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FINDING SHORTEST NON-TRIVIAL CYCLES
IN DIRECTED GRAPHS ON SURFACES∗

Sergio Cabello,†Éric Colin de Verdière,‡ and Francis Lazarus§

Abstract. Let D be a weighted directed graph cellularly embedded in a surface of genus g,
orientable or not, possibly with boundary. We describe algorithms to compute shortest non-
contractible and shortest surface non-separating cycles in D, generalizing previous results
that dealt with undirected graphs.

Our first algorithm computes such cycles in O(n2 log n) time, where n is the total
number of vertices and edges of D, thus matching the complexity of the best general al-
gorithm in the undirected case. It revisits and extends Thomassen’s 3-path condition; the
technique applies to other families of cycles as well.

We also provide more efficient algorithms in special cases, such as graphs with
small genus or bounded treewidth, using a divide-and-conquer technique that simplifies
the graph while preserving the topological properties of its cycles. Finally, we give an effi-
cient output-sensitive algorithm, whose running time depends on the length of the shortest
non-contractible or non-separating cycle.

1 Introduction

Graphs embedded in the plane have been studied in depth. For several computational
problems, we know algorithms for planar graphs that are faster than a generic algorithm
for arbitrary graphs: shortest paths [30], minimum spanning trees [39], (sub)graph isomor-
phism [18,19], maximum flow, minimum cut [31, 43], etc. For some NP-hard problems, one
can obtain approximation schemes when restricting to planar graphs [1]. Most of, if not all,
these algorithms ultimately rely on topological properties of the plane and on the Jordan
curve theorem.

Graphs embedded on surfaces are a natural generalization of plane graphs that
have attracted much attention. From a theoretical perspective, they play a prominent
role in the graph minor theory developed by Robertson and Seymour (see e.g. Mohar and
Thomassen [40]). From an applied perspective, efficient algorithms are needed to process
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non-planar surfaces: texture mapping, topological denoising, remeshing, and visualization
(see e.g. the discussion by Erickson and Har-Peled [23]); in these scenarios, graphs are often
weighted (each edge has a non-negative length). In particular, the computation of shortest
cycles of a certain topological type has been largely considered, also because it serves as
a basic tool for developing algorithms on the class of graphs embeddable on a fixed sur-
face [16,33,34,36]. Among the basic topological types are the non-contractible cycles (which
cannot be continuously deformed to a point on the surface) and the non-separating cycles
(which do not split the surface into two pieces).

Most of these results, however, are restricted to undirected graphs. In this paper,
we study the problem of finding shortest non-contractible or shortest non-separating cycles
in weighted directed graphs embedded on surfaces. We will generically refer to such cycles
as shortest non-trivial cycles.

Shortest non-trivial cycles in undirected graphs on surfaces. Quite a few algorithms have
been described to compute shortest non-trivial cycles. In most cases, the graph is undirected
and weighted. Furthermore, the weights are always assumed to be non-negative, as in the
present paper. It is also assumed that the graph is cellularly embedded on the surface, i.e.,
that each face of the graph embedding is a disk. Here and in the sequel, n is the total
number of vertices and edges of the graph.

Thomassen [46] proves that shortest non-trivial cycles in unweighted, undirected
graphs can be found in near-cubic time (see also Mohar and Thomassen [40, Chapter 4]).
His approach works more generally for certain families of cycles that satisfy the so-called
3-path condition which we revisit in this paper.

Erickson and Har-Peled [23] give an improved algorithm that runs in O(n2 log n)
time, for weighted undirected graphs with n edges; this is the best current result when
the measure of complexity is the input size. Cabello and Mohar [9] propose considering
the problem parameterized by the genus. Kutz [37] proposes an algorithm for orientable
surfaces of genus g with running time O(gO(g)n log n), subsequently improved to O(g2n log n)
by Cabello et al. [6]. Italiano et al. [31] provide a gO(g)n log log n-time algorithm, finally
improved to 2O(g)n log log n by Fox [27], which is the best current result if the genus is
small. In another article [8] we consider the restricted scenario of unweighted, undirected
graphs, and show that a shortest non-trivial cycle can be found in O(gnk) time, where k is
the length of the output cycle.

