
MPRI Course 2-38-1: Algorithms and Combinatorics for
Geometric Graphs
Lecture Notes

Arnaud de Mesmay

These are the lecture notes for the last two classes of the course 2-38-1.

Some practicalities:

• The course is on Fridays, 12:45 to 15:45 in room 1004 of the Sophie Germain building.

• It will be graded with an exam.

• There will be an optional exercise sheet given on November 4, with points contributing
extra credits for the final grade.

The last set of two lectures focuses on surfaces, which generalize the plane, and graphs em-
bedded thereon. We will introduce surfaces, and use embedded graphs to prove the classification
theorem, showing that, up to homeomorphism, they are classified by their number of handles
(genus) and orientability . We will then look into algorithms to deal with specific topological
problems that arise with graphs embedded on surfaces.

While the focus of the course will stay very theoretical (e.g., mostly with a theorem, lemma,
proof structure), embedded graphs are of great interest for the practically-oriented mind, as
they appear everywhere, for example in road networks (where underpasses and bridges can be
modeled using additional topological features), chip design or the meshes that are ubiquitous
in computer graphics or computer aided design. In all these applications, there is a strong need
for a theoretical understanding of embedded graphs, as well as algorithmic primitives related
to their topological features. Additionally, embedded graphs are an important lens to study
graphs in general, since any graph can be embedded on some surfaces. This is especially the
case in graph minor theory, where embedded graphs play an absolutely central role. We will
barely touch on this topic and refer to the course 2-29-1.

These lecture notes cover (hopefully) closely the material taught in class. This is actually
their point, as in my experience lecture notes with too much content can easily get overwhelming
(especially when one misses a class). Thus we will refrain from (too many) digressions and heavy
references. The tone will be (somewhat) conversational. These lecture notes are heavily inspired
by (sometimes verbatim) the lecture notes of the previous iteration of the class(by Éric Colin de
Verdière), and those for a course on Computational Topology I co-taught with Francis Lazarus
in 2016-2018, and we refer to, and strongly recommend those for the missing digressions and
references.

1

https://wikimpri.dptinfo.ens-cachan.fr/doku.php?id=cours:c-2-29-1
http://monge.univ-mlv.fr/~colinde/cours/all-algo-embedded-graphs.pdf
http://monge.univ-mlv.fr/~demesma/FullLectureNotes.pdf

1 Surfaces

1.1 Definition and classification

A surface is a topological space locally homeomorphic to the plane, i.e., every point has an
open neighborhood homeomorphic to R2. In this course, we restrict our attention to compact
and connected surfaces. Behind this very wide-looking definition, there are actually only a few
(yet infinitely many) different surfaces, and their classification is the topic of this subsection.
Examples of surfaces are the sphere, the torus, and the projective plane, see Figure 1. As before,
we consider spaces up to homeomorphism. It turns out that these are exhaustive in the sense
that all the other surfaces can be built by gluing those together.

Figure 1: A sphere, a torus, a Klein bottle, and a projective plane (in the last one, the right
boundary is identified to the left boundary in the direction indicated by the arrow).

A graph G = (V,E) is embeddable on a surface S if there exists an injective map f : G → S,
i.e., G can be drawn without crossings on S. For planar graphs, many properties rely in a more
or less explicit way on Jordan’s theorem (or rather the Jordan-Schoenflies theorem), which states
that any simple closed curve bounds a disk. It implies that any connected plane graph cuts the
plane into disks. This is easily seen not to be the case on surfaces, hence the following definition:
a graph is cellularly embedded if every connected component of S \G is homeomorphic to an
open disk. The following theorem shows that this is a non-vacuous definition on any compact
connected surface.

Theorem 1.1 (Kerékjártó-Radó). On any compact connected surface, there exists a cellularly
embedded graph.

Start of a proof. By definition of a surface, every point has an open neighborhood homeomor-
phic to the plane, or an open two-dimensional disk. By compactness, we can extract a finite
covering out of this collection of open sets. Their boundaries form a family of simple closed
curves embedded on the surface. If they cross finitely many times, the interiors of their inter-
sections can be seen to be bounded by simple closed curves, and thus, by the Jordan-Schoenflies
theorem (which applies in the small neighborhoods since they are homeomorphic to the plane),
they bound disks. Hence we have cut the surface into disks, and we win. If they cross infinitely
many times, we can tinker with them to reduce to the case of finite crossings.

This is more subtle than it appears: this sketch can be made correct in two and three
dimensions, but not in higher dimensions, as there are example of higher dimensional manifolds
that can not be triangulated (a higher dimensional analogue of our cutting into disks). A proof
of Theorem 1.1 can be found here.

While we are not proving theorems, let us add the following one. A triangulation is a
cellularly embedded graph where every face has degree 3. A refinement of a triangulation is
obtained by either subdividing a face (adding a vertex in that face and edges adjacent to each

2

https://press.princeton.edu/books/hardcover/9780691652443/riemann-surfaces

vertex incident to that face), or an edge (adding a vertex on an edge and edges adjacent to each
non-adjacent vertex in the two incident faces).

Theorem 1.2. Any two triangulations of a surface have a common refinement.

The same not-a-proof works: overlay the two triangulations, if they have a finite number of
intersections, we are done. Otherwise, we tinker things. Once again, this is quickly not true in
higher dimensions.

For the reader disappointed in these two omissions (and I understand them), one alternate
way to view this is that we are only looking at surfaces that are defined as disks glued together
in a finite way, with two surfaces being isomorphic if they have a common refinement (this can
be taken as a definition). Then the two omitted proofs show that we obtain the same surfaces
as with the more topological definition, but if we are content within the purely combinatorial
world, we do not need this equivalence.

We describe a graph cellularly embedded on a surface via a polygonal scheme , which
encodes the way that the disks are glued together (this is similar to combinatorial maps
introduced in Luca Castelli Aleardi’s lecture). Starting from a cellularly embedded graph, we
first name the edges and orient them in an arbitrary way. Each facial walk induces a word
(considered up to cyclic permutation), where an edge e taken in the reverse direction is denoted
by ē or e−1. Each such facial walk is called a relation . The polygonal scheme is the data of
all these facial walks. Reciprocally, if one is given a collection of words where each letter of
the alphabet appears exactly twice, one can interpret those as disks glued to each other, which
together form a surface.

With Theorem 1.1 in hand, we are now ready to classify surfaces:

Theorem 1.3. Every compact connected surface is homeomorphic to a surface given by one of
the following polygonal schemata, each made of a single relation:

1. aā (the sphere),

2. a1b1ā1b̄1 . . . agbgāgbg for some g ≥ 1,

3. a1a1 . . . agag for some g ≥ 1.

