

Tübingen - 24/09/2008

Decomposition and reconstruction
of level-k phylogenetic networks

from triplets

Philippe Gambette

• Reconstruction of networks from triplets

• The obstruction approach to reconstruction

• Phylogenetic networks
• Decomposition of level-k networks

• Triplet identifiability of galled trees

Outline

Phylogenetic networks

median
network

minimum
spanning network

TCS

level-2
network

split network

SplitsTree

Network

Level-2

T-Rex

reticulogram

synthesis
diagram

HorizStory

median
network

minimum
spanning network

TCS

level-2
network

split network

SplitsTree

Network

Level-2

T-Rex

reticulogram

synthesis
diagram

HorizStory

Phylogenetic networks

Abstract or explicit networks

An explicit phylogenetic network is a phyogenetic
network where all reticulations can be interpreted as precise
biological events.

An abstract network reflects some phylogenetic signals
rather than explicitly displaying biological reticulation events.

Abstract or explicit networks

An explicit phylogenetic network is a phyogenetic
network where all reticulations can be interpreted as precise
biological events.

An abstract network reflects some phylogenetic signals
rather than explicitly displaying biological reticulation events.

Explicit phylogenetic
network representing the
Theory of Evolution as
described by Mrs
Garrison in South Park
S10E12.

Abstract or explicit networks

An explicit phylogenetic network is a phyogenetic
network where all reticulations can be interpreted as precise
biological events.

An abstract network reflects some phylogenetic signals
rather than explicitly displaying biological reticulation events.

Hierarchy of network subclasses

http://www.lirmm.fr/~gambette/RePhylogeneticNetworks.php

Phylogenetic networks: a current topic

http://www.lirmm.fr/~gambette/PhylogeneticNetworks

Publications about phylogenetic networks:

Visits on the Who's who in Phylogenetic Networks:

France,
USA,
Germany,
United Kingdom,
New Zealand,
Netherlands,
Spain,
Canada,
Romania,
Israel...

Phylogenetic networks: a clustered topic

The size
represents the
number of
publications
about
phylogenetic
networks,
weighted by the
number of
coauthors on
each publication.

Tag cloud of authors on phylogenetic networks:

Phylogenetic networks: a clustered topic

made with Tree Cloud and SplitsTree - http://www.lirmm.fr/~gambette/ProgTreeCloud.php

The size
represents the
number of
publications
about
phylogenetic
networks,
weighted by the
number of
coauthors on
each publication.

Tree cloud of the main authors on phylogenetic networks:
Authors with at least 2
publications on
phylogenetic networks

Phylogenetic networks: a clustered topic

made with Tree Cloud and SplitsTree - http://www.lirmm.fr/~gambette/ProgTreeCloud.php

The size
represents the
number of
publications
about
phylogenetic
networks,
weighted by the
number of
coauthors on
each publication.

Tree cloud of the main authors on phylogenetic networks:
Authors with at least 5
publications on
phylogenetic networks

Phylogenetic networks: a clustered topic

Tree cloud of the main authors on phylogenetic networks:
Authors with at least 5
publications on
phylogenetic networks

How to build robust tree clouds?
- which cooccurrence distance?
- which tree reconstruction method?
Ongoing work with Jean Véronis (Aix-en-Provence, Computational Linguistics)
and Delphine Amstutz (Paris, XVIIth Century Literature Analysis)

r
1

r
2

r
3

r
4

r

Level-k phylogenetic networks

An level-k phylogenetic network N on a set X of n taxa is a
multidigraph in which:
- exactly one vertex has indegree 0 and outdegree 2: the root,
- all other vertices have either:

- indegree 1 and outdegree 2: split vertices,
- indegree 2 and outdegree ≤ 1: reticulation vertices,
- or indegree 1 and outdegree 0: leaves labeled by X,

- any blob has at most k reticulation vertices.