Several authors also considered computing shortest cycles with different topological
properties on a surface, such as splitting cycles [11], which split the surface into non-trivial
components, and essential cycles [25], which cannot be deformed to lie in a boundary com-
ponent. The techniques of the present paper do not apply to these problems.

Directed graphs. This paper provides several algorithms for computing shortest non-trivial
cycles in weighted directed graphs on surfaces. This is the same as looking for shortest non-
trivial closed walks, since (as is easy to prove; see Lemma 4.1 below) shortest non-trivial
closed walks are (simple) cycles; that is, they do not repeat any vertex. However, shortest
non-trivial walks through a given vertex may have self-crossings, as on Figure 1, even if

http://jocg.org/


JoCG 7(1), 123–148, 2016 125

Journal of Computational Geometry jocg.org

s

Figure 1: The shortest non-trivial closed walk through s has self-crossings. We can add
arbitrarily many vertices and edges of large weight to make the embedding cellular.

non-separating non-contractible
This paper O(g1/2n3/2 log n) O(g1/2n3/2 log n)

Erickson and Nayyeri [24] 2O(g)n log n

Erickson [22] O(g2n log n) gO(g)n log n
Fox [27] O(g3n log n)

Table 1: Summary of various algorithms for computing shortest non-separating or non-
contractible cycles in directed graphs on surfaces without boundary.

shortest paths are unique.

Our main result is an O(g1/2n3/2 log n)-time algorithm to compute a shortest non-
contractible or non-separating cycle in a weighted directed graph on an arbitrary surface
(Section 6). Since the preliminary version of our work [7] was published, three papers have
given improved algorithms for graphs on surfaces of small genus; see Table 1 for a summary.
Erickson and Nayyeri [24] have provided a 2O(g)n log n-time algorithm for computing a
shortest non-separating cycle. This has been improved to O(g2n log n) by Erickson [22],
who also provides a gO(g)n log n-time algorithm for computing a shortest non-contractible
cycle on surfaces without boundary. More recently, Fox [27] gives a better algorithm for
the non-contractible case, with running time O((g3 + gb)n log n), where b is the number of
boundary components of the surface.

In particular, our algorithms are the fastest known ones if g = Ω(n1/5) (non-
contractible case) and g = Ω(n1/3) (non-separating case) for surfaces without boundary.
If g is smaller compared to n, then the recent works [22,24,27] remain competitive.

Other works on algorithms for directed graphs on surfaces. Very few results are available
concerning algorithms for directed graphs on general surfaces. Here are the only instances
of which we are aware. The data structure of Cabello et al. [6] represents distances from

http://jocg.org/


JoCG 7(1), 123–148, 2016 126

Journal of Computational Geometry jocg.org

the vertices of a face in an embedded directed graph. Chambers et al. give an algorithm
to compute maximum flows in directed surface-embedded graphs [12]. Erickson shows that
the best known algorithm to compute maximum s-t flows in planar directed graphs [4] does
not extend to directed graphs on the torus [21, Section 3].

Overview of our results. In Section 3, we first revisit the concept of the 3-path condition
given by Thomassen [46]. Specifically, we extend this notion to a family L of closed loops
based at a given vertex s in a directed graph. Note that the loops need not be simple
and that the graph is directed and needs not be embedded. It is convenient to think of
the elements of L as “trivial” loops. This concept captures and extends the families of
topologically trivial loops we want to study for embedded graphs. We provide a generic
algorithm to find a shortest loop based at s outside the family L. The algorithm basically
produces a small family of loops that should contain a shortest desired loop, and calls an
oracle for each loop to decide membership in L. This algorithm is extended in Section 4 to
the computation of a shortest closed walk (without fixing a basepoint).