The surfaces of the first and second category are called orientable , those of the third
category are non-orientable . The integer g is the genus of the surfaces. The second case
corresponds to g tori glued together (this is called a connected sum), or equivalently, a sphere
to which we have glued g handles. The third case corresponds to g projective planes glued
together, or equivalently, to a sphere with g disks removed on which we have glued g Möbius
bands. See Figure 2, and Figure 3 for the polygonal schemata depicted on the surfaces. Many
non-trivial homeomorphisms are hidden behind this apparently simple classification, and it
almost equally simple proof: for example, the theorem implies that the connected sum of two
projective planes is homeomorphic to a Klein bottle, and that the connected sum of a torus and
a projective plane is homeomorphic to the connected sum of three projective planes.

Proof. Let S be a compact connected surface, and let G be a graph embedded on S, which
exists by Theorem 1.1. We iteratively remove each edge adjacent to two different face, until
there is just a single face. For each edge adjacent to two different vertices, we contract it, and
keep the multiple edges or loops that might result, until there is just a single vertex. We now
have a graph with a single vertex and a single face embedded on S. If there are no more edges,
by uncontracting once we obtain a sphere as in case 1. of the theorem. Thus there is at least
one edge.

3

Figure 2: Attaching handles or Möbius bands to a sphere.

=

=

Figure 3: Polygonal schemata of the orientable and non-orientable surfaces. In the non-
orientable cases, X denotes a disk on which a Möbius band has been glued.

4

The single face induces a polygonal scheme with a single relation. The rest of the proof aims
at transforming this single relation into one of the two forms of Theorem 1.3 via cut-and-paste
operations:

a a

P

Q

a a

P

Q

b
a

P

Qb

b

Figure 4: From aPaQ to bbPQ̄.

a a

b

b

aa c

b

b

aa

c

c

a a

c

c

a

d
d

c

c

d

P Q

RS

P Q

RS

P

S R
Q

S

P

R
Q

PSRQ

Figure 5: From aPbQāRb̄S to cdc̄d̄PSRQ.

a

a

b c

b

c a

a

b c

d b

c d

c b

a

d
b

c

Figure 6: From aabcb̄c̄ to d̄c̄b̄d̄b̄c̄.

• If the polygonal scheme has the form aPaQ where P and Q are possibly empty words,
then we can transform it into bbPQ̄ by adding a new edge and removing a, see Figure 4.
Inductively, we conclude that each pair of symbols with the same orientation appears
consecutively in the polygonal scheme.

• If the polygonal scheme has the form aUāV , then U and V must share an edge b since
otherwise G′ would have more than one vertex. By the preceding step, b must appear in
opposite orientations in U and V , so we have the form aUāV = aPbQāRb̄S. This can be
transformed into dcd̄c̄PSRQ, as pictured in Figure 5. Inductively, at the end of this step
the relation is a concatenation of blocks of the form aa or abāb̄. If all the blocks are of
one of these types, we are in case 2 or 3 and we are done.

• Otherwise, the relation has a subword of the form aabcb̄c̄. This can be transformed into
d̄c̄b̄d̄b̄c̄, as in Figure 6, and then using the first step again this can be transformed into
eeffgg. Inductively, we obtain a relation of the form 3.

5

This concludes the proof.

The Euler characteristic of a surface S is defined to be v − e + f , where v, e and f are
the numbers of vertices, edges and faces of a cellularly embedded graph on S. The fact that
this actually does not depend on the graph is the object of the following proposition:

Proposition 1.4. For any graph G cellularly embedded on S with v vertices, e edges and f
faces, the value v − e+ f is the same.

It is tempting to prove this using Theorem 1.3: any cellularly embedded graph can be
transformed to one of the three graphs stipulated by the theorem, in a way that does not
change the Euler characteristic. But to conclude, we need to prove that two different outputs
of the theorem are not homeomorphic, which we have not done yet.

Proof. We pick two graphs cellularly embedded on S. We add edges until they are both tri-
angulations, which can easily be seen not to change the Euler characteristic. By Theorem 1.2,
they have a common refinement. The proof follows from the fact that subdividing edges or faces
does not changes the Euler characteristic.

A look at the graphs corresponding to the cases 1, 2 and 3 of Theorem 1.3 shows that the
sphere has Euler characteristic 2 (therefore recovering the Euler formula for planar graphs), the
orientable surface of genus g has Euler characteristic 2− 2g, and the non-orientable surface of
genus g has Euler characteristic 2− g.

Proposition 1.5. A surface is orientable if and only if for any cellularly embedded graph G,
the boundaries of the faces can be oriented so that each edge appears in opposite directions in
the two adjacent faces.

Proof. First note that the property of the proposition is invariant under cut and pasting, as
well as edge or face subdivision. Since the polygonal scheme of orientable surfaces satisfies the
proposition, this proves the first implication. For the reverse implication, it suffices to observe
that for non-orientable surfaces, such orientations of the faces are not possible.

As a corollary, a non-orientable surface is never homeomorphic to an orientable surface.
Since all the orientable surfaces (respectively non-orientable surfaces) have a different Euler
characteristic and the Euler characteristic is a topological invariant, this shows that all the
surfaces given by Theorem 1.3 are pairwise non-homeomorphic. Therefore we have found them
all, and they are all different.

Exercise 1.6.

Prove that every graph can be cellularly embedded on some surface.

Provide an example of two cellular embeddings of the same graph G on two different surfaces.

What is the surface described by the polygonal schemes abcabc? abcdabcd?

What is the computational complexity of recognizing a surface from the polygonal scheme of a
cellularly embedded graph?

We conclude with a few remarks:

Duality: A graph cellularly embedded on a surface naturally induces a dual graph, as in
the planar case, but be careful that the dual graph is not well-defined for graphs that are not
cellularly embedded.

6

Subdivisions and minors: There is no analogue of Kuratowski’s theorem for surfaces,
but there is an analogue for Wagner’s theorem, stating that the family of graphs embedded on
a fixed surface is characterized by a fainite family of excluded minors1. However, the proofs are
non-constructive, and the precise list of minors is unknown except for the projective plane.

Schnyder Woods: Generalizing Schnyder Woods to surfaces of genus at least 2 is an open
problem.

Testing Embeddability: The genus of a graph is the smallest genus of a surface it
embeds on. It is NP-hard to compute the genus of a graph, but for a fixed surface, there exists
a linear-time algorithm to test embeddability on that surface. This will not be covered here (the
original algorithm of Mohar is technical and intricate, a more recent one by Kawarabayashi,
Mohar and Reed is simpler but requires strong familiarity with graph minor theory techniques).

1.2 Some topological algorithms

The main difference between the plane and more complicated surfaces is that there is no Jordan
curve theorem outside of the plane, and thus that some simple closed curves can be non-
separating. Even among separating curves, there are differences, as is outlined in the following
exercise:

Exercise 1.7. Show that on an orientable surface of genus g > 0, there are exactly ⌊g/2⌋ + 2
non-homeomorphic2 simple closed curves.

A standard criterion to differentiate closed curves on surfaces is homotopy . Two closed
curves γ1 and γ2 are homotopic if there is a homotopy between them3: a continuous map
h : [0, 1]× S1 → S so that h(0, ·) = γ and h(1, ·) = γ2. The analogues of the nice curves in the
planar case are the contractible curves: A simple closed curve γ on a surface S is contractible
if it is homotopic to a trivial map at a point p. The following lemma, which could be taken as
a definition, explains why:

Lemma 1.8. A simple closed curve is contractible if and only if it bounds a disk.