a b c d e f g h i j k

N

All arcs are
oriented
downwards

In collaboration with Vincent Berry (Montpellier, Bioinformatics) and Christophe Paul
(Montpellier, Graph Theory)

r
1

r
2

r
3

r
4

r

Level-k phylogenetic networks

An level-k phylogenetic network N on a set X of n taxa is a
multidigraph in which:
- exactly one vertex has indegree 0 and outdegree 2: the root,
- all other vertices have either:

- indegree 1 and outdegree 2: split vertices,
- indegree 2 and outdegree ≤ 1: reticulation vertices,
- or indegree 1 and outdegree 0: leaves labeled by X,

- any blob has at most k reticulation vertices.

a b c d e f g h i j k

N
A blob is a maximal
biconnected
component of the
underlying undirected
graph, that is a maximal
subgraph which remains
connected after the
removal of one of its
vertices.

r
1

r
2

r
3

r
4

r

Level-k phylogenetic networks

An level-k phylogenetic network N on a set X of n taxa is a
multidigraph in which:
- exactly one vertex has indegree 0 and outdegree 2: the root,
- all other vertices have either:

- indegree 1 and outdegree 2: split vertices,
- indegree 2 and outdegree ≤ 1: reticulation vertices,
- or indegree 1 and outdegree 0: leaves labeled by X,

- any blob has at most k reticulation vertices.

a b c d e f g h i j k

N A blob is a maximal
biconnected
component of the
underlying undirected
graph, that is a maximal
subgraph which remains
connected after the
removal of one of its
vertices.N has level 2.

Level-k phylogenetic networks

= level 0

level 1 =

Decomposition of level-k networks

We formalize the decomposition into biconnected components:

a b c d e f g h i j k a b c d e f g h i j k
N decomposed as a
tree of generators.

N, a level-k network.

Generators were introduced by van Iersel & al (Recomb 2008)
for a restricted class of level-k networks.

Level-k generators

A level-k generator is a biconnected level-k network.

G0 G1 2a 2b 2c 2d

The sides of the generator are:
- its arcs
- its reticulation vertices of outdegree 0

S
k
 is the set of generators of level at most k.

Decomposition theorem of level-k networks

N is a level-k network

iff

there exists a sequence (l
j
)

jϵ[1,r]
 of r locations

(arcs or reticulation vertices of outdegree 0)
and a sequence (G

j
)

jϵ[0,r]
 of generators of level at most k, such that:

- N = Attach
k
(l

r
,G

r
,Attach

k
(... Attach

k
(l

2
,G

2
,Attach

k
(l

1
,G

1
,G

0
))...)),

- or N = Attach
k
(l

r
,G

r
,Attach

k
(... Attach

k
(l

2
,G

2
,SplitRoot

k
(G

1
,G

0
))...)).

G
0

Decomposition theorem of level-k networks

SplitRoot
k
(G

1
,G

0
)

G
1 G

0
G

1

N is a level-k network

iff

there exists a sequence (l
j
)

jϵ[1,r]
 of r locations

(arcs or reticulation vertices of outdegree 0)
and a sequence (G

j
)

jϵ[0,r]
 of generators of level at most k, such that:

- N = Attach
k
(l

r
,G

r
,Attach

k
(... Attach

k
(l

2
,G

2
,Attach

k
(l

1
,G

1
,G

0
))...)),

- or N = Attach
k
(l

r
,G

r
,Attach

k
(... Attach

k
(l

2
,G

2
,SplitRoot

k
(G

1
,G

0
))...)).

Decomposition theorem of level-k networks

N is a level-k network

iff

there exists a sequence (l
j
)

jϵ[1,r]
 of r locations

(arcs or reticulation vertices of outdegree 0)
and a sequence (G

j
)

jϵ[0,r]
 of generators of level at most k, such that:

- N = Attach
k
(l

r
,G

r
,Attach

k
(... Attach

k
(l

2
,G

2
,Attach

k
(l

1
,G

1
,G

0
))...)),

- or N = Attach
k
(l

r
,G

r
,Attach

k
(... Attach

k
(l

2
,G

2
,SplitRoot

k
(G

1
,G

0
))...)).