We then move, in Section 5, to the particular case of topologically non-trivial loops on
surfaces. Here we use techniques from our other paper [8] to determine in amortized constant
time whether a given candidate loop based at s belongs to L. This leads to an algorithm
that finds the shortest non-trivial loop through s in O(n log n) time, and (repeating the
procedure for each vertex) a shortest non-trivial cycle in O(n2 log n) time, thus matching
the complexity of the best general algorithm for solving this problem in the undirected
case [23].

In Section 6, we study the case where g = o(n) or the treewidth is bounded. We de-
velop an algorithm based on a somehow topologically preserving divide-and-conquer. The key
point is to use small separators in the graph to divide the problem into balanced subprob-
lems, but each subproblem is kept in the original surface to avoid changing the topological
character of the closed walks. This is reminiscent of the numerous divide-and-conquer algo-
rithms for planar graphs using cycle separators; see for example [10,26,35,43]. However, in
these cases, the preservation of the topology is implicit. We believe that our new approach
could be useful for other problems as well. In our case, this gives a subquadratic algorithm
for bounded-genus graphs (see also the recent works [22, 24, 27]), and a near-linear-time
algorithm for bounded-treewidth graphs.

In Section 6.3, we also give an O(bn log n)-time algorithm for the case where the
surface is the plane with b boundaries.

Finally, we provide an efficient output-sensitive algorithm for computing shortest
non-trivial cycles on surfaces: The algorithm runs in O(gnk) time, where k is the length of
the output cycle. This matches the running time of the best algorithm in the undirected
case [8].

2 Preliminaries

We introduce the background material used in this paper.
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2.1 Graph Theory De�nitions and Notations

Graphs considered in this paper may have parallel edges and loop edges. We recall some
usual definitions related to walks in graphs; we want to emphasize that all walks considered
here are oriented. Specifically, let G be a (directed or undirected) graph. We denote the
vertex set of G by V (G) and the edge set of G by E(G). Given two vertices x and y of G,
we denote by xy the edge oriented from x to y in G. In presence of parallel edges or loop
edges, this notation is ambiguous, but it will always be clear from the context which edge xy
is meant.

A walk is either constant, i.e., reduced to a vertex, or is a sequence of edges e1, . . . , em
such that the target of ei is the source of ei+1, for i = 1, . . . ,m−1. The walk is closed when
it is constant or when the target vertex of em coincides with the source vertex of e1. A
cycle in G is an oriented closed walk without repeated vertices; a cycle has no distinguished
vertex. In contrast, a loop based at a vertex s of G is an oriented closed walk with a
distinguished occurrence of s. If every oriented edge xy of G has a non-negative length (or
weight) `(xy), the length of a walk α is the sum of the weights of the corresponding oriented
edges (counted with multiplicity). It is denoted by `(α). Given walks α and β, we denote
by α−1 the reversal of α, and by α · β the concatenation of α and β.

2.2 Topological Background

We review some basics of the topology of surfaces as needed for Section 5 and thereafter.
See Hatcher [29], Massey [38], or Stillwell [44] for a comprehensive treatment.

A surface (or 2-manifold) Σ possibly with boundary is a compact, connected, topo-
logical space where each point has a neighborhood homeomorphic either to the plane or to
the closed half-plane; the points without neighborhood homeomorphic to the plane comprise
the boundary of Σ. A surface is non-orientable if it contains a subset homeomorphic to the
Möbius band, and orientable otherwise. Here and in the sequel, surfaces are considered up
to homeomorphism; in particular, a disk is just a surface homeomorphic to the standard
unit disk in R2.

An orientable surface is homeomorphic to a sphere where g disjoint disks are removed,
a handle (a torus with one boundary component) is attached to each of the remaining g
boundary circles, and then b disjoint disks are removed, for unique integers g, b ≥ 0. A
non-orientable surface is homeomorphic to a sphere where g disjoint disks are removed, a
Möbius band is attached to each of the remaining g circles, and then b disjoint disks are
removed, for unique integers g ≥ 1 and b ≥ 0. In both cases, g is called the genus of
the surface. Σ denotes the surface without boundary obtained by attaching a disk to each
boundary component of Σ.

