
Some exercises on embedded graphs

Exercise 1:

For G = (V,E) a simple graph, the complement of G is the graph with the same vertex
set V , and where two vertices u and v are connected if and only if they are not connected in G.

1. Let G be a simple planar graph with 11 vertices. Prove that the complement of G is not
planar.

2. Let G be a simple graph embedded on an orientable surface of genus g with n vertices.
For which values of n (depending on g) can we prove that the complement of G is not
embeddable on an orientable surface of genus g?

Exercise 2:

In this exercise, when we refer to cycles, we mean cycles in the graph-theoretical sense:
walks in a graph without repeated vertices and edges.

Let G be a directed planar graph, i.e., where each edge is endowed with a direction from
one vertex to the other one. A directed graph is strongly connected if any vertex can be
connected to any other vertex using a directed path. A directed graph is acyclic if it contains
no non-trivial directed cycle. A source, respectively a sink, is a vertex whose incident edges
are all outgoing, respectively incoming. A regular vertex in a directed plane graph is a vertex
whose cycle of incident edges consists of a single interval of incoming edges and a single interval
of outgoing edges.

Graph duality extends to directed plane graphs as pictured in the figure below: if a primal
edge goes from left to right, the dual edge goes from top to bottom.

1. Prove that a directed planar graph is strongly connected if and only if its dual graph G∗

(with respect to any embedding) is acyclic.

2. Is this true for a non-planar graph? If not, provide an example of a strongly connected
graph with an embedding on a surface whose dual is not acyclic.

3. Let G be a directed planar graph with a unique source s and a unique sink t. Prove that
in every planar embedding of G, every vertex except s and t is regular.

Exercise 3:

1. Let G be a graph embedded on an orientable surface of genus g, not necessarily cellularly.
Prove that v−e+f ≥ 2−2g, where v, e and f denote respectively the number of vertices,
edges and faces of the graph embedding.
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2. Let G be a simple graph cellularly embedded on an orientable surface of genus g, with
the properties that (1) all the faces have degree three (i.e., are incident to three edges),
and (2) each cycle of length 3 in the graph bounds a face. The set of such (triangular)
faces is denoted by T . Use the previous question to show that in any embedding of G,
the number of faces is |T |. Deduce that the embedding of G on an orientable surface of
genus g is unique up to homeomorphism.

Exercise 4:

We consider the following way of representing non-planar graphs with boxes. There are
k disjoint squares called boxes drawn in the plane, and each side acts as a teleporter to the
same point on the opposite side. A graph is embedded in the plane with k boxes if it is drawn
without crossings in the plane when the edges are allowed to use these teleporters: when an
edge intersects a point on the box, it continues on the same point on the opposite side. Note
that each edge is allowed to use the same box any number of times. For example, here is a
picture of a graph embedded in the plane with four boxes (left picture). Equivalently, a box is
a way to hide a grid of crossings (see the right picture).

1. Provide an embedding of K3,3 in the plane with a single box.

2. Prove that a graph can be embedded in the plane with g boxes if and only if it can be
embedded on a surface of genus g.

3. Let G be a graph embedded on a surface of genus g. By the previous question, G can
be embedded in the plane with g boxes. Find a function f(g) so that the following
strengthening holds (and prove it): G can be embedded in the plane with g boxes so that
each edge of G crosses at most f(g) boxes (counted with multiplicity). Any function (even
non-polynomial) will do, but the smaller ones are better!

Exercise 5:

Recall that a cellular embedding is an embedding where all the faces are disks, and that
a non-orientable surface of genus g is a surface with polygonal scheme a1a1a2a2 . . . agag. A
convenient way to represent a graph on a non-orientable surface is to draw it on top of this
polygonal scheme. For example, here is a cellular embedding of K5 on a non-orientable surface
of genus two.
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1. Provide an explicit cellular embedding of K4 (pictured below) on a non-orientable surface
of genus 3.

2. Let G be a simple graph with v vertices, e edges cellularly embedded on a non-orientable
surface of genus g. Prove that g ≤ e− v + 1.

3. Let G be a simple graph with v vertices and e edges, and let g1 be the smallest genus of
a non-orientable surface on which G embeds. Prove that for any g such that g1 ≤ g ≤
e− v + 1, G can be cellularly embedded on a non-orientable surface of genus g.

4. In particular, G can always be cellularly embedded on a non-orientable surface of genus
e− v + 1. Provide a linear-time algorithm to compute such an embedding.
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