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Abstract
We present a fixed-parameter tractable (FPT) algorithm to find a shortest curve that encloses a set
of k required objects in the plane while paying a penalty for enclosing unwanted objects.

The input is a set of interior-disjoint simple polygons in the plane, where k of the polygons are
required to be enclosed and the remaining optional polygons have non-negative penalties. The goal is
to find a closed curve that is disjoint from the polygon interiors and encloses the k required polygons,
while minimizing the length of the curve plus the penalties of the enclosed optional polygons. If
the penalties are high, the output is a shortest curve that separates the required polygons from the
others. The problem is NP-hard if k is not fixed, even in very special cases. The runtime of our
algorithm is O(3kn3), where n is the number of vertices of the input polygons.

We extend the result to a graph version of the problem where the input is a connected plane
graph with positive edge weights. There are k required faces; the remaining faces are optional and
have non-negative penalties. The goal is to find a closed walk in the graph that encloses the k

required faces, while minimizing the weight of the walk plus the penalties of the enclosed optional
faces. We also consider an inverted version of the problem where the required objects must lie outside
the curve. Our algorithms solve some other well-studied problems, such as geometric knapsack.
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18:2 Finding a Shortest Curve That Separates Few Objects from Many

P

Figure 1 The Geometric-Enclosure-with-Penalties problem. The weakly simple polygon
W (in red) encloses the required polygons R (yellow hatched) while paying a penalty for enclosing
any of the optional polygons O (in gray, darker for larger penalties). Overlapping paths are slightly
displaced for visibility. Changing W via the dashed path to put polygon P outside would be
preferable if the increase in length is less than the penalty of P .

1 Introduction

We investigate the separation problem of finding a shortest curve that encloses a subset of
objects while excluding other objects. A very basic setting is for points in the plane: given n

points in the plane and a subset of size k, find a minimum-perimeter polygon containing the
specified k points and excluding the other n − k points. This problem is NP-hard when k

may be large, as proved by Eades and Rappaport [11] for the case k = n/2 via a simple
reduction from the Travelling Salesman Problem.

As a special case of our main result, we give the first algorithm for this problem that
is fixed-parameter tractable (FPT) in k. Our result is far more general and applies in two
settings, a geometric setting and a graph-theoretic setting.

Geometric-Enclosure-with-Penalties. We generalize from point objects to objects that are
interior-disjoint simple polygons in the plane, and we consider a weighted form of exclusion.

Input. The input is a set of simple interior-disjoint polygons partitioned into a set R

of k required polygons and the remaining set O of optional polygons. Each optional
polygon P ∈ O comes with a non-negative penalty πP where we allow πP = +∞.

Output. The goal is to find a weakly simple polygon W that does not intersect the
interior of any input polygon and encloses all polygons of R while minimizing the cost c(W ),
which is defined to be the Euclidean length of W plus the penalties of the polygons of O that
are inside W . See Figure 1 for an example. A polygon with penalty +∞ must be excluded.
A polygon with penalty 0 may be included or excluded without making a difference, so it
only acts as an obstacle to the solution curve. As Figure 1 illustrates, the problem would be
ill-defined if we required the solution curve W to be a simple polygon. The natural condition
is that W should be a weakly simple polygon, whose boundary may touch or overlap
itself but not cross itself. We give a precise definition in Section 2.1. An important property
is that a weakly simple polygon encloses a well-defined region. Our first main result is:

▶ Theorem 1. Geometric-Enclosure-with-Penalties for k required polygons can be
solved in O(3kn3) time and O(2kn2) space, if the input polygons have n vertices in total.
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Figure 2 The Graph-Enclosure-with-Penalties problem. The colors have the same meaning
as in Figure 1. A weakly simple closed walk W which is a solution for the instance is red (bold).
The edge weights, which are not shown, are unrelated to the Euclidean lengths.

If all objects are points, this can be handled by approximating each point by a small triangle.
An exact solution for an arbitrary mix of point and polygon objects appears in [5, Appendix I].

Graph-Enclosure-with-Penalties. In this setting, the objects are faces of a plane graph.
Input. The input is a simple connected plane graph G and positive edge weights. The

bounded faces of G are partitioned into a set R of k required faces and the remaining set
O of optional faces. Each optional face F has a penalty πF from R≥0 ∪ {+∞}.

Output. The goal is to find a weakly simple closed walk W in G such that faces of R

are inside W while minimizing the cost c(W ) which is defined to be the sum of the weights
of the edges of W plus the penalties of the faces of O that are inside W . See Figure 2 for
an example. Intuitively, a weakly simple closed walk is one without crossings; we give a
more precise definition in the full version of this paper [5, Appendix A]. For a weakly simple
closed walk, the notions of inside and outside are well-defined. Our second main result is:

▶ Theorem 2. Graph-Enclosure-with-Penalties can be solved in O(3kn3) time and
O(2kn2) space, where k is the number of required faces and n is the number of vertices of G.