An embedding of a graph G (viewed as an undirected graph) in a surface Σ is a
drawing of G on Σ without crossings. More formally, the vertices of G are mapped to
distinct points of the interior of Σ; each edge is mapped to a path in the interior of Σ, such
that the endpoints of the path agree with the points assigned to the vertices of that edge.
Moreover, all the paths must be without intersection or self-intersection except, of course,
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at common endpoints. We sometimes identify a graph G with its embedding on Σ. The
faces of G are the connected components of the complement of the image of G.

We only consider cellular embeddings of a graph. By this, as in [8], we mean that
Σ minus the image of the graph is a union of disjoint disks. In particular, each face of a
cellular embedding on Σ is homeomorphic to an open disk with zero, one, or more disjoint
open disks removed; the boundaries of these open disks belong to the boundary of Σ. Note
that this notion of cellular embedding is slightly more general than the usual one, and we
exploit this difference in Section 6. Also note that every graph that is cellularly embedded
must be connected.

Let G be a graph cellularly embedded on Σ, with V vertices, E edges, and F faces;
then Euler’s formula states that V −E+F = 2−2g if Σ is orientable, and V −E+F = 2−g
if Σ is non-orientable. In particular, E = O(V +F + g). To simplify our complexity results,
we sometimes introduce n = V + E; by Euler’s formula, we have g = O(n) and F = O(n).

We assume that the embedding is represented in a suitable way, like for example the
gem representation, using the incidence graph of flags (vertex-edge-face incidences) discussed
by Eppstein [20], or rotation systems [40]. For orientable surfaces, one can also use the doubly
connected edge list (DCEL) that is customary in computational geometry [15]. In order to
deal with surfaces with boundary, we store the embedding of G on Σ, and mark within each
face of the embedding the number of boundary components of Σ it contains.

We use the standard topological notions of homotopy and homology (say with Z/2Z
coefficients), which will not be formally defined here. Intuitively, two paths or loops are
homotopic if one can be deformed continuously on the surface to the other one, keeping the
endpoints fixed during the deformation. A loop is contractible, or homotopically trivial, if it
is homotopic to the constant loop. If α and β are contractible loops with the same basepoint,
then so are α−1 and α · β. Similarly, the reverse and the concatenation (formally, the sum)
of null-homologous, or homologically trivial, closed walks is null-homologous. Recall that a
closed walk in G is homologically trivial if is it the boundary of a union of faces of G. Let
us only mention that homotopically trivial implies homologically trivial. Moreover, a closed
walk or loop without repeated vertices is null-homologous in Σ if and only if its image is
separating in Σ (or, equivalently, Σ) that is, its complement in Σ is not connected.

Every cellular embedding contains a non-contractible loop, except if Σ is the sphere
or the disk. Every cellular embedding has a non-separating closed walk, except if Σ is the
sphere.

2.3 Reduction to an Undirected Graph with Asymmetric Weights

Let D be a directed graph (not necessarily embedded), where each arc has a non-negative
weight (length). Our goal is to compute shortest loops or cycles in D satisfying some
given property. We first transform D into an undirected graph G with asymmetric weights.
Specifically, G is the undirected version of D; each oriented edge of G corresponds:

• either to an arc of D with some length `. In this case, the length of that oriented edge
is `;
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• or to the reversal of an arc of D. In this case, the length of that oriented edge is a
“very large” (symbolically infinite) number M .1

Without loss of generality, in all the problems that we consider, we can assume that
all the edges have strictly positive weights. Indeed, we can add an infinitesimal positive
weight to edges of zero weight2, noting that a shortest path for these perturbed weights is
a shortest path for the original weights.