Half-proof: The reverse direction is immediate. For the forward direction, the subtlety comes
from the fact the homotopy could introduce self-crossings. It turns out to be the case that such
self-crossings are actually not needed, but we will not prove this.

Conversely, non-contractible curves are the main object of interest on surfaces. Note that
non-contractible curves can be separating. We will address two basic algorithmic problems
related to non-trivial curves:

1. How to compute the shortest non-contractible, or non-separating curve?

2. How to test whether a closed curve is contractible?

These algorithmic questions will also serve as an opening for the end of the course, as we
use them to illustrate how classical tools from algebraic topology (universal covers, homology)
impact the design of algorithms for topological problems on surface-embedded graphs.
1A graph H is a minor of G is H can be obtained from G by removing vertices, removing edges or contracting

edges
2Technical remark: any two simple closed curves are homeomorphic (since they are all homeomorphic to S1).

Here, we mean “homeomorphism of the surface that sends one curve to the other one”.
3This definition requires curves to be oriented, we will often disregard this by considering two curves to be

homotopic if some orientation makes them homotopic.

7

1.2.1 Computing shortest interesting cycles

In this subsection, we provide algorithms to compute shortest non-contractible and non-separating
curves. This is a natural and important topological primitive, since the first thing one often
wants to do when given a surface is to cut it into something more planar. This is relevant
for practical purposes (e.g., topological noise removal, texture mapping) and algorithm design,
since then one can use the good old planar algorithms.

Shortest curve in an annulus: min-cut in planar graphs. We first look at the problem
of computing a shortest non-contractible curve in the simplest non-trivial surface: the annulus.
It turns out that in that case, the problem is equivalent to computing a minimum-cut in a
planar graph: given two vertices s and t, called terminals, on a planar graph G = (V,E), we
want to compute the minimum set of edges X so that removing X from E separates s and t.

Theorem 1.9. Let G = (V,E) be a cellularly embedded edge-weighted planar graph, and s and
t be two distinct vertices of G. Then the problem of computing a minimum s − t-cut of G can
be solved in O(n log n) time.

The basic idea of an efficient algorithm for min-cut on planar graphs is to look at it through
the lens of duality: a cut on the primal graph separating s and t dualizes to a cycle in the dual
graph separating the faces dual to s and t.

Proposition 1.10. X ⊆ E is an (s, t)-cut in G if and only if X∗ contains the edge set of some
cycle of G∗ separating s and t.

This proposition is considered obvious pretty much anywhere, but we will prove it, if only
to emphasize that it does not hold on other surfaces (this relies on the Jordan curve theorem).

Proof. The reverse direction is straightforward: if X∗ contains a cycle of G∗ separating s and
t, then any path in G between s and t must cross this cycle, and thus X is an (s, t)-cut.

For the forward direction, we take X an (s, t)-cut in G, and choose C to be an inclusionwise
minimal subset of X that is also an (s, t)-cut in G. We show that C∗ is a cycle separating s
and t. By minimality of C, each vertex of G can be connected to either s or t without taking
edges of C, and the two cases are exclusive. We label vertices with “S” or “T” depending on
which one they are connected to. Moreover, for any edge in C, its two endpoints cannot have
the same label, and for any other edge, its endpoints have the same label. So if we look at a
face f of G adjacent to an edge of C, the labels on the facial walk on the face alternate only
when the edge is in C, and thus there is an even number of edges of C adjacent to f . So C∗ is
an Eulerian subgraph of G∗, that is, a subgraph where each vertex has even degree. Pick any
cycle in that subgraph. By the Jordan curve theorem, it separates s and t. By minimality, C∗

is that cycle.

This proposition transforms a combinatorial problem into a topological one and vice-versa:
if we remove the faces s∗ and t∗ from the dual graph, we obtain a surface homeomorphic to an
annulus, finding the minimum-cut between s and t amounts to finding the shortest cycle that
goes around this annulus, i.e., the shortest non-contractible cycle. However, this runs into an
interesting technical issue: is s∗ and t∗ are adjacent, then removing s∗ and t∗ does not actually
yield an annulus. Morally, this should not pose a problem: we just want to add an infinitesimally
small buffer between s∗ and t∗ and we will be fine. One way to do this is to enlarge a tiny bit
the set of curves that we look at. When working on the primal graph, we generally work with
walks on the primal graph. When working on the dual graph, we work with walks on the dual

8

t

s
p

A

Figure 7: The annulus obtained after removing a small disk around s and t.

graph, which correspond by duality to closed curves that are in general position with respect
to G, i.e., they do not meet the vertices of G and cross the edges of G transversely. So our
solution is to directly work in this setting of curves in general position with respect to G. The
length of such a curve is defined to be the number of edges of G that it crosses. Note that this
is a bit more general than just looking at walks on the dual graph: now we can define a pair of
small curves in general position around s and t that are disjoint, even if s and t are adjacent in
G. Yet from an algorithmic perspective, all the curves in general position can be pushed on the
dual graph in a way that does not change the length, so any computation, for example shortest
paths, can be made in the dual graph. In this new setting, Proposition 1.10 becomes:

Proposition 1.11. Let γ be a simple closed curve in general position with respect to G, that
separates s from t and that has minimal length among all such curves. Then the set of edges
crossed by γ is a minimum (s, t)-cut in G.

Recall that a simple closed curve on a sphere is an injective map γ : S1 → S2.

Proof. Any path connecting s to t in G crosses γ, thus the set of edges crossed by γ is an
(s, t)-cut. Conversely, a minimum (s, t)-cut dualizes to a cycle in G∗ separating s and t, which
corresponds to a simple closed curve γ in general position with respect to G, that separates s
from t.

Now, we remove a small disk around s and t, getting an annulus A, and a portion of the
graph G embedded on this annulus as in Figure 7,. How do we compute a shortest closed
curve that goes around the annulus A? We can fix one point on each boundary, and compute a
shortest path between these two points, and call it p. Then we show that some shortest closed
curve does not cross p more than once, and thus can be found by a shortest path computation.

Lemma 1.12. Some shortest closed curve separating the two boundaries of A is simple and
crosses p exactly once.

9

p p

x′
y′
z′

x′′
y′′
z′′

x′
y′
z′

x′′
y′′
z′′

Figure 8: The two shortcutting arguments of Lemma 1.12 and Lemma 1.13.

Proof. This is illustrated in the left of Figure 8. Let γ be such a curve. If we cut A along p, we
obtain a topological disk D, where the path p got cut into two paths p′ and p′′ on the boundary.
The curve γ, once cut on D, contains a simple path q connecting p′ to p′′, otherwise γ would
not separate s from t. Now we reglue D along p, and connect the two endpoints q1 and q2 of q
by running parallel to p. We obtain a closed curve that is simple, crosses p exactly once and is
no longer than γ since γ was connecting q1 to q2 as well.