A common framework. Although the two settings described above seem different, we resolve
them into a common geometric framework, which we call Enclosure-with-Penalties. Our
algorithm applies to this general problem. The basic idea is to transform the graph problem
into a geometric problem by taking a straight-line embedding of the graph. The bounded faces
of the graph become polygons slightly more general than simple polygons. We also consider
the outer face as an unbounded polygon. Then the “free space” between the polygons consists
only of the graph edges. This gives us a geometric problem, albeit with arbitrary positive
edge weights defined on edges that have a polygon on each side. In Section 3 we define the
Enclosure-with-Penalties problem by generalizing the Geometric-Enclosure-with-
Penalties problem to include these instances.

We remark that the resulting algorithm for Theorem 2 makes essential use of the straight-
line embedding of the input graph. In particular, the subproblems that we solve depend on
the embedding. This imposition of geometry seems artificial, but oddly enough, we do not
know how to formulate our algorithm in a purely combinatorial setting.

SoCG 2025



18:4 Finding a Shortest Curve That Separates Few Objects from Many

Our approach. We use dynamic programming (Section 4) to build a polygon W that is
locally correct – we use segments that do not intersect the interior of any object and we
account for required objects and tally the penalties as we add triangles to W . We will prove
that the cost computed by the algorithm is correct, but this is tricky because W itself will
not necessarily be weakly simple. “Inside” is no longer well-defined. Instead, we use winding
numbers to give a measure of the cost of W that matches the cost computed by the algorithm.

In Section 5 we give an algorithm to uncross W to a weakly simple polygon without
increasing its cost, which provides our final output. Correctness is proved in Section 6.

The run-time for the Uncrossing Algorithm is dominated by the run-time for the dynamic
program. To obtain our claimed run-time we speed up the dynamic program in Section 7.

Lower bounds. To complement our algorithms we prove that, under the Exponential Time
Hypothesis (ETH), the Geometric- and Graph-Enclosure-with-Penalties problems
cannot be solved in 2o(k) · nO(1) time, implying that the linear dependence on k in the
exponent of the running time of our algorithms is the best possible assuming ETH. The
proof is a reduction from unweighted Planar Steiner Tree, which admits a lower bound
by a result by Marx, Pilipczuk, and Pilipczuk [15, Theorem 1.2]. See [5, Appendix K].

Swapping the inside with the outside. We extend our algorithm to an inverted version
of the Enclosure-with-Penalties problem where the required objects have to be outside
W , and the objective is to minimize the length of W plus the penalties of the polygons of O

that are outside W . The runtime remains the same, see Section 8. This algorithm provides a
new faster solution to the geometric knapsack problem discussed below.

Negative penalties. We can allow some number ℓ of objects with negative penalties
(rewards); in this case, the runtime is increased by a factor of 3ℓ. See [5, Appendix J].

1.1 Related work
Cut problems and separator problems in graphs have a long history, and separation problems
in geometric settings are a natural and well studied counterpart.

Geometric knapsack problem. Geometric separation problems were first explored by
Eades and Rappaport [11] (as discussed above) and by Arkin, Khuller, and Mitchell, who
introduced the geometric knapsack problem [4], which corresponds to the inverted version of
the Geometric-Enclosure-with-Penalties problem in the special case where there are
no required objects. (In their equivalent formulation, each object has a finite nonnegative
value, and the goal is to compute a curve that maximizes the total value of the enclosed
objects minus its length.) They gave an algorithm with running time O(n4) [4, Theorem 6].
In the full version [5, Appendix M], we note some issues regarding weak simplicity and
interior/exterior of their output. Since there are no required objects, our algorithm for the
inverted problem solves the geometric knapsack problem in time O(n3).

Relation to homotopy and homology. Our problem has a topological flavor and is therefore,
in principle, amenable to homotopy and homology techniques. However, these techniques
are unlikely to lead to algorithms that are FPT in k, even assuming only infinite penalties.
In particular, for the Graph-Enclosure-with-Penalties problem, enumerating a set of
candidate homotopy classes, i.e., the possible ways how a solution winds around the objects to
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enclose the required objects and avoid the most undesirable ones, is possible using a technique
by Chambers, Colin de Verdière, Erickson, Lazarus, and Whittlesey [7] (specifically, because
the exchange argument [7, Proposition 4.2] is also valid for our problem), but this results in
an algorithm with runtime KO(K) · n log n, where K is the number k of required objects plus
the number of objects with nonzero penalty. Similarly, the technique of homology covers, by
Chambers, Erickson, Fox, and Nayyeri [8], is applicable, but yields algorithms with runtime
KO(K) · n log log n or 2O(K) · n log n, thus again with an exponential dependence on K. If
there are many objects with nonzero penalty, our algorithm with runtime O(3kn3) is faster.