Attach
k
(l

i
,G

i
,N)

G
i

l
i
 is an arc of N

l
i

G
i

N

Decomposition theorem of level-k networks

Attach
k
(l

i
,G

i
,N)

G
i

l
i
 is a reticulation vertex of N

l
i G

i

N

N is a level-k network

iff

there exists a sequence (l
j
)

jϵ[1,r]
 of r locations

(arcs or reticulation vertices of outdegree 0)
and a sequence (G

j
)

jϵ[0,r]
 of generators of level at most k, such that:

- N = Attach
k
(l

r
,G

r
,Attach

k
(... Attach

k
(l

2
,G

2
,Attach

k
(l

1
,G

1
,G

0
))...)),

- or N = Attach
k
(l

r
,G

r
,Attach

k
(... Attach

k
(l

2
,G

2
,SplitRoot

k
(G

1
,G

0
))...)).

Construction of the generators

Van Iersel & al give a simple case analysis for level-2.

We give rules to build level-(k+1) from level-k generators.

h
2

h
1

Construction of the generators

We give rules to build level-(k+1) from level-k generators.

N is a level-k generator.
R

1
(N,X,Y) is obtained by:

- choosing two sides X and Y of N, such that if X = Y then X
is not a reticulation node (i.e. it is an arc),
- hanging a new reticulation node under X and Y.

e
1

e
2

h
2

h
1 h

3

h
2

h
1 h

3

h
2

h
1 h

3

h
2

h
1 h

3
R

1
(N,h

1
,h

2
) R

1
(N,h

1
,e

2
) R

1
(N,e

2
,e

2
) R

1
(N,e

1
,e

2
)N

Construction of the generators

We give rules to build level-(k+1) from level-k generators.

N is a level-k generator.
R

2
(N,X,Y) is obtained by:

- choosing a side X of N, and an arc Y of N,
- adding an arc from X to Y (which creates a reticulation node
inside arc Y).

e
1

e
2

h
2

h
1

R
2
(N,h

1
,e

2
) R

2
(N,e

1
,e

1
) R

2
(N,e

2
,e

1
)

h
2

h
1 h

2h
1

h
2h

1

h
3

h
3

h
3

N

Construction of the generators

We give rules to build level-(k+1) from level-k generators.

For any level-k generator N, and any two sides X and Y of
N, if R

1
(N,X,Y) (resp. R

2
(N,X,Y)) exists,

then R
1
(N,X,Y) (resp. R

2
(N,X,Y)) is a level-(k+1) generator.

For any level-(k+1) generator N, there exists a level-k
generator N

0
, and some sides X and Y of N

0
 such that

N = R
1
(N

0
,X,Y) or N = R

2
(N

0
,X,Y).

Construction of the generators

We give rules to build level-(k+1) from level-k generators.

For any level-k generator N, and any two sides X and Y of
N, if R

1
(N,X,Y) (resp. R

2
(N,X,Y)) exists,

then R
1
(N,X,Y) (resp. R

2
(N,X,Y)) is a level-(k+1) generator.

For any level-(k+1) generator N, there exists a level-k
generator N

0
, and some sides X and Y of N

0
 such that

N = R
1
(N

0
,X,Y) or N = R

2
(N

0
,X,Y).

Corollary:
g

k
: number of level-k generators.

g
k+1

 ≤ 50 k² g
k

Construction of the generators

For any level-k generator N, and any two sides X and Y of
N, if R

1
(N,X,Y) (resp. R

2
(N,X,Y)) exists,

then R
1
(N,X,Y) (resp. R

2
(N,X,Y)) is a level-(k+1) generator.

For any level-(k+1) generator N, there exists a level-k
generator N

0
, and some sides X and Y of N

0
 such that

N = R
1
(N

0
,X,Y) or N = R

2
(N

0
,X,Y).

Corollary:
g

k
: number of level-k generators.

g
k+1

 ≤ 50 k² g
k

Some of the level-(k+1) generators obtained from level-k
generators are isomorphic!