From this we get a naive quadratic algorithm. We compute the shortest path p, which has
some length k. We pick points v0, . . . , vk on this path such that the subpath [vi, vi+1] has length
one. Then, cutting along p, each vertex vi gets duplicated into v′i and v′′i , and we compute all
shortest paths between each v′i and v′′i . Following all the lemmas, one of them is the dual of
a minimal cut. Since shortest paths in the dual graph can be computed in linear time (this is
non-trivial, but one can use Dijkstra’s algorithm to compute them in near-linear time instead),
this takes O(n2) time.

We can speed this up doing some divide-and-conquering.

Lemma 1.13. Let (x, y, z) be points on p, appearing in this order. When cutting A along p,
these get duplicated into (x′, y′, z′) and (x′′, y′′, z′′). If γx and γz are disjoint shortest paths
between x′ and x′′, respectively z′ and z′′, then some shortest path between y and y′ does not
cross γx nor γz.

Proof. This is illustrated in the right of Figure 8. Say that γy crosses γx, then it crosses it in
at least two points. Let a and b be the first and the last crossing points when going from y′

to y′′. Then we can replace whatever γy was doing between a and b with the subpath of γx
between a and b (or more precisely, some shortest paths infinitesimally close to it). Since γx is
a shortest path, the new curve is at most as along as γy. Doing the same for the crossings with
γz concludes the proof.

This suggests the following recursive approach. Having computed our shortest path p of
length k between the two boundaries of A, if k > 2,

1. we pick a vertex v := v⌊k/2⌋, cut along p and compute on D a shortest path p between the
two vertices v′ and v′′ corresponding to v,

2. we reglue D into A, and the shortest path p is a simple closed curve γ. We cut A along
γ and get two annuli A1 and A2.

3. we recurse on A1 and A2 and output the shortest of the two solutions.

We stop the recursion when we reach one of the following two base cases for the recursion:
(1) when k ≤ 2, we can compute the shortest closed curve by brute forcing the problem in O(n)
time as in the quadratic algorithm, and (2) if there exists a face adjacent to both boundaries,
we can compute a shortest cycle going through that face directly in time O(n).

10

https://www.sciencedirect.com/science/article/pii/S0022000097914938

Here again, this algorithm would be quite a bit more annoying to describe purely in the dual
graph, as the shortest path p might be following the boundary of an annulus, and thus when
cutting along γ in step 2 we do not obtain annuli. This can be dealt with by appropriately
subdividing in the correct places, which, when thinking about it, is exactly what this algorithm
does – but I believe that the description using curves in general position is more transparent
(this perspective is directly taken from Éric Colin de Verdière’s notes).

To conclude the proof of the theorem, we establish the correctness and the complexity
analysis:

Proof of Theorem 1.9. The algorithm terminates in O(log n) recursion levels since the length of
the path p in the recursive calls shrinks by a half at each recursive call. The correctness follows
from Proposition 1.11, Lemmas 1.12 and 1.13, since they prove that some minimal cut will be
dual to the shortest cycle that our recursive calls will find.

The proof of correctness is not as immediate as one could expect, as recursive calls share a
lot of structure with their parent: for example it looks like the same non-boundary edge of G
might be cut several times by the shortest paths in the recursion, and thus appear in several of
the annuli. But note that if an edge e is cut into subedges e1, . . . , eℓ, then in all the recursive
calls involving the annulus between ei and ei+1, the recursion stops directly, since there is a
face adjacent to both sides of the annulus. Therefore, only e1 and eℓ actually lead to recursive
subcalls, and thus at each level of the recursion, throughout all branches of the recursion tree,
each non-boundary edge only appears a constant number of times.

Similarly, the number of boundary edges on an annulus is at most twice the number of
non-boundary edges, and thus the total number of boundary edges at a level of a recursion is
O(n).

Each computation in steps 1 and 2 of the algorithm takes time linear in the complexity of
the annulus at this stage. There are O(log n) levels, and by the previous observations, each
them costs O(n) time in total, so the total complexity is O(n log n).

Computing shortest non-contractible/non-separating cycles on surfaces of genus g
We will prove the following theorem:

Theorem 1.14. For a graph G with n vertices embedded on a surface of genus g, we can
compute a shortest non-contractible cycle, respectively a shortest non-separating cycle, in time
O(n2 log n).

As we saw during the min-cut algorithm, when cutting surfaces, cutting along cycles in
the primal or the dual graph can lead to annoying issues. For example when one cuts once
along a cycle, and then along a second cycle sharing edges with the first one, this yields some
degeneracies. In order to deal with these issues in a clean way, we formalize the approach that
we used for min-cut, based on considering curves in general position with respect to a graph.

Recall that a curve is in general position with respect to an embedded graph if they cross
transversely, away from the vertices, and a finite amount of times. A cross-metric surface
(S,G∗) is a topological surface S with a (possibly edge-weighted) graph G∗ embedded on it.
A cross-metric surface assigns lengths to any curve γ in general position by simply counting
the (possibly weighted) number of intersections with G∗. For a (possibly edge-weighted) graph
G cellularly embedded on a surface S, measuring the length of a walk in G is the same as
measuring its length in the cross-metric surface (S,G∗), where G∗ is the dual (hence the no-
tation). Similarly, shortest paths in the cross-metric surface (S,G∗) can be computed by the

11

a bc

Figure 9: A graph and its dual. The walk abāc is definitely not a cycle in the primal graph, but
when we look at it in the cross-metric perspective and push it a bit, it is a nice simple closed
curve (in red).

e

b
σ(e)

Figure 10: A shortest path tree, in black, defining a cut locus (in blue). Cutting the surface
along the cut locus yields a disk. On the right, an edge of the cut locus corresponds to loop
σ(e) going through the basepoint b.

usual graph algorithms on G. The added value with the cross-metric surface, compared to just
using duality, is that we are considering more curves than in the pure graph-theoretical world:
for example there are often walks on a graph that are not really self-crossing, in the sense that
one could clearly push them infinitesimally to make them simple. In the cross-metric setting,
we can directly pick them to be simple, which makes proofs more streamlined. See Figure 9.

Algorithmically speaking, while we will be considering arbitrary topological curves in trans-
verse position with the graph G∗, we do not need to encode the precise location of a curve γ,
merely its crossing points with G∗, its self-crossing points if there are any, and what it does
in between. Equivalently, we can encode the superposition of γ with G∗, which is also a cel-
lularly embedded graph. Likewise, when there is more than one curve, we simply encode their
superposition with the graph G∗.

Now that the setup is set up, we move forward. We first compute shortest loops: a loop ℓ
is a closed curve ℓ : S1 → S going through a fixed point b, called the basepoint of the loop.