If there is a loop or cycle satisfying the desired property in D, one such loop or cycle
has length strictly smaller than M . As a consequence, to compute shortest loops or cycles
in D, it suffices to compute them in G. If the length of the resulting loop or cycle is at
least M , then no such loop or cycle with that desired property exists in D; otherwise, that
loop or cycle is a shortest desired loop or cycle in D.

3 Computing Shortest Non-Trivial Loops

In this section and in Section 4, we consider the problem of computing a shortest loop
or cycle in an undirected graph with asymmetric weights in the complement of a given
family satisfying the 3-path condition. This property can be expressed without reference to
an embedding of the graph, so here and in the following section, our graph needs not be
embedded.

Our primary goal is to compute shortest non-trivial cycles. This will be done by
taking each vertex s of the input graph, computing a shortest non-trivial loop based at s,
and returning the shortest such loop. So, in this section, we focus on computing shortest
non-trivial loops.

3.1 The 3-Path Condition

Let G be an undirected graph. A family L of loops of G based at some vertex s satisfies the
3-path condition when the following two conditions are satisfied:

invariant under reversal: if α ∈ L, then α−1 ∈ L;

sum of zeros is zero: if α, β, γ are s-to-x walks in G (for some vertex x) such that α ·β−1
and β · γ−1 are in L, then α · γ−1 is also in L.

Figure 2, left, illustrates the condition “sums of zero is zero”. In conjunction with
the invariance under reversal, this condition can be restated as: if two of the three closed

1Alternatively and more formally, lengths could be now considered as vectors in R2
+, which are added

componentwise and compared lexicographically; every oriented edge of G corresponding to an arc of D of
length k would have length (0, k), and the reversal of such an edge would have length (1, 0), that is, “infinitely
larger” than the weight of the arcs of D.

2More formally, we can consider weights as ordered pairs in the semigroup product R+ × Z+; an edge
of weight w is given the weight pair (0, 1) if w = 0 and (w, 0) otherwise. As previously noted, lengths are
added componentwise and compared lexicographically.
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α[s, x]
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T [s, y] R[y, s]

α[y, s]

Figure 2: Left: Illustration of the 3-path condition. Right: Scenario in the proof of
Lemma 3.1.

walks constructed from α, β, γ are in L, no matter their orientations, so is the third closed
walk. In practice, we will use this version of the “sums of zero is zero” condition.

For the reader familiar with the work of Thomassen [46], we remark that although
the spirit of our definition is similar to that of Thomassen, we will exchange the role of the
family L and its complement. Our presentation is motivated by the following: the loops of L
behave like the “trivial elements in a certain group”, while the loops outside L behave like the
“non-trivial elements”. Our 3-path condition basically asks for the sum of two zero elements
to be zero. Our aim is to find a shortest loop outside L, that is, a shortest “non-trivial
element”. Here are some families of loops that satisfy the 3-path condition: the family of
contractible loops, the family of null-homologous loops, the family of loops with an even
number of edges, and the family of two-sided loops [40, Section 4.3]. Again, we will be
discussing the problem of finding a shortest loop in the complement of such families.

3.2 Properties Assuming Uniqueness of Shortest Paths

Now, let us assume that G is an undirected graph with asymmetric weights. In general,
the condition that any pair of vertices of G is connected by a unique shortest path does
not hold; just consider the case when all edges have unit length. However, Erickson and
Har-Peled [23] point out that this condition can be enforced with high probability via the
Isolation Lemma [41, Chapter 12]: if we add to the length of each oriented edge xy a value
rxy · ε, where ε is a formal infinitesimal and rxy is chosen uniformly at random from a large
enough set, then all shortest paths are unique with high probability.3 In fact, it is possible to
get rid of this probabilistic assumption using a modified definition of “length” that makes the
discussion more dense. In Section 3.3, we introduce this alternative definition and explain
in detail how to get rid of the assumption of unique shortest paths. To keep the exposition
simple, we assume in this section the uniqueness of shortest paths.

Let L be the family of loops based at s that are not in L. Our objective is to find a
shortest element in L.

