Corrigendum for
“Multicuts in planar and bounded-genus graphs with bounded number of terminals”
by Éric Colin de Verdière

In [CdV17, Theorem 1.1], an algorithm with running time
\[(g + t)^{O(g + t)} n^{O(\sqrt{g^2 + gt})}\]
is described to compute a minimum multicut of a weighted graph with \(n\) vertices and edges embedded on a surface of genus \(g\) and with \(t\) terminals. In this time complexity, the exponent of \(n\), namely \(O(\sqrt{g^2 + gt})\), may be unclear, due to the ambiguity of the \(O(\cdot)\) notation when it depends on two parameters. In particular, when \(g = 0\), it may seem to imply an algorithm with running time \(t^{O(t)} n^{O(1)}\), which we do not claim (actually, such a result would violate ETH [Mar12]). For clarity, the exponent should be replaced with \(O(\sqrt{g^2 + gt + t})\). A more precise statement would be: For some constant \(\alpha > 0\), the algorithm has running time
\[O\left( (g + t)^{\alpha(g + t)} n^{\alpha\sqrt{g^2 + gt + t + 1}} \right).\]

Thanks to Dániel Marx for noticing this!

References