Specifying only the number of objects to be enclosed. If we are just given a set of n

points in general position and the exact number k ≤ n of points to be enclosed, a minimum-
perimeter polygon enclosing at least k points is convex, contains exactly k points, and can be
found in polynomial time by an algorithm of Eppstein, Overmars, Rote, and Woeginger [12,
Corollary 5.3, Case 3]. This algorithm could for example be used to identify an unusual
cluster in an otherwise uniformly distributed point set. However, if the input consists of
polygons instead of points, we are not aware of a better method than guessing the k polygons
to be enclosed and applying our main result, resulting in an algorithm of running time
O(

(
N
k

)
3kn3) = O(Nkn3) if there are N objects.

More variations. Some related separation and enclosure problems have been recently studied.
Abrahamsen, Giannopoulos, Löffler, and Rote [1] investigated the problem of separating two
or more groups of polygonal objects by a shortest system of fences. These fences may form
an arbitrary plane graph, not necessarily a cycle. For separating two groups of polygons by
a shortest fence, there is an algorithm of running time O(n4 log3 n), based on minimum-cut
techniques [1]. For separating more than two groups, only approximation algorithms are
known. While we study a problem in the same spirit, a key difference is that we require a
single (weakly) simple cycle, which makes the techniques of this article not applicable for us.

Chan, He, and Xue [9] studied the problem of choosing a smallest subset of objects
from a given set whose union encloses a given point set. For this problem, there are only
approximation algorithms. Klost, van Kreveld, Perz, Rote, and Tkadlec [13] have recently
investigated optimum “blob-trees”, where the objective is to connect a set of points by a
combination of curves and edges.

2 Preliminaries

2.1 Weakly simple polygons
A polygon is weakly simple if it has fewer than three vertices, or it has at least three vertices
and for any ε > 0, the vertices can be perturbed by at most ε to yield a simple polygon [2, 10].
We traverse a weakly simple polygon counterclockwise, i.e., with the interior to the left of
each edge. Our proof uses a combinatorial characterization of a weakly simple polygon in
terms of a non-crossing Euler tour in a plane multigraph [5, Lemma 16 in Appendix A]. This
allows us to partition the edges of a weakly simple polygon into boundary walks of interior
faces, see Figure 3. Note that we first subdivide an edge when a vertex lies in its interior.

A vertex of a weakly simple polygon with incoming edge e and outgoing edge f is a
transition vertex if e and f belong to different interior faces. An interior face of two edges is
a corridor and an interior face of more than two edges is a chamber. A chamber is not neces-
sarily a simple polygon, but it is almost simple (see Figure 3(b)). More formally, a bounded
almost-simple polygon is the boundary walk of an interior face of a connected straight-line

SoCG 2025



18:6 Finding a Shortest Curve That Separates Few Objects from Many

(a) (b) (c)

Figure 3 (a) A weakly simple polygon drawn via its ε-approximation. (b) The edges, after
subdividing at interior vertices (forks), are partitioned into interior faces. Four faces are corridors
and five are chambers. The largest chamber (in yellow) is almost-simple but not simple. (c) Non-
uniqueness of the faces for a weakly simple polygon that traverses a line segment four times. In the
top figure the two vertices on the left are transition vertices; this is reversed in the bottom figure.

graph drawing in the plane. We also allow an unbounded almost-simple polygon by
traversing the boundary of the outer face clockwise. An almost-simple polygon has a connected
interior and a bounded almost-simple polygon can be triangulated. Almost-simple polygons
play two roles: the bounded ones arise as chambers; and our general Enclosure-with-
Penalties problem allows almost-simple input polygons (including a single unbounded one).

All these concepts are made rigorous in [5, Appendix A]. We note that the partition of
the edges of a weakly simple polygon into interior faces (and hence the definition of corridors
and transition vertices) is not unique, see Figure 3(c). This non-uniqueness, which is inherent
in the ε-approximation definition of weakly simple polygons, does not affect our proofs.

2.2 Winding number and winding parity
Our algorithm will construct intermediate polygons that are not necessarily weakly simple; so
it will be useful to generalize “enclosed by” in terms of winding numbers. For a polygon W

and a point x not lying on a vertex or edge of W, the winding number wind(W, x) of x with
respect to W is defined as follows. Take a ray ρ from x that avoids vertices of W . If an edge
of W crosses ρ from right to left, we count this as +1; a crossing from left to right is counted
as −1, and the total count gives the winding number. This is well-defined independent of
the choice of ρ. The winding number is undefined for points x on W . Observe that, for a
weakly simple polygon W traversed counterclockwise, point x lies in the interior of W if and
only if wind(W, x) = 1. The winding parity of x with respect to W is wind(W, x) mod 2.