3Alternatively and more formally, the lengths are now vectors in R3
+, added componentwise and compared

lexicographically; the first two components are as above, and the third one contains the number rxy.
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Let T be the shortest path tree in G from the source s. Hence, for any vertex x of G
the path in T from s to x is a shortest path. Similarly, let R be the reversed shortest path
tree in G to the sink s, so that for any vertex x of G the path in R from x to s is a shortest
path.

For a vertex x, we will use T [s, x] to denote the unique s-to-x path in T , and
T [x, s] for the reversal of that path. Similarly, we will use R[x, s] to denote the unique
x-to-s path in R, and R[s, x] for the reversal of that path. (So, the only relations among
`(T [s, x]), `(T [x, s]), `(R[s, x]), and `(R[x, s]) that hold in general are `(T [s, x]) ≤ `(R[s, x])
and `(R[x, s]) ≤ `(T [x, s]).)

For any (oriented) loop α based at s and passing through vertex x, let α[s, x] denote
the subwalk of α that goes from s to x, and α[x, s] be the complementary part of α. Formally,
as α may pass several times through a vertex, x should be an occurrence of a vertex along
α. We omit this precision in the sequel and the occurrence we are considering will always
be clear from the context.

For any oriented edge xy ∈ E(G) \ E(T ), let loopT,R(xy) denote the loop T [s, x] ·
xy ·R[y, s] 4. Let M be the family of loops of the form loopT,R(xy) that are in L:

M = {loopT,R(xy) | xy ∈ E(G) \ E(T )} ∩ L.

Lemma 3.1. If L satisfies the 3-path condition, then every shortest element of M is a
shortest element of L.

Proof. Assume that L is non-empty and let α be a shortest loop in L. Let x be the last
vertex in the loop α as we start walking from s that satisfies α[s, x] = T [s, x]. Let y be
the next vertex in α after x. See Figure 2, right. The loop loopT,R(xy) = α[s, y] · R[y, s] is
no longer than α. To prove the lemma, it is thus enough to show that loopT,R(xy) is in L,
hence in M.

By uniqueness of shortest paths, T [s, y] is strictly shorter than α[s, y], which implies
that T [s, y] · α[y, s] is strictly shorter than α, hence in L. Similarly, R[y, s] is no longer
than α[y, s], whence T [s, y] · R[y, s] is strictly shorter than α and thus in L. We can thus
apply the 3-path condition to the s-to-y walks R[y, s]−1, T [s, y], and α[y, s]−1 to deduce that
R[y, s]−1 · α[y, s] is in L.

If loopT,R(xy) was also in L, we would conclude, applying the 3-path condition to
α[s, y], R[y, s]−1, and α[y, s]−1, that α = α[s, y] ·α[y, s] is also in L, and thus we would reach
a contradiction.

For each oriented edge xy ∈ E(G) \E(T ), let loopT (xy) denote the loop T [s, x] ·xy ·
T [y, s]. For the topological problems that we will study below, it is convenient to introduce
the following family of loops based at s:

N = {loopT,R(xy) | xy ∈ E(G) \ E(T ), loopT (xy) ∈ L}. (1)

4Since we assume unique shortest paths, the loop loopT,R(xy) depends only on the source s. However,
we keep this notation that depends on the trees T and R for compatibility with the general case discussed
in Section 3.3.

http://jocg.org/


JoCG 7(1), 123–148, 2016 132

Journal of Computational Geometry jocg.org

s

x

T [s, x]

y

T [s, y]

R[y, s]

s

x′

T [s, x′]

y′

T [s, y′]

R[y′, s]

Figure 3: Scenarios in the proof of Proposition 3.2.

Note that we decide to include a loop in N by checking membership in L of a different loop.
The reason for this becomes apparent in the proof of the following lemma. A motivation
to consider N is that, for certain topological properties to be considered below, we can
manipulate N faster than M (see Section 5).

