
sets of edges
→ O(n) recursive calls



  

FPT algorithm for minimum triplet edition
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

Corollary:
An obstruction on 4 leaves can be found in O(n3).

Maximum Compatible Subset of Rooted Triples:
Input: Triplet set T, integer t ≤ |T| (nb of bad triplets).
Question: Is there a subset of T of size at least |T|-t 
compatible with a tree?



  

FPT algorithm for minimum triplet edition
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

Corollary:
An obstruction on 4 leaves can be found in O(n3).

Maximum Compatible Subset of Rooted Triples:
Input: Triplet set T, integer t ≤ |T| (nb of bad triplets).
Question: Is there a subset of T of size at least |T|-t 
compatible with a tree?

NP-complete.
(proofs by Bryant 1997, Jansson 2001, Wu 2004)

O((|T|+n²)3n) algorithm.
(Wu, 2004)



  

FPT algorithm for minimum triplet edition
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

Corollary:
An obstruction on 4 leaves can be found in O(n3).

Maximum Compatible Subset of Rooted Triples:
Input: Triplet set T, integer t ≤ |T| (nb of bad triplets).
Question: Is there a subset of T of size at least |T|-t 
compatible with a tree?

FPT-algorithm for dense sets:
- find an obstruction O(n3)
- edit one of its triplets:
  → 2 possibilities for each triplet
  → total of 6 possibilities

Total complexity: O(n3 6t)



  

FPT algorithm for minimum triplet edition
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

Corollary:
An obstruction on 4 leaves can be found in O(n3).

Maximum Compatible Subset of Rooted Triples:
Input: Triplet set T, integer t ≤ |T| (nb of bad triplets).
Question: Is there a subset of T of size at least |T|-t 
compatible with a tree?

FPT-algorithm for dense sets:
- find an obstruction O(n3)
- edit one of its triplets:
  → 2 possibilities for each triplet
  → total of 6 possibilities
Total complexity: O(n3 6t)
Ongoing work with Vincent Berry (Montpellier, Bioinformatics) and Christophe Paul 
(Montpellier, Graph Theory)

- Get a better complexity?
- Program a faster implementation?

http://www.lirmm.fr/~gambette/ReTriplets.php



  

Extremely dense level-1 decision algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

Corollary:
Similar O(n3) algorithm to decide whether a triplet set T is 
extremely dense for some level-1 network.

Differences:
- different starting point:
if T is not compatible with a tree and is extremely dense, then 
T contains a triplet subset isomorphic to {a|bc,b|ac}.
  → start with {a|bc,b|ac}

- different zones:
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Extremely dense level-1 decision algorithm
O(n3) algorithm to decide whether a triplet set T is extremely 
dense for some level-1 network.

Different zones:

Different triplet sets define zones D, E, F, G in configurations 
G1, G2, G3
  → detect some incompatibilities,
  → other incompatibilities found when inserting a subnetwork.
  → other incompatibilities found by a final triplet check.

The same triplet sets define each zone A, B, C, H in every 
configurations G1, G2, G3
  → ambiguity between two forms,
  → which is the real reticulation node?

c b
B

a
CA

F
G

D

E

H

c a
A

b
CB

F
G

D

E

H

c b
B

a
CA

F
G E

H

D

G1 G2 G3



  

Identifiability of galled trees
A strict level-1 network (galled tree) is identifiable by its set 
of triplets if it is the only strict level-1 network which is 
compatible with exactly this set of triplets.

Characterization of triplet-identifiable galled trees:

A strict level-1 network is identifiable by its set of triplets
iff each blob contains at least 5 vertices

→ Any softwired galled tree is identifiable by its set of clusters?
→ Characterize cluster / triplet sets compatible with a unique level-1 
network?
→ Characterize cluster / triplet sets compatible with a level-1 network? 

(find obstructions like for trees)

Ongoing work with Katharina Huber (Norwich UK, Mathematics and Computational Biology)



  

Questions?
Thank you for attention!

Slides available at http://www.lirmm.fr/~gambette/RePresentationsENG.php
Chocolates available at http://www.pierreherme.com
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