3 Our Common Framework: Enclosure-with-Penalties

In this section we formally define the Enclosure-with-Penalties problem that provides a
common framework for both the geometric and graph settings.
Input:

A set of interior-disjoint almost-simple polygons in the plane. We allow a single polygon
to be unbounded. We subdivide polygon edges to ensure that no polygon vertex lies
in the interior of an edge of another polygon. The free space is the plane minus the
interiors of the polygons.
A partition of the input polygons into a set R of k required polygons and the remaining
set O of optional polygons. If there is an unbounded polygon, it must lie in O.
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For each polygon P ∈ O, a penalty πP ∈ R≥0 ∪ {+∞}.
The weight wab of a line segment ab in the free space is its Euclidean length, except for
squeezed edges. A squeezed edge is a polygon edge that is incident to polygons on both
sides. We may specify an arbitrary positive weight for a squeezed edge. Subsegments
of a squeezed edge get proportional weight, and combinations of different squeezed or
non-squeezed segments have their weights added.

Output: A weakly simple polygon W that lies in the free space and contains all polygons
of R while minimizing the cost c(W ), which is defined as

c(W ) := w(W ) + π(W ), (1)

where w(W ) is the sum of the weights of the edges of W , and π(W ) is the sum of the
penalties of the polygons of O that are inside W . Our main result is:

▶ Theorem 3. Enclosure-with-Penalties for k required polygons can be solved in O(3kn3)
time and O(2kn2) space, if the input polygons have n vertices in total.

Theorem 1 is an immediate consequence of Theorem 3. Theorem 2 follows from Theorem 3
via a straight-line embedding of the graph, as outlined in Section 1 and detailed in the full
version [5, Appendix B].

The Enclosure-with-Penalties problem as defined above does not allow point objects.
(They are not almost-simple.) [5, Appendix I] shows how to deal with point objects.

4 Dynamic Programming Algorithm

The algorithm builds a polygon composed of free-space edges, where a free-space edge is
an inclusionwise minimal line segment in the free space whose endpoints are vertices of the
input polygons. We prove in Section 6 that this restriction to free-space edges is valid. We
refer to a solution interchangeably as a polygon or as a closed walk in the graph of free-space
edges.

The intuition for the algorithm is based on the decomposition of a weakly simple polygon
W into corridors and chambers joined at “cutpoints”, see Figure 3. A cutpoint separates W

into subpolygons and partitions the set of enclosed objects. Our first type of subproblem
finds polygons that enclose a specified subset of R and go through a specified vertex.

A corridor is a digon, and a chamber can be triangulated by adding chords, where a
chord may cut through polygons. We therefore use digons and triangles as the basic building
blocks to construct our solutions. A chord cuts off part of the solution. Our second type of
subproblem finds polygons that use a walk of free-space edges between two given vertices p

and q together with the chord pq (called the mouth) to enclose a specified subset of R.
Since a mouth may cut through polygons, we choose a reference point rP in the interior

of every input polygon P , and aim to enclose rP for P ∈ R. Observe that a weakly simple
polygon W in the free space encloses P if and only if rP lies in the interior of W .

The dynamic program explicitly keeps track of the subset of required objects that are
enclosed by partial solutions (2k possibilities). However, when combining two partial solutions,
the algorithm does not have enough information to check whether they cross. Thus, we allow
self-crossing solutions. In particular, our use of the word “enclosing” is aspirational, and
will only be made precise in terms of winding numbers, see Section 4.2. When we state the
algorithm, we invite the reader to think of a weakly simple solution without crossings.

SoCG 2025



18:8 Finding a Shortest Curve That Separates Few Objects from Many

Types of subproblems. A subproblem of type C (“closed”) is rooted at a vertex p, and we
build a closed walk that goes through p and is composed of free-space edges. A subproblem
of type M (“mouth”) is rooted at a segment pq between vertices of input polygons, called
the mouth, and we build an open walk of free-space edges from p to q; adding segment qp

closes the walk. In addition to the root, each subproblem has two more parameters, B and t:
The set B ⊆ R specifies the precise subset of required objects that must be enclosed, and
the integer t ≥ 0 is an upper bound on the number of edges of the walk. In each case, the
subproblem looks for a minimum-cost solution with the required properties.

4.1 Dynamic programming recursion
We now give recursive formulas for C and M , preceded in each case by an explanation of the
formulas. The formulas with the respective partitions of the walk are illustrated in Figure 4.

M(pq, t, B):

qp

C(p, t, B):

p p

M1 M2

C2C1

M(pr, t1, B1) +M(rq, t2, B2) + π(∆)

qp

∆

r

qp

C(p, t− 1, B) + wpq

wpq +M(qp, t− 1, B) C(p, t1, B1) + C(p, t2, B2)if B = ∅

Figure 4 Cases of the recursion. Solid edges are free-space edges; dashed edges are mouths.

For C(p, t, B) we have two base cases: if B = ∅, then the shortest closed walk is just
the point p and its cost is 0 (Equation (2)); and if B ̸= ∅ and t ≤ 1, there is no solution,
and we set the cost to ∞ (Equation (3)). Otherwise we have two general cases: the closed
walk uses an edge pq of the free space (for some q) plus a solution M(qp, t − 1, B) (Equation
(4)); or the closed walk is composed of two smaller closed walks that both go through p

(Equation (5)). The notation ⊔ means disjoint union: we partition the objects in B into two
sets, each “enclosed” by exactly one of the two closed walks.