→ find lower and upper bounds for g

k
→ generate level-4 generators (65 level-3 generators)

Reconstruction from triplets

A triplet x|yz is a rooted phylogenetic tree on 3 taxa {x,y,z}
such that x, and the father of y and z, are sons of the root.

z y x

Reconstruction from triplets

A triplet x|yz is a rooted phylogenetic tree on 3 taxa {x,y,z}
such that x, and the father of y and z, are sons of the root.

{y,z} is then called the cherry of x|yz.

Restriction of T to X: T
|X
 = { t ϵ T | t on taxa x,y,z ϵ X }

xz y

Reconstruction from triplets

A triplet x|yz is a rooted phylogenetic tree on 3 taxa {x,y,z}
such that x, and the father of y and z, are sons of the root.

z y x

A triplet x|yz is compatible with a level-k phylogenetic
network N if:
- N contains two nodes u and v
- and pairwise internally vertex-disjoint paths:

- from u to y,
- from u to z,
- from v to u,
- and from v to x.

a b c d e f g h i j k

N

v
u

Reconstruction from triplets

A triplet x|yz is a rooted phylogenetic tree on 3 taxa {x,y,z}
such that x, and the father of y and z, are sons of the root.

z y x

A triplet x|yz is compatible with a level-k phylogenetic
network N if:
- N contains two nodes u and v
- and pairwise internally vertex-disjoint paths:

- from u to y,
- from u to z,
- from v to u,
- and from v to x.

k|gh compatible with N.
a b c d e f g h i j k

N

uv

Reconstruction from triplets

A triplet x|yz is a rooted phylogenetic tree on 3 taxa {x,y,z}
such that x, and the father of y and z, are sons of the root.

z y x

A triplet x|yz is compatible with a level-k phylogenetic
network N if:
- N contains two nodes u and v
- and pairwise internally vertex-disjoint paths:

- from u to y,
- from u to z,
- from v to u,
- and from v to x.

h|gk compatible with N.
a b c d e f g h i j k

N

uv

Reconstruction from triplets

A triplet x|yz is a rooted phylogenetic tree on 3 taxa {x,y,z}
such that x, and the father of y and z, are sons of the root.

z y x

A triplet x|yz is compatible with a level-k phylogenetic
network N if:
- N contains two nodes u and v
- and pairwise internally vertex-disjoint paths:

- from u to y,
- from u to z,
- from v to u,
- and from v to x.

g|hk compatible with N.

a b c d e f g h i j k

N

Reconstruction from triplets

Why use triplets as input of a tree or network
reconstruction algorithm?

Under a coalescent model, an inferred tree on strictly
more than three taxa, is most likely to be wrong because of
discrepancies in gene and species tree.

(Degnan & Rosenberg, 2006)

Who uses triplets as input of a tree or network reconstruction
algorithms?
- ???
- people who use trees as input?
- people will when it is implemented in Dendroscope or
SplitsTree?

G

Reconstruction from triplets: BUILD

The set T(N) of all triplets compatible with a level-k network
N can be computed in O(|T(N)|) = O(n3)

(dynamic programming, Byrka, Gawrychowski, Huber, Kelk, 2008)

A tree T compatible with a set T of triplets can be
reconstructed in O(|T|+n² log n).

(BUILD, top-down algorithm, Aho, Sagiv, Szymanski, Ullman, 1981)
(efficient implementation by Henzinger, King, Warnow, 1999)

Recursive algorithm on X:
- build the following graph G:

- taxa as vertices,
- edge {x,y} if ƎtϵT

|X
such that {x,y} is a cherry of t.

- vertices in ≠ connected components are in ≠ subtrees
- apply algorithm on each connected component

T
|X
= {a|cd,a|ce,

c|ab,d|ab,c|de}

X={a,b,c,d,e} c
d

eb

a

{a,b} {c,d,e}

Reconstruction from triplets: BUILD

The set T(N) of all triplets compatible with a level-k network
N can be computed in O(|T(N)|) = O(n3)

(dynamic programming, Byrka, Gawrychowski, Huber, Kelk, 2008)

A tree T compatible with a set T of triplets can be
reconstructed in O(|T|+n² log n).