Proposition 3.2. If L satisfies the 3-path condition, then every shortest element of N is a
shortest element of L.

Proof. Assume that L is non-empty. By Lemma 3.1 the family L has a shortest element
of the form α = loopT,R(xy) for some edge xy ∈ E(G) \ E(T ). We first prove that α
belongs to N, or equivalently, that loopT (xy) ∈ L. See Figure 3, left. Since xy /∈ E(T ) and
shortest paths are unique, T [s, y] is strictly shorter than α[s, y] = T [s, x] · xy. It follows
that T [s, y] · R[y, s] is strictly shorter than α and thus it belongs to L. If loopT (xy) was
also in L, then we could apply the 3-path condition to the s-to-y walks T [s, x] · xy, T [s, y],
and R[y, s]−1, and we would conclude that α is also in L, which contradicts our choice of α.
Thus loopT (xy) ∈ L and the loop α is in N.

Let β be any shortest element in N; we can write β as loopT,R(x′y′) for some
edge x′y′ ∈ E(G) \ E(T ) such that loopT (x′y′) ∈ L. There remains to prove that β be-
longs to L. See Figure 3, right. By the preceding paragraph β is no longer than α. Since
T [s, y′] ·R[y′, s] is strictly shorter than β, hence than α, it must be in L. If β was also in L,
we could apply the 3-path condition to the s-to-y′ walks T [s, x′] ·x′y′, R[y′, s]−1, and T [s, y′]
to deduce that loopT (x′y′) is in L, and reach a contradiction. Thus β is in L, and since it
is no longer than α, it is a shortest element of L.

Proposition 3.2 shows that finding a shortest element in M or in N is enough to find
a shortest element in L. However, it should be pointed out that the role of N is surprising.
In particular, N can contain loops from L. We only know that the shortest ones are in L.
In general, it does not hold that N ⊆ M or M ⊆ N. They just agree in having the same
shortest elements.
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3.3 Without Uniqueness of Shortest Paths

For simplicity of exposition, the proposition of the previous section was proved assuming
that there is a unique shortest path between any pair of vertices. In this section, we prove
that similar properties hold in general. While, in the present context, it is reasonable to
assume uniqueness of shortest paths, the techniques that we describe now will be crucial
for the unweighted case (Section 7). In our applications, we can remove the assumption on
unique shortest paths without increasing the asymptotic running time. It should be noted
that in some cases, like for example in [5,6], it is not known how to remove the assumption
on unique shortest paths without increasing the running time.

We first introduce a composite definition of length, denoted by λ-length. Let s be
the vertex for which we want to compute a shortest non-trivial loop. Fix a shortest path
tree T in G from the source s and also a reversed shortest path tree R in G to the sink s.
For any loop α through s we define λT (α) to be the number of edges of the longest segment
of α starting from s and contained in T . Finally, let us define the λ-length of α to be the
couple (`(α),−λT (α)). We compare λ-lengths using the lexicographic order: for two loops
α and β, we write α � β if the λ-length of α is lexicographically smaller than that of β.
This means that to obtain a λ-shortest loop through s we want first to minimize the length
of the loop, then to maximize the length of the segment starting from s and contained in T .
The following lemma extends Lemma 3.1 without assumptions.

Lemma 3.3. If L satisfies the 3-path condition, then every λ-shortest element of M is a
λ-shortest element of L.

Proof. Assume that L is non-empty, and let α be a λ-shortest loop in L. Let x be the last
vertex in α as we start walking from s that satisfies α[s, x] = T [s, x]. Let y be the next
vertex in α after x. Note that loopT,R(xy) = α[s, y]·R[y, s]. By the definition of λ-length, we
have loopT,R(xy) � α. Because M ⊆ L, the lemma will follow if we show that loopT,R(xy)

is in L since by definition it will also be in M. We next note the following.

• The loop β = T [s, y] · R[y, s] is in L. Indeed, either `(β) < `(α) or `(β) = `(α) and
λT (α) < λT (β). In both cases β ≺ α, and β cannot be in L.