For a point b in a face of (S,G∗), we denote by T a shortest path tree rooted at b, which can
be computed by using Dijkstra’s algorithm in the primal graph. The cut locus C of (S,G∗)
with respect to b is the set of edges not crossed by T . Informally, we are blowing a balloon
based at b, and the cut locus is the set of points where it self-intersects. See Figure 10 for an
illustration.

Lemma 1.15. The cut locus cuts S into a disk.

Proof. While growing the shortest path tree, the set of open faces visited by the tree union
all the edges that it crosses is an open disk, and this is maintained until the end. At the end,
the complement of this disk is exactly the set of of edges in the cut locus, which proves the
lemma.

12

For an edge e in the cut locus, we denote by σ(e) the loop obtained by starting from b,
taking a shortest path to one of the two faces of G∗ adjacent to e, crossing e, and coming back
to e via the shortest path on the other side of e. The weight of e is defined to be the length
of σ(e). The following key lemma shows that the shortest non-contractible loop can be found
among the σ(e):

Lemma 1.16. Some shortest non-contractible loop has the form σ(e).

Proof. Let L be a shortest non-contractible loop crossing the cut locus C as few times as
possible. If L crosses C at least twice, there is a point p between the two crossings, cutting L
into L1 and L2. This point p is connected to the root via a path ρ on the shortest path tree
T . Then either L1 concatenated with ρ or L2 concatenated with ρ is non-contractible, since
otherwise the contraction of both would yield a contraction of L. This argument is sometimes
called the 3-path condition, after Thomassen.

So L crosses C at most once. It has to cross it at least once, since otherwise it bounds
a disk by the Jordan-Schoenflies theorem on the surface cut along the cut locus, and is thus
contractible. So L crosses the cut locus at some edge e, and since L goes through the root, it
has to have at least the length of σ(e), which concludes the proof.

This immediately suggests a brute-force algorithm to find the shortest non-contractible loop:
try all the σ(e), test their contractibility (which is easy since they are simple) and output the
shortest one.

But one can be smarter, and figure out a combinatorial criterion to decide whether a σ(e)
is contractible:

Lemma 1.17. Let e be an edge of C. Then σ(e) is contractible if and only if some component
of C \ e is a tree.

Proof. For the reverse direction, if some component of C\e is a tree, one can homotope σ(e) into
a trivial loop by following this tree. For the forward direction, if σ(e) is contractible, it bounds
a disk by Lemma 1.8. If no component of C \ e is a tree, then in particular the component that
is a disk is not a tree, and thus it contains a cycle. But this contradicts Lemma 1.15.

We now have all the tools to prove the first half of Theorem 1.14:

Finding a shortest non-contractible cycle in O(n2 log n) time. For each face of G, we fix a root
r at G. Then we compute in O(n log n) time the cut locus based at r as well as the weight
of each of its edges, i.e., the length of σ(e). There remains to prune the cut locus, that is, to
remove all of its useless arborescent parts. Since each tree has a degree-one vertex (its leaves),
this can be done by removing all the degree one vertices, and then the new degree one vertices,
etc. Our shortest non-contractible loop through r is then the smallest of the remaining σ(e)s.
Looping through all the possible rs increases the complexity to O(n2 log n), and we output the
shortest of the resulting cycles.

In order to find the shortest non-separating loop, we first want to establish that one of them
is of the form σ(e). For non-contractible loops, this relied on the three-path condition, and we
need something similar here, something like “Let a and b be two points on S and p, q and r be
three paths from a to b, oriented from a to b. If pq̄ and rq̄ are both separating, then so is pr̄.”

This poses an annoying issue, as it is not clear what it means for a curve that is not simple
to be separating. So we first address this, and the convenient language for that is the language
of (mod 2) homology.

13

Let G be a graph embedded on a surface S, with its set of vertices, edges and faces. We
think of those as being 0-dimensional, 1-dimensional and 2-dimensional objects. A k-chain ,
for k = 0, 1 or 2 is a subset respectively the set of vertices, edges or faces. We think of a chain
as being an element in a vector space over Z2, the set of integers mod 2. Therefore, chains can
be added, using the rule 1 + 1 = 0. These vector spaces are denoted by C0, C1 and C2. We
define the boundary of an edge to be the sum of its endpoints, and the boundary of a face to
be the sum of its boundary edges. These two boundary maps extend by linearity on the whole
spaces C1 and C2, defining linear maps ∂1 : C1 → C0 and ∂2 : C2 → C1. A 1-chain is a cycle
if its boundary is trivial, and it is a boundary if it is the boundary of some 2-chain. Cycles
are generally denoted by Zi, and boundaries by Bi. Convince yourself that the boundary of a
boundary is empty.

Now, a closed walk γ on G or a closed curve in general position with G can naturally be
considered as a 1-chain (either for the graph G or in the graph that is the overlay of G and
γ). The following lemma shows that being a homology boundary naturally generalizes being
separating.

Lemma 1.18. A non-trivial simple closed curve γ is a homology boundary if and only if it is
separating.

Proof. If γ is separating, then it is equal to the boundary of the sum of the faces of (either) one
of the two connected components. If γ is a homology boundary, then it is the boundary of a
sum of faces F . Note that this set of faces cannot be all the faces, as the boundary of the sum
would be empty. Then the faces in F are separated from the faces not in F , since any path
connecting them would cross the boundary γ.

The homology group Hi is defined as the quotient of the space Zi by the space Bi: it is the
space of cycles which are not boundaries. So it directly generalizes the separating curve.

With this language, we have the two tools needed to prove our missing lemma: a notion of
sum of cycles, and a notion of separating for non-simple curve:

Lemma 1.19. Some shortest non-separating loop going through the root r has the form σ(e).

Proof. Since a non-separating loop is a non-trivial homology cycle, we can equivalently look for
a shortest loop that is non-trivial in homology if we can prove (which we will) that one of them
is simple. As in the non-contractible case, any shortest non-trivial homology loop L must cross
C at least once. We pick one that crosses C a minimal number of times. If it crosses it more
than once, we take p to be a point between two crossings, which is connected to the root via a
path ρ. The point p cuts L into L1 and L2, and we look at the three cycles L, L1 concatenated
with ρ and L2 concatenated with ρ. Note that the sum (as chains) of any two of these cycles
forms the third cycle, and the set of homology boundaries is a vector space, and thus is closed
under addition. So if both L1 + ρ or L2 + ρ were homology boundaries, then so would be L,
which is a contradiction. So the shortest homology loop crosses C exactly once, and since it
contains r it must be at least as long as σ(e). Hence some shortest homology loop has the form
σ(e). Thus it is simple, and is thus non-separating.

Now we can bruteforce and try all the σ(e)s to find a shortest non-separating one. Or we
can try to be smarter, and prove that:

Lemma 1.20. A loop σ(e) is separating if and only if e separates C.

14

Proof. If σ(e) is separating, it separates C into at least two components. In the other direction,
if e separates C, then any path on the surface connecting these two components and not crossing
σ(e) can be pushed back to C since S \ C is a disk.