(BUILD, top-down algorithm, Aho, Sagiv, Szymanski, Ullman, 1981)
(efficient implementation by Henzinger, King, Warnow, 1999)

Recursive algorithm on X:
- build the following graph G:

- taxa as vertices,
- edge {x,y} if ƎtϵT

|X
such that {x,y} is a cherry of t.

- vertices in ≠ connected components are in ≠ subtrees
- apply algorithm on each connected component

T
|X
= {c|de}

X={c,d,e} c
d

e {a,b} {d,e}c
G

Reconstruction from triplets: BUILD

The set T(N) of all triplets compatible with a level-k network
N can be computed in O(|T(N)|) = O(n3)

(dynamic programming, Byrka, Gawrychowski, Huber, Kelk, 2008)

A tree T compatible with a set T of triplets can be
reconstructed in O(|T|+n² log n).

(BUILD, top-down algorithm, Aho, Sagiv, Szymanski, Ullman, 1981)
(efficient implementation by Henzinger, King, Warnow, 1999)

Recursive algorithm on X:
- build the following graph G:

- taxa as vertices,
- edge {x,y} if ƎtϵT

|X
such that {x,y} is a cherry of t.

- vertices in ≠ connected components are in ≠ subtrees
- apply algorithm on each connected component

T
|X
= {}

X={a,b} a

b c
G

a b {d,e}

Reconstruction from triplets: BUILD

The set T(N) of all triplets compatible with a level-k network
N can be computed in O(|T(N)|) = O(n3)

(dynamic programming, Byrka, Gawrychowski, Huber, Kelk, 2008)

A tree T compatible with a set T of triplets can be
reconstructed in O(|T|+n² log n).

(BUILD, top-down algorithm, Aho, Sagiv, Szymanski, Ullman, 1981)
(efficient implementation by Henzinger, King, Warnow, SODA 1996)

Recursive algorithm on X:
- build the following graph G:

- taxa as vertices,
- edge {x,y} if ƎtϵT

|X
such that {x,y} is a cherry of t.

- vertices in ≠ connected components are in ≠ subtrees
- apply algorithm on each connected component

T
|X
= {}

X={d,e} d

e
G

a b c d e

Reconstruction from triplets

The problem of reconstructing a level-1 network
compatible with a set of triplets is NP-complete.

(Jansson, Nguyen, Sung, 2004)

A level-1 network compatible with a dense set of triplets can
be reconstructed in O(|T(N)|) = O(n3).
dense = at least 1 triplet on each set of 3 leaves exists in T.

(Jansson, Nguyen, Sung, 2004)

A level-2 network compatible with a dense set of triplets can
be reconstructed in O(n8).

(van Iersel et al, Recomb 2008)

Based on a decomposition of the triplet set with SN-sets,
which corresponds to some decomposition of the network.

The obstruction approach

Idea:
- reduce global conflicts in the triplet set to local conflicts,
- if no local conflict, build the local configuration of the
network.

The obstruction approach

Idea:
- reduce global conflicts in the triplet set to local conflicts,
- if no local conflict, build the local configuration of the
network.

Requirements:
- enough information on the triplet set to find the conflicts
 → dense set.
- enough information to build the local configuration
 → extremely dense set, i.e. no triplet is missing (input=T(N)).

Characterization of trees from triplets
A dense triplet set T is compatible with a tree T

iff

no set of three leaves is present in two different triplets of T,
and all triplet sets on four leaves are isomorphic:
- either to {x

1
|x

2
x

3
,x

1
|x

2
x

4
,x

1
|x

3
x

4
,x

2
|x

3
x

4
} (case 1)

- or to {x
1
|x

3
x

4
,x

2
|x

3
x

4
,x

3
|x

1
x

2
,x

4
|x

1
x

2
} (case 2)

iff

T does not contain any triplet set isomorphic to any of the four
following obstructions:
{a|bc,c|ab}, {a|bc,c|bd,d|ab}, {a|bc,c|bd,d|ac}, {a|bc,a|bd,d|ac}.