The base cases define C(p, t, B) for B = ∅ and for t ≤ 1:

C(p, t, ∅) := 0, for t ≥ 0 (2)
C(p, t, B) := ∞, for B ̸= ∅ and t ≤ 1 (3)

In the general case, for B ̸= ∅ and t ≥ 2, we set

C(p, t, B) := min{C1, C2}, where
C1 := min

{
wpq + M(qp, t − 1, B)

∣∣ pq is a free-space edge
}

(4)
C2 := min

{
C(p, t1, B1) + C(p, t2, B2)

∣∣ t = t1 + t2; B = B1 ⊔ B2; B1, B2 ̸= ∅
}

(5)
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For M(pq, t, B) there are two possibilities: if pq is a free-space edge, we can use a closed
walk at p plus the edge pq (Equation (6)); or we can attach a triangle ∆ = prq to the
mouth pq (Equation (7)). In the first case we add the weight of the edge pq. In the triangle
case we take into account the polygons R(∆) with reference points in ∆, where we consider ∆
to be closed on pr and rq and open on pq, and we define π(∆) to be the sum of the penalties
of polygons of O with reference points in ∆.

M(pq, t, B) is defined only for t ≥ 1:

M(pq, t, B) := min{M1, M2}, where

M1 :=
{

C(p, t − 1, B) + wpq if pq is a free-space edge
∞, otherwise

(6)

M2 := min
{

M(pr, t1, B1) + M(rq, t2, B2) + π(∆)
∣∣ (7)

∆ = prq is a counterclockwise triangle,

t = t1 + t2, t1 ≥ 1, t2 ≥ 1, B = B1 ⊔ B2 ⊔ R(∆)
}

As we shall see later in Lemma 13, the optimal walk has at most 6n edges. Thus, we define
the solution to the whole problem as

cDP := min{ C(p, 6n, R) | p a vertex }. (8)

When we allow point objects, the algorithm needs a few refinements, see [5, Appendix I].
In the following sections we prove that cDP is the correct value. Although not required by
our proof, we note for completeness in [5, Appendix L] that the class of polygons over which
the algorithm optimizes is the class of immersed or self-overlapping weakly simple polygons.

Runtime and Space. A routine analysis shows that the runtime of the dynamic program
is O(3kn5), see the full version [5, Appendix C.1]. A more efficient version of the dynamic
program, given in Section 7, eliminates the parameter t and runs in time O(3kn3).

4.2 Extracting the solution
With every finite value computed in the dynamic program we can naturally associate an open
or closed walk of free-space edges that has this value as its cost (with “partially enclosed”
objects taken into account according to their reference points): Figure 4 illustrates how
each value is computed from the values of subproblems; the walks corresponding to those
subproblems are composed accordingly. (For more details, see [5, Appendix C.2].) We will
prove in Section 6 that cDP is finite; so the associated closed walk exists:

▶ Definition 4. WDP is the polygon associated with the optimum solution value cDP in (8).

The polygon WDP uses free-space edges, but it might not be weakly simple, and there is
no notion of enclosed objects. Instead, we use winding numbers: we show that the reference
point of any object in R has winding number 1 in WDP, and we define a cost measure for
WDP in terms of winding numbers and prove equality with cDP.

▶ Definition 5. For any polygon W in the free space, define the cost to be

c(W ) := w(W ) +
∑
P ∈O

wind(W, rP ) · πP .

SoCG 2025
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pq

∆

r

Figure 5 Gluing together closed walks, which may cross each other and are possibly self-crossing.

When W is a counterclockwise weakly simple polygon, this matches the previous definition
c(W ) = w(W ) + π(W ), see Equation (1). The solution WDP produced by the algorithm has
the following properties:

▶ Lemma 6.
(A) cDP = c(WDP);
(B) for all P ∈ R, wind(WDP, rP ) = 1;
(C) for all points x that do not lie on WDP, wind(WDP, x) ≥ 0.

Lemma 6 is proved in [5, Appendix C.2] by induction as the dynamic program builds
solutions by gluing together open/closed walks. The induction must apply also to open walks,
and we use the fact that winding numbers add when gluing walks together, see Figure 5.

5 Uncrossing Algorithm and Final Output WALG

The final step of our algorithm “uncrosses” the closed walk WDP produced by the dynamic
program and turns it into a weakly simple polygon WALG without increasing the cost. To do
so, we cut it into subpaths, eliminate some, and reorder the rest.

Our algorithm uses a known result about taking a plane multigraph (specified via its
rotation system) and finding a non-crossing Euler tour in which successive visits to a
vertex do not cross each other. (See [5, Appendix A] for more detailed definitions.) The
existence of such a tour in an Eulerian plane multigraph is an easy exercise, see [17] or [18,
Lemma 3.1], and a linear-time algorithm was given by Akitaya and Tóth [3]. We summarize
it in the following proposition, and give a self-contained proof in [5, Appendix D].