The set of edges e separating C are called bridge edges. Note that edges corresponding to
a contractible σ(e), as characterized by Lemma 1.17 are bridge edges, which makes sense since
contractible curves are separating. One can determine in linear time all the bridge edges of C
using depth-first search.

Finding a shortest non-separating cycle in O(n2 log n) time. For each face of G, we fix a root
r at G. Then we compute in O(n log n) time the cut locus based at r as well as the weight of
each of its edges, i.e., the length of σ(e). We compute all the bridge edges and compare the
remaining ones to find the shortest non-separating loop based at r. Looping through all the
possible rs increases the complexity to O(n2 log n), and we output the shortest of the resulting
cycles.

Zooming out a bit: These two algorithms work because of the algebraic structure behind
the curves: the concatenation of two contractible curves is contractible (i.e., the set of homotopy
classes forms a group under concatenation), and the concatenation of two “separating” curves
is “separating” (the homology classes form a group under addition). There are some other
algebraic structures of interest, in particular, we can leverage relative homology to compute
shortest systems of loops (see the lecture notes of Éric Colin de Verdière). Yet when there
is no such known algebraic structure behind the problem that we consider, any optimization
problem becomes much harder: how to compute the shortest polygonal scheme of the form
a1b1ā1b̄1 . . . agbgāgbg for an orientable surface? How to compute the shortest collection of closed
curves cutting a surface into a collection of sphere with three holes (a pants decomposition)?
No polynomial algorithm nor hardness proof is known for these two problems.

1.2.2 Homotopy testing

To test whether a closed curve on a surface S is contractible, if the curve is simple, we can simply
cut along it and see whether one of the components is a disk. This works because of Lemma 1.8.
But if the curve is not simple, the problem is significantly less obvious to tackle. This is a good
excuse to do some more topology. We will focus on getting polynomial algorithms. With quite
some work, everything can actually be made linear.

The main strategy that we use is to use an auxiliary space from S, called the universal cover
(or at least a portion of it), which differentiates in a natural way curves that are not homotopic.
A covering space (Ŝ, p) for a surface S is a topological space with a continuous map p : Ŝ → S
that is a local homeomorphism: any point x in S has an open neighborhood U so that p−1(U)
is a disjoint union of open sets Ui which are all homeomorphic to U . The universal cover is
a covering space where every simple closed curve is contractible – such a space is called simply
connected. Such a universal cover is unique in some (natural) sense, though we will not prove
this nor use it.

This abstract definition makes much more sense when looking at specific examples, see
Figure 11 for some illustrations:

• The universal cover of a circle S1 is an infinite spiral over this circle.

• The universal cover of an annulus A is an infinite strip over this annulus.

15

U

pp−1(U)p p

=

Figure 11: The universal covers of the circle, the annulus and the torus.

• The universal cover of a sphere is the sphere itself.

• The universal cover of a torus is the plane R2 with a tiling into squares.

Exercise 1.21. What is the covering space of the projective plane?

Since the map p of a universal cover is a local homeomorphism, every path, or closed curve
γ on S, once a specific preimage of one of its points has been chosen, can be traced on Ŝ,
yielding a lift γ̂. This is pictured in Figure 11 in the annulus example. But this lift might
not be a closed curve. The following lemma shows that it is a closed curve exactly when it is
contractible:

Lemma 1.22. A closed curve γ on a surface lifts in the universal cover to a closed curve if
and only if it is contractible.

Proof. The universal cover is simply connected, and thus each closed curve there can be con-
tracted to a point. This contraction projects via p to a contraction on S, and thus a closed
curve on S that lifts to a closed curve must be contractible. Conversely, the lift of a trivial
curve is a closed curve, and the contraction on S lifts to a homotopy on Ŝ

Surfaces with boundary: For a surface with boundary, one can compute a portion of the
universal cover in the following way. Starting from a graph G embedded on a surface with
boundary, we first contract and remove edges until there is a single face and all the vertices are
on the boundary. Denote by F the remaining edges. We cut along them, thus getting a disk
D. The edges of F will act as fences: whenever we cross such an edge, and nothing has been
put yet on the other side, we glue a new copy of D. This process is naturally infinite, but is
already useful for testing contractibility of a curve γ. First, observe that when an edge of G
gets removed, one can reroute γ without changing its homotopy type, which might increase its
length by an O(g) factor. Then one can build the portion of the universal cover on which the lift
of γ will live, trace the lift of γ on this portion and check whether the end point is the same as
the starting point, see Figure 12. Thinking a bit more about this algorithm, it really only boils
down to words: it amounts to writing the word formed by the edges of F that we intersect, with
a ·−1 if the orientation is reversed, and checking whether the word we obtain can be reduced to
a trivial word by reducing subwords of the kind aa−1. We clearly get a polynomial algorithm

16

Figure 12: Lifting a closed curve on a disk with with two holes. Note that in the cover, the
path starts on the first “floor” and ends on the third floor. Hence the curve is not contractible

Orientable surfaces without boundary: We first look at the easy example of the torus.
In this case, the universal cover is R2 tiled by squares, and the boundaries of the square can be
taken to be any pair of edges (a, b) in a single vertex, single face graph embedded on the torus.
One can test the contractibility of a curve by walking on this tiling of R2 and checking whether
we come back to the same vertex at the end of the walk, see Figure 13. We emphasize here
the main difference compared to the case with a boundary: after following the path for some
time, we will sometimes come back to the same tile in R2 despite having never backtracked.
Such a case happens in the example. Here again, in practice, this is a problem on words: this
amounts to counting how many times the walk crosses a and b (counting the crossings positively
or negatively depending on how we cross it) and checking whether at the end of the walk, those
algebraic counts are zero.

For the more general case, as in the start of the classification of surfaces, up to removing
and contracting edges, we can obtain from any graph a graph with a single vertex and a single
face, which is often called a system of loops. By Euler’s formula, this system of loops has 4g
loops. Cutting along it yields a 4g-gon. By analogy with the toroidal case, we want to look for
the universal cover at a tiling of R2 where each tile is a 4g-gon, and every vertex has degree
4g. This is not possible in a Euclidean way, but there are such hyperbolic tilings, which are
tilings in a space of negative curvature, see Figure 14 for an example with the genus 2 surface.
(One model of) Hyperbolic geometry is a geometry where the ambient space is an open disk
(thus homeomorphic to R2) and the straight lines are arcs of circle which are orthogonal to the
boundary of the disk. The reader can check on the picture that we indeed get a tiling of the
disk with octagons, eight of which meet at each vertex. Note that the definition of universal
cover is purely topological, so the metric structure is just here at this stage to help us with
intuition. One could try to trace on this hyperbolic tiling the walk and check whether we come
back to a point, but now it is much less trivial to decide when we come back to the same tile.
Instead, the following argument, dating back to Dehn, allows us to make progress locally until

17

p
a

b

Figure 13: Lifting a closed curve on a torus. In the cover, it lifts to a path, hence the curve is
not contractible

=

p

Figure 14: Covering a genus-two surface by a hyperbolic tiling of the open disk.

we the curve is trivial:

A closed curve on a graph G which is a system of loops can be seen as a word on A ∪A−1,
where the alphabet A is the set of loops. A spur is a subword of the form aa−1.