Similar characterizations were found by Dress (1997),
Guillemot & Berry (2007).

x
1
 x

2
 x

3
 x

4

x
1
 x

2
 x

3
 x

4

Consequences of the characterization
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

Certifying algorithms return, with each output,
an easily checked certificate that the output has
not been compromised by a bug.

The certificate we provide is:
- the tree, if it can be reconstructed,

- an obstruction on 4 triplets, otherwise.

Consequences of the characterization
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

Certifying algorithms return, with each output,
an easily checked certificate that the output has
not been compromised by a bug.

The certificate we provide is:
- the tree, if it can be reconstructed,
 → checking that all the input triplets are compatible with the tree is easy!
- an obstruction on 4 triplets, otherwise.
 → checking that it is isomorphic to one of the 4 obstructions is easy!

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

CBA

E

D

a b c
A:{a|bc,b|ax,c|ax,x|bc}
B:{a|bc,a|bx,a|cx,c|bx}
C:{a|bc,a|bx,a|cx,b|cx}
D:{a|bc,x|ab,x|ac,x|bc}
E:{a|bc,a|bx,a|cx,x|bc}

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

CBA

E

D

a b c
A:{a|bc,b|ax,c|ax,x|bc}
B:{a|bc,a|bx,a|cx,c|bx}
C:{a|bc,a|bx,a|cx,b|cx}
D:{a|bc,x|ab,x|ac,x|bc}
E:{a|bc,a|bx,a|cx,x|bc}

No zone is correct? Obstruction!

A triplet is not compatible? Obstruction!

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

X={a,b,c,d,e,f,g,h,i,j,k}

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

X={a,b,c,d,e,f,g,h,i,j,k}

a f k

b,c,
 d,ea|f,k

 g,
 h,i,j

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

X={b,c,d,e,f}

a f k

b,c,
 d,eb|de

b d e

c f

 g,
 h,i,j

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

X={b,c}

a f k

b,c,
 d,e

b c d e
f

 g,
 h,i,j

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

X={e,f}

a f k

b,c,
 d,e

b c d e f

 g,
 h,i,j

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

a f k

b,c,
 d,e

b c d e f

X={b,c,d,e,f}

 g,
 h,i,j

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

a f k

 g,
 h,i,j

X={b,c,d,e,f}

b c d e

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

a f k

 g,
 h,i,j

X={f,g,h,i,j}

b c d e

j|fg

f g j

h,i

h,i

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

a f k

 g,
 h,i,j

X={h,i,j}

b c d e

h|ij

f g j

h,i

h i j

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

a f k

 g,
 h,i,j

X={h,i,j}

b c d e

f g h i j

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

a f k

 g,
 h,i,j

X={f,g,h,i,j}

b c d e

f g h i j

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

a f g h i j k

X={f,g,h,i,j}

b c d e

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

a b c d e f g h i j k

X={a,b,c,d,e,f,g,h,i,j,k}

a

b c d e

h i j

k

f g

The tree reconstruction algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

1. Recursive algorithm on X:

- Take any triplet a|bc in T
|X

- For any leaf x, consider T
|{a,b,c,x}

to know in which of 5 different
zones you should put x.

- For any leaf set corresponding
to one zone, apply the recursive
algorithm.

- Connect the recursively obtained trees.

2. Check that all input triplets are in the obtained tree.

O(n²)

O(n3)

O(n) leaves
→ O(n) edges
→ O(n) non-overlapping
sets of edges
→ O(n) recursive calls

FPT algorithm for minimum triplet edition
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

Corollary:
An obstruction on 4 leaves can be found in O(n3).

Maximum Compatible Subset of Rooted Triples:
Input: Triplet set T, integer t ≤ |T| (nb of bad triplets).
Question: Is there a subset of T of size at least |T|-t
compatible with a tree?