▶ Proposition 7 (Uncrossing Eulerian plane multigraphs). Given a plane connected Eulerian
multigraph H with m edges, specified by its combinatorial map, we can, in O(m) time,
compute a non-crossing Euler tour of H.

We now sketch our algorithm to uncross any polygon W to a weakly simple polygon W ′.
An interior crossing is a point that is in the relative interiors of two (or more) edges that
are not collinear. A fork (or interior vertex) is a vertex in the relative interior of an edge.
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▶ Algorithm 8 (Uncrossing Algorithm).
1. Subdivide every edge of W at every fork and interior crossing.
2. In the resulting multiset of edges (line segments in the plane) reduce multiplicities to 1

or 2 by repeatedly discarding pairs of equal line segments. The result is a plane connected
Eulerian multigraph.

3. Apply Proposition 7 to find a non-crossing Euler tour. This corresponds to a weakly
simple polygon W ′.

In the full version of our paper [5, Appendix D], we give further details of the algorithm
and an implementation with runtime O(t log t + s) where t is the number of edges of W and
s ∈ O(t2) is the number of interior crossings of W (with multiple crossings counted once).
For input WDP we show that there are no interior crossings, so the runtime is O(n log n).

We use the following important property of the Uncrossing Algorithm. Recall the
definition of winding parity from Section 2.2.

▶ Lemma 9. Every point x in the plane that does not lie on W has the same winding parity
in W and in W ′.

Proof. For any ray r from x to infinity that avoids vertices of W , the parity of the number
of edges it crosses is the same for W and W ′ since we have discarded pairs of equal line
segments. The direction in which W ′ traverses an edge does not affect the winding parity.
(+1 and −1 have the same parity.) ◀

▶ Definition 10. WALG is the output of the Uncrossing Algorithm on input WDP, oriented
in counterclockwise direction.

▶ Lemma 11. WALG is a weakly simple polygon in the free space. WALG encloses R and
c(WALG) ≤ cDP.

Proof. Consider a polygon P ∈ R. By Lemma 6(B), wind(WDP, rP ) = 1. By Lemma 9,
rP has the same winding parity in WALG. Since WALG is weakly simple, every point has
winding number 0 or 1. Thus wind(WALG, rP ) = 1 and WALG encloses P .

Next we consider costs. The definition of the costs in Equation (1) gives

c(WALG) = w(WALG) + π(WALG),

where π(WALG) is the sum of the penalties of objects of O enclosed by WALG.
By Lemma 6(A) and the definition of c(WDP),

cDP = c(WDP) = w(WDP) +
∑
P ∈O

wind(WDP, rP ) · πP .

The Uncrossing Algorithm ensures that w(WALG) ≤ w(WDP). It remains to compare the
penalties. Let P be a polygon of O enclosed by WALG, i.e., with wind(WALG, rP ) = 1. By
Lemma 9, the reference point rP has the same winding parity in WDP, and by Lemma 6(C),
wind(WDP, rP ) ≥ 0. Thus 1 ≤ wind(WDP, rP ) and

π(WALG) =
∑
P ∈O

wind(WALG, rP ) · πP ≤
∑
P ∈O

wind(WDP, rP ) · πP

Therefore c(WALG) ≤ cDP. (In fact, equality holds, as shown in the next section.) ◀
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6 Correctness Proof

In defining WALG, we relied on the assumption that cDP is finite. In this section we prove
this fact, which implies that WALG exists, and we prove our main correctness result:

▶ Theorem 12. WALG is an optimum solution to the Enclosure-with-Penalties problem.

We defined the Enclosure-with-Penalties problem over the continuous space of all
weakly simple polygons, but our algorithm only explores the discrete space of weakly simple
polygons composed of at most 6n free-space edges. So we first prove that there is an optimum
solution in this discrete space. A feasible solution is a weakly simple polygon that lies in the
free space and encloses R.

▶ Lemma 13. For the Enclosure-with-Penalties problem, there exists an optimum
solution WOPT of finite cost that consists of at most 6n free-space edges.

Proof idea (Details in [5, Appendix E]). Let S be the discrete set of feasible solutions that
consist of free-space edges each traversed at most twice. Because a planar graph on n vertices
has at most 3n edges, any solution in S has at most 6n free-space edges.

We next prove that S contains a feasible solution that encloses R and excludes O, and
thus has finite cost. The idea is to take the cycle boundaries of polygons in R and join them
by paths traversed twice.

Since S is finite and nonempty, this implies that, among the solutions in S, there is a
solution W ∗ of minimum cost.