Lemma 1.23. Let γ be a closed curve on a graph G with is a system of loops, cellularly
embedded as a system of loops on an orientable surface of genus at least 2. If γ has no spurs
and is contractible, then it has a subpath consisting of more than half of a facial walk of G.

Note that this is not true on a torus: indeed, this is a property that results from the
hyperbolicity of the tiling. One can prove this using Euler’s formula and a bit of sweat, but
since we have introduced a bit of geometry, it is a good occasion to explore a geometric version
of the Euler formula argument. It relies on a discrete notion of curvature, which quantifies
how non-Euclidean a space is, which we first introduce. Let D be a disk on which a graph is
embedded. Around a vertex, between each pair of consecutive edges, there is a corner . For
each corner c, let θ(c) be a positive number which we think of as the angle (in fractions of full
turns) at this corner. In a Euclidean polygon, the sum of angles on a polygon with d sides is

18

always (d− 2)π, so with our normalizations, this becomes d/2− 1. Therefore, it makes sense to
define the curvature of a face κ(f) to be

κ(f) =
∑
c∈f

θ(c)− deg(f)/2 + 1.

Thus, a triangle where the sum of angles is less than π has negative curvature. Similarly,
in usual space, the sum of angles around a vertex is 2π, or 1 when normalizing by full turns.
Thus we define the curvature of an interior vertex κ(v) is defined to be

κ(v) = 1−
∑
c∈v

θ(c).

In these discrete terms, a vertex with negative curvature is a vertex with too much stuff
around it. Finally, the curvature of a boundary vertex τ(v) is

τ(v) = 1/2−
∑
c∈v

θ(c).

A magical formula called the Gauss-Bonnet formula stipulates that on a surface, the sum of
the curvature equals the Euler characteristic (up to some constant normalizing factor). In our
setting, the discrete version is the following:

Lemma 1.24. For a graph G embedded on a disk D, and any choice of angles χ(c) on its
corners, if we denote by Vi and V∂ its interior and boundary vertices, we have:

∑
v∈Vi

κ(v) +
∑
v∈V∂

τ(v) +
∑
f∈F

κ(f) = χ(D) = 1.

Proof. Observe that in the three summands, the terms involving θ(c) cancel each other. What
remains is |Vi|+ 1/2|V∂ |+ |F | −

∑
f deg(f)/2. The last sum counts the inner edges and half of

the edges on the boundary, or equivalently, all the edges minus half the edges on the boundary.
Since on the boundary of the disk, there are as many edges as vertices, this sums to |Vi| +
1/2|V∂ |+ |F | − (|E| − |V∂ |/2) = |V | − |E|+ |F | which is exactly the Euler characteristic.

Of course, this generalizes to higher genus surfaces, with an identical proof. With this tool
in hand, we proceed to the proof of Dehn’s lemma.

Proof of Dehn’s Lemma. If γ is contractible, it lifts to a closed curve in the universal cover.
This closed curve might self-intersect, and thus partitions our tiling of R2 into disks (and the
outer face). Therefore it suffices to prove that any disk D bounded by a closed curve on a
(4g, 4g)-tiling of R2 contains a subpath of length at least 2g + 1 on the boundary of one tile.
The idea of the proof is to choose the angles so that a lot of curvature has to happen on the
boundary vertices, which will force the subpath that we are looking for.

Therefore, we set all the corners to have angle 1/4. Then all the faces and all the interior
vertices all have negative curvature. The vertices of the boundary have positive curvature if and
only if they are adjacent to a single face, in which case they have curvature 1/4. We call such
a vertex convex. So by the combinatorial Gauss-Bonnet formula, there will be a lot of convex
vertices:

19

∑
v∈Vi

κ(v) +
∑
v∈V∂

τ(v) +
∑
f∈F

κ(f) = 1

|F |(1− g) + |Vi|(1− g) + |Vconvex|/4 ≥ 1

|Vconvex| ≥ (4g − 4)|F |+ 4

So some face is adjacent to 4g−3 convex vertices. These convex vertices must be consecutive,
since otherwise there would be at least four of them. So some face has 4g− 2 consecutive edges
on ∂D, which is strictly bigger than 2g for g ≥ 2.

With Lemma 1.23 in hand, we can describe a combinatorial algorithm to test contractibility:
after having reduced to a system of loops, we look at the word formed the walk. We first
inductively remove all the spurs. Then we scan it for subword consisting of more than half of the
facial walk of the system of loops. Whenever there is one, we replace it by the complementary
part of the facial walk: this is a homotopy, and thus does not change the contractibility of
the walk. Each of these changes reduces the complexity of the word, and we induct. By
Lemma 1.23, if the closed curve is contractible, we will reach the trivial word. The complexity
is clearly polynomial. With quite a lot of care, it can be made linear.

Zooming out a bit: In both variants, we have seen that the problem boils down to a problem
on words: deciding whether a given word reduces to a trivial word under spur reduction (case
with boundary), or with spur reductions and a more complicated relation. The underlying
reason behind this is that the problem can be phrased in terms of combinatorial group theory.
Indeed, the homotopy classes of loops on a surface, with the concatenation law, forms a group
called the fundamental group of the surface, and a presentation for this group can be readily
computed from a graph embedded on the surface: in the case with boundary, it is a free group
with the fences as generators, and in the case without boundary, it is the single-relator group
obtained with the system of loops as generators and the facial walk as a relation. Then the
contractibility test amounts to testing the triviality of an element of this group. This perspective
is easily misleading: in general testing triviality in a group defined by generators and relations
is undecidable. The fact that this can be solved for the fundamental group of surface is therefore
remarkable.

More generally, we can try to test whether two given curves are homotopic. This is more
subtle, but can also be made in linear time, using linear tools.

1.3 Separators in embedded graphs

If time allows, we will also talk a bit about small separators for embedded graphs, which is
an absolutely central feature in algorithm design. A (balanced) separator of a graph is a
subset of the vertices S ⊆ V so that each component of V \ S contains at most two thirds of
the vertices of the graph. The size of the separator is the number of vertices of S. Separators
of small size are key to algorithm design, as they allow for very intuitive divide and conquer
algorithms: cut the graph into two parts of roughly equal size, solve your problem recursively
on both sides and glue back the solutions. Hopefully the gluing back is facilitated by the small
size of the separators. We shall see a specific example of that approach.

Here we prove that planar graphs have (somewhat) small separators.

Theorem 1.25. Let G be a planar graph with n vertices. Then one can compute in O(n) time
a separator for G of size O(

√
n).

20

Figure 15: An edge separating the dual co-tree into balanced parts induces a balanced separator
in the primal graph.

This is tight, as one can see by looking at a
√
n×

√
n grid.