FPT algorithm for minimum triplet edition
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

Corollary:
An obstruction on 4 leaves can be found in O(n3).

Maximum Compatible Subset of Rooted Triples:
Input: Triplet set T, integer t ≤ |T| (nb of bad triplets).
Question: Is there a subset of T of size at least |T|-t
compatible with a tree?

NP-complete.
(proofs by Bryant 1997, Jansson 2001, Wu 2004)

O((|T|+n²)3n) algorithm.
(Wu, 2004)

FPT algorithm for minimum triplet edition
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

Corollary:
An obstruction on 4 leaves can be found in O(n3).

Maximum Compatible Subset of Rooted Triples:
Input: Triplet set T, integer t ≤ |T| (nb of bad triplets).
Question: Is there a subset of T of size at least |T|-t
compatible with a tree?

FPT-algorithm for dense sets:
- find an obstruction O(n3)
- edit one of its triplets:
 → 2 possibilities for each triplet
 → total of 6 possibilities

Total complexity: O(n3 6t)

FPT algorithm for minimum triplet edition
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

Corollary:
An obstruction on 4 leaves can be found in O(n3).

Maximum Compatible Subset of Rooted Triples:
Input: Triplet set T, integer t ≤ |T| (nb of bad triplets).
Question: Is there a subset of T of size at least |T|-t
compatible with a tree?

FPT-algorithm for dense sets:
- find an obstruction O(n3)
- edit one of its triplets:
 → 2 possibilities for each triplet
 → total of 6 possibilities
Total complexity: O(n3 6t)
Ongoing work with Vincent Berry (Montpellier, Bioinformatics) and Christophe Paul
(Montpellier, Graph Theory)

- Get a better complexity?
- Program a faster implementation?

http://www.lirmm.fr/~gambette/ReTriplets.php

Extremely dense level-1 decision algorithm
A simple certifying algorithm to reconstruct a tree from
a dense triplet set T, when possible.

Corollary:
Similar O(n3) algorithm to decide whether a triplet set T is
extremely dense for some level-1 network.

Differences:
- different starting point:
if T is not compatible with a tree and is extremely dense, then
T contains a triplet subset isomorphic to {a|bc,b|ac}.
 → start with {a|bc,b|ac}

- different zones:

c b
B

a
CA

F
G

D

E

H

c a
A

b
CB

F
G

D

E

H

c b
B

a
CA

F
G E

H

D

1 2 3

Extremely dense level-1 decision algorithm
O(n3) algorithm to decide whether a triplet set T is extremely
dense for some level-1 network.

Different zones:

Different triplet sets define zones D, E, F, G in configurations
G1, G2, G3
 → detect some incompatibilities,
 → other incompatibilities found when inserting a subnetwork.
 → other incompatibilities found by a final triplet check.

The same triplet sets define each zone A, B, C, H in every
configurations G1, G2, G3
 → ambiguity between two forms,
 → which is the real reticulation node?

c b
B

a
CA

F
G

D

E

H

c a
A

b
CB

F
G

D

E

H

c b
B

a
CA

F
G E

H

D

G1 G2 G3

Identifiability of galled trees
A strict level-1 network (galled tree) is identifiable by its set
of triplets if it is the only strict level-1 network which is
compatible with exactly this set of triplets.

Characterization of triplet-identifiable galled trees:

A strict level-1 network is identifiable by its set of triplets
iff each blob contains at least 5 vertices

→ Any softwired galled tree is identifiable by its set of clusters?
→ Characterize cluster / triplet sets compatible with a unique level-1
network?
→ Characterize cluster / triplet sets compatible with a level-1 network?

(find obstructions like for trees)

Ongoing work with Katharina Huber (Norwich UK, Mathematics and Computational Biology)

Questions?
Thank you for attention!

Slides available at http://www.lirmm.fr/~gambette/RePresentationsENG.php
Chocolates available at http://www.pierreherme.com

	Decomposition and reconstruction of level-k phylogenetic networks from triplets
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71