Finally, we prove that any feasible solution not in S can be homotopically shortened and
then uncrossed to get a solution in S of no greater cost. Thus W ∗ is an optimum solution. ◀

We prove that the solution WOPT from Lemma 13 is one of the candidate solutions over
which the dynamic program optimizes. As a consequence:

▶ Lemma 14. cDP ≤ c(WOPT).

Theorem 12 then follows: Lemmas 13 and 14 establish that cDP is finite. Thus WALG
exists. By Lemma 11, WALG is a feasible solution and c(WALG) ≤ cDP. Combining with
Lemma 14 yields c(WOPT) ≤ c(WALG) ≤ cDP ≤ c(WOPT). Thus WALG is optimal.

We say a few words about the proof of Lemma 14. By the definition of cDP, it suffices to
show that C(p, 6n, R) ≤ c(WOPT) for a vertex p on WOPT. We give an inductive proof of the
more general statement that C(p, t, B) is at most the cost of any weakly simple polygon W

with at most t free-space edges that encloses B and goes through p. Since WOPT has at most
6n edges, this implies Lemma 14. The following lemma, which is proved in [5, Appendix E],
includes an analogous inductive statement for M(pq, t, B), with a suitable definition of the cost
c(W0) of an open walk W0. It refers to transition vertices, which were defined in Section 2.1.

▶ Lemma 15. (A) Let W be a weakly simple polygon with ℓ free-space edges, going through
vertex p, and let B be the objects of R that are enclosed by W. Then, for all t ≥ ℓ,
C(p, t, B) ≤ c(W ).

(B) Let W0 be an open walk with ℓ free-space edges from p to q such that the polygon
W = W0 +qp is weakly simple and q is not a transition vertex of W. Let B be the objects of R

whose reference points lie inside W and not on pq. Then, for all t ≥ ℓ, M(pq, t, B) ≤ c(W0).



T. Biedl, É. Colin de Verdière, F. Frati, A. Lubiw, and G. Rote 18:13

7 Reducing the Runtime with a Dijkstra-Style Algorithm

The runtime of our algorithm to solve the Enclosure-with-Penalties problem can be
reduced by a Θ(n2) factor, leading to the bound of Theorem 3.

The dynamic programming algorithm in Section 4 is guided by a parameter t, which
limits the number of edges of the walk. We have proved (Lemma 13) that there is an optimal
solution with at most 6n edges. Hence, the solution cannot be improved by allowing larger
values of t; the iteration stabilizes, and the algorithm can stop when t reaches 6n. The
parameter t has been useful for ensuring that the quantities in the dynamic programming
algorithm are well-defined, and it is essential as an induction variable for the proofs. We will
now eliminate t and solve the recursion in the style of Dijkstra’s algorithm for shortest paths.
In particular, we use a generalization of Dijkstra’s algorithm as proposed by Knuth [14].

More specifically, we define C(p, B) := C(p, 6n, B) and M(pq, B) := M(pq, 6n, B) in
terms of the quantities from Section 4. By the above observations, C(p, B) = C(p, t, B) and
M(pq, B) = M(pq, t, B) for all t ≥ 6n. Therefore, the limit quantities C(p, B) and M(pq, B)
fulfill a variation of the recursions (2–7) where the parameter t is eliminated:

C(p, ∅) = 0 (9)
C(p, B) = min{C1(p, B), C2(p, B)} for B ̸= ∅, where (10)

C1(p, B) = min
{

wpq + M(qp, B)
∣∣ pq is a free-space edge

}
(11)

C2(p, B) = min
{

C(p, B′) + C(p, B′′)
∣∣ B = B′ ⊔ B′′; B′, B′′ ̸= ∅

}
(12)

M(pq, B) = min{M1(pq, B), M2(pq, B)}, where (13)

M1(pq, B) =
{

wpq + C(q, B), if pq is a free-space edge
∞, otherwise

(14)

M2(pq, B) = min
{

M(pr, B′) + M(rq, B′′) + π(∆)
∣∣ (15)

prq = ∆ is a counterclockwise triangle;
B = B′ ⊔ B′′ ⊔ {P ∈ R | rP ∈ ∆}

}
As in Equation (8), we define the solution to the whole problem as

cDP := min{ C(p, R) | p is a vertex }. (16)

By Lemma 13 and by the definition of C(p, B) and M(pq, B), the value of cDP resulting
from (16) is the same as the one resulting from (8).

The system (9–15) is a system of equations that involves cyclic dependencies. Nevertheless,
we can show that it has a unique solution [5, Appendix F.1, Lemma 22]. The reason is
that on the right-hand side of the equations, the result of any expression combining some
quantities of the form C(p, B) and M(pq, B) is always larger than these quantities.

Similar to Dijkstra’s shortest-path algorithm, our algorithm maintains tentative values
C(p, B) and M(pq, B). The smallest of the tentative values is made permanent, and all
right-hand side expressions where this value appears are evaluated and used to update the
corresponding tentative left-hand side values. The algorithm that carries out this idea is
shown in the full version [5, Appendix F.2, Algorithm 1].