Proof of Theorem 1.25. In the proof, we will be intentionally vague on the constants. We can
safely assume that the graph G is triangulated: one can clearly add edges until the graph is
triangulated, which takes linear time, and then a separator for the new graph is also a separator
for the old graph.

We start from an arbitrary vertex r and compute a breadth-first search tree T rooted at r.
The level of a vertex is the distance from that vertex to the root in T . Denote by Li the set of
vertices of level i. For any edge e that is not in T , denote by Ce the cycle induced by the edge
e and the tree. We first prove that one of the levels Li is a separator, and that one of the cycles
Ce is a separator.

• At least one the Li is a balanced separator. Indeed, if we sort all the vertices based on
their level and look at the level Lm containing the n/2th vertex, it is necessarily a balanced
separator.

• At least one of the Ce is a balanced separator. Indeed, look at the tree in the dual of
G that is made of the dual of edges not in T (this is sometimes called a cotree). Root
C at the leaf of your choice. Below that leaf, the tree C is a binary tree because G is
triangulated. We walk down from the root, always picking the edge going towards the
larger subtree. We stop when we reach the first vertex v for which the subtree has less
than 2n/3 dual vertices. Then the edge vw (where w is the parent of v) cuts the tree
into two subtrees, each of which contains at most 2n/3 dual vertices. Therefore, the cycle
C(vw)∗ separates G into two disks, each containing at most two thirds of the faces. From
Euler’s formula and the fact that the graph is triangulated it follows that this cycle is a
balanced separator. See Figure 15 for an illustration.

Both of these balanced separators can be computed in time O(n). If one of them is short,
i.e., has size O(

√
n), we win. Otherwise, let us assume that both Lm and C(vw)∗ are long. Then

in particular the depth of the breadth-first search tree is bigger than
√
n. We look at the levels

Li for i between m and m+
√
n. Since there are

√
n levels, one of the levels has less than

√
n

elements, and we call it L2. Likewise, looking at the levels Li for i between m and m−
√
n, we

find a level L1 with at most
√
n elements. The cycle C(vw)∗ connects L1 to L2 with two paths α

and β, which both have length O(
√
n). We claim that L1 ∪L2 ∪α∪β is the balanced separator

that we have been looking for. First, it is short. Second, it cuts G into at least four connected
components (see Figure 16):

• The component between the root and L1 has at most n/2 vertices since it is contained in
one of the regions cut by Lm.

21

LmL1

L2

r

(vw)∗

LmL1

L2

r

(vw)∗

Figure 16: The separator is made of L1, L2, and the subpaths of the fundamental cycle between
them. It cuts the graph into at most four small components.

• The component after L2 has at most n/2 vertices since it is contained in one of the regions
cut by Lm.

• There are two components between L1 and L2, separated by α and β. Each of them has
at most 2n/3 vertices since they are contained in one of the components cut by C(vw)∗ .

All the steps in this proof are readily algorithmic and can be implemented in O(n) time.

Here is a simple algorithmic application of this theorem, using a divide and conquer frame-
work.

Theorem 1.26. In a planar directed4 graph, one can find the shortest cycle in time O(n3/2).

The naive algorithm in general graphs consists in computing a shortest path tree at each
vertex, which costs O(n2).

Proof. When one cuts the graph using planar separators, the shortest cycle is either on one side,
or on the other side, or it crosses the separator. The first two cases can be handled recursively,
and the last case can be handled with O(

√
n) computations of a shortest path tree. More

precisely, the algorithm proceeds as follows:

1. Find a planar separator S cutting G into two balanced subsets A and B,

2. Recursively search A and B,

3. For each s in S, compute the shortest cycle through s using a breadth-first search tree,

4. Return the shortest of the cycles output in steps 2. and 3.

Step 3 takes O(n3/2) time, and this dominates the complexity of the algorithm, even in the
recursive calls.
4The same problem for undirected graphs is made quite a bit easier because there is always a cycle of length

at most 5.

22

Similarly, but with much more work, any problem involving shortest paths can be sped up
on planar graphs using planar separators. In particular, a theorem that we will not prove is the
following:

Theorem 1.27 (Henzinger, Klein, Rao, Subramanian 1997). On an edge-weighted planar graph,
a shortest path tree from any given vertex can be computed in linear time.

More generally, many problems for which the best algorithm runs in time 2O(n) or nO(n) can
be sped up on planar graphs to obtain algorithms running in time 2O(

√
n) or nO(

√
n). This is

sometimes called the Square root phenomenon. A good framework to prove such upper bounds
is to introduce the notion of treewidth and use planar separators to prove that planar graphs
have treewidth O(

√
n).

The generalization of the planar separator theorem for graphs embedded on surfaces is as
follows.

Theorem 1.28. An n-vertex graph embedded on a surface of genus g admits an O(
√
gn)-sized

balanced separator.

The following proof works by planarizing the graph and applying the separator theorem. It
can be turner into a linear-time algorithm.

Proof. We can assume by adding edges if necessary that the graph is connected and cellularly
embedded. Then we start as in the planar case by computing a BFS tree from any vertex. As in
that case, if the Lm level, which is the one containing the n/2th vertex, has size O(

√
gn), then

we are done. Otherwise, as before we denote by L1 and L2 the first level below (respectively)
above Lm having O(

√
gn) vertices. Note that there are O(

√
n/g) levels between L1 and L2,

since otherwise there would be more than n vertices. Now, we contract all the vertices in L1

and L2 into a single vertex r, and look at the resulting graph H. Therefore, up to considering
this graph H instead of the input graph G (note that the surface on which H is embedded has
genus at most g), we can assume that the input graph has a breadth-first search tree of depth
O(

√
n/g) rooted at r.

Now, as in the proof of classification of surfaces, let us remove edges in the graph G until
there is a single face. Furthermore, let us remove all the vertices of degree one and their incident
edges. Let us denote the resulting graph by G′, and by e and v its edges and vertices. By the
Euler formula, we have e = v − 1 + 2g. The BFS tree partitions these edges into the tree and
the non-tree edges, and there are thus v − 1 edges of the first kind and 2g edges of the second
kind. Now, any vertex of H is in some path of that tree, and any path in the tree contains at
most O(

√
n/g) vertices and connects the root to a non-tree edge. Thus there are at most 4g of

those paths, and thus there are O(
√
gn) vertices in the graph G′. Removing all these vertices

cuts the surface into a disk. Then we can use the planar separator theorem (Theorem 1.26) to
find a balanced separator with O(

√
n) vertices. All in all, we have used O(

√
gn) vertices for the

first reduction, O(
√
gn) vertices for the planarization and O(

√
n) vertices for the final planar

separator, and thus we have found a balanced separator of size O(
√
gn).

By applying Theorem 1.28, we can similarly improve the running times of many algorithms
using divide-and-conquer approaches.

23

https://simons.berkeley.edu/talks/daniel-marx-2015-11-06
https://en.wikipedia.org/wiki/Treewidth

	Surfaces
	Definition and classification
	Some topological algorithms
	Computing shortest interesting cycles
	Homotopy testing

	Separators in embedded graphs