The most numerous quantities are the O(2kn2) values M(pq, B), and hence the space
complexity is O(2kn2). Compared to the running time for the dynamic programming
algorithm in Section 4, we save a factor n2: The elimination of t reduces the number of
recursions by a factor Θ(n), and we save another factor Θ(n) because we need not go through
all decompositions t = t1 + t2 on the right-hand side. The analysis of the full algorithm is
given in [5, Appendix F.3]. The total running time is O(3kn3), as claimed in Theorem 3.
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S↓(p3p4)

S↑(p7p6)

H←(p1)

p1

p7
p6

p5

p4

p3

p2

Qf

Qe

Qd

Qc

Qb

Qa

H→(p5)

Figure 6 Partition of the outside into pockets Qa, . . . , Qf , two half-planes, and seven planks.

8 The Inverted Problem

In the inverted problem, the required objects have to be outside the weakly simple polygon W ,
and the penalties of the polygons that are outside W are counted (see the introduction).
The approach for the original problem has to be adapted accordingly. To derive a suitable
dynamic programming formulation, we decompose the outside of W into elementary pieces,
as shown in Figure 6: We form the convex hull of W and extend vertical rays upward and
downward from the convex hull vertices. This leads to two additional types of regions:

a left and a right half-plane, each bounded by a vertical line through an object vertex;

vertical planks, that is, regions bounded by a line segment and two vertical upward rays
or two vertical downward rays. We discuss such regions in [5, Appendix F.4].

We stick to the convention that the interior of the region of interest lies on the left side of W .
Accordingly, the solution polygon W is now oriented clockwise.

In the algorithm, we build the region of interest outside-in, see Figure 7, starting from
a left half-plane bounded by two vertical rays through an object vertex. We add planks
from left to right along common rays, and, as in Section 4, we may also attach triangles
along common edges and digons along common vertices. In addition to the usual bounded
walks, we now also consider polygonal walks W ↕ that start from the endpoint of a vertical
downward ray and end at a vertical upward ray. More precisely, for each pair of vertices p, q,
we consider a subproblem of type U (“unbounded”), which considers regions bounded by a
vertical ray down from p, a walk W from p to q, and a vertical ray up from q, see Figure 7
for an example; p = q is allowed. Accordingly, the algorithm computes quantities U(p, q, t, B)
for all B ⊆ R and t ≤ 6n. The two unbounded rays jointly play the role of the mouth.

The full paper [5, Appendix G] describes how the dynamic programming recursion and the
correctness proof of Section 6 for the non-inverted problem is adapted for the inverted problem.
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5 6

8

9

12

p

q

r

s

v

x

10

11

7
W ↕

W ↕

W ↕

W ↕

Figure 7 A weakly simple polygon W (red/bold) that has the four required objects (yel-
low/hatched) on the outside. The penalties of two optional (grey) objects is added to the length
when the cost is computed. We grow the outer region triangle by triangle, considering also “triangles”
that extend to −∞ or +∞ (vertical planks), or both, like the left half-plane (number 1). The union
of the shaded blue regions is bounded by vertical rays from p downward and from q upward plus
a weakly simple walk between p and q. The extended walk W ↕ is a candidate solution considered
for the subproblem U(p, q, B, t), when t ≥ 13 and B consists of the three leftmost required objects.
(The fourth required object has its reference point (thick dot) outside the region.) Two more planks,
spanned by ps and qs, plus the right half-plane through s, would complete the outside region of W .

9 Applications, Extensions, and Open Problems

Splitting a surface. Our result may shed some light on the following open problem by
Bulavka, Colin de Verdière, and Fuladi [6, Conclusion]: given an orientable combinatorial
surface of genus g, and an integer g′, 1 ≤ g′ < g, is it FPT in g′ to compute a shortest
weakly simple closed curve that cuts off a surface of genus g′? The problem is FPT in g [7,
Theorem 6.1]. Our algorithm for Graph-Enclosure-with-Penalties shows that the
answer is yes when restricting to some (admittedly very special) instances, see [5, Appendix H],
and thus provides some hope for a positive answer in general, although this remains open.

Curved objects and line segments. We believe that our approach carries over to more
general objects. Curved objects that are sufficiently well behaved can be treated by considering
all bitangents as free-space edges. We can handle point objects [5, Appendix I]; line segments
without other vertices in their interior should also be doable. However, extending to weakly
simple polygon objects seems difficult. Even for a path object consisting of two line segments
joined at point p it is a challenge to prevent a solution from cutting through the path at p.

Recognizing weakly simple self-overlapping polygons. As mentioned, our dynamic program
optimizes over the class of weakly simple self-overlapping polygons, see [5, Appendix L].
Weakly simple polygons can be recognized in O(n log n) time [2], and self-overlapping polygons
in time O(n3) [16]. Can weakly simple self-overlapping polygons be recognized efficiently?

SoCG 2025
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