• The loop T [s, y] · α[y, s] is in L. The same argument as above applies.

By the 3-path condition we conclude, exactly as in the proof of Lemma 3.1, that R[y, s]−1 ·
α[y, s] is in L. If loopT,R(xy) was in L we would also conclude, applying the 3-path condition
to α[s, y], R[y, s]−1 and α[y, s]−1, that α = α[s, y]·α[y, s] is in L, reaching a contradiction.

Similarly, we replace Proposition 3.2 with the following version:

Proposition 3.4. If L satisfies the 3-path condition, then every λ-shortest element of N is
a λ-shortest element of L.

Proof. Assume L is non-empty; by Lemma 3.3, L has a λ-shortest element of the form
α = loopT,R(xy) for some edge xy ∈ E(G) \E(T ). The loop T [s, y] ·R[y, s] is in L: indeed,
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as in the proof of Lemma 3.3, we have T [s, y] · R[y, s] ≺ α while α is λ-minimal in L.
If loopT (xy) was also in L, then we could apply the 3-path condition to the s-to-y walks
T [s, x] ·xy, T [s, y], and R[y, s]−1, and conclude that α is also in L, a contradiction. We thus
have loopT (xy) ∈ L; hence, α ∈ N.

Let β be a λ-shortest element in N; we can write β as loopT,R(x′y′) for some
edge x′y′ ∈ E(G) \E(T ) such that loopT (x′y′) ∈ L. There remains to prove that β belongs
to L. Since α ∈ N, we have β � α. By the same reasoning as above T [s, y′] · R[y′, s] ≺ β.
Hence, T [s, y′] ·R[y′, s] is strictly λ-shorter than α and must be in L. If β was also in L, we
could apply the 3-path condition to the s-to-y′ walks T [s, x′] ·x′y′, R[y′, s]−1, and T [s, y′] to
deduce that loopT (x′y′) is in L, again a contradiction.

3.4 Algorithm

Let G be an undirected graph with asymmetric weights, and let s be one of its vertices. Let
L be a family of loops in G that satisfies the 3-path condition. We now describe a generic
algorithm to compute a shortest loop based at s that is not in L. In the following algorithm,
the λ-length should be used if it is not assumed that shortest paths are unique.

1. Construct a shortest path tree T and a reversed shortest path tree R for vertex s.

2. Determine the set A of edges xy ∈ E(G) \ E(T ) such that loopT (xy) 6∈ L.

3. If A is empty, report that L is empty. Otherwise, return a shortest loop of the form
loopT,R(xy), over all xy ∈ A.

Theorem 3.5. The aforementioned algorithm computes a shortest loop based at s not in L,
or correctly report that no such loop exists.

Proof. If we assume uniqueness of shortest paths, then correctness is clear by Proposition 3.2.
If we do not make this assumption, then the result follows from Proposition 3.4 and from
the observation that a shortest loop in L with respect to the λ-length is also a shortest loop
in L with respect to the usual length.

We remark that, in the second step of our algorithm, we could replace loopT (xy) with
loopT,R(xy) (this is valid by Lemma 3.1 or 3.3). However, in our applications, determining
membership in L happens to be much easier for loopT (xy) than for loopT,R(xy).

4 Computing Shortest Non-Trivial Cycles

Let G be an undirected graph. A family of closed walks W in G satisfies the 3-path condition
when the following two conditions are satisfied (recall that, by definition, closed walks have
no distinguished basepoint, in contrast to loops):

invariant under reversal: if α ∈W, then α−1 ∈W;
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sum of zeros is zero: if α, β, γ are x-to-y walks in G (for some arbitrary vertices x and y)
such that α · β−1 and β · γ−1 are in W, then α · γ−1 is also in W.

In particular, if G is embedded on a surface, the families of contractible, null-homologous,
even, and two-sided closed walks satisfy this condition [40, Section 4.3]. In the sequel we
assume that at least one closed walk is not in W.

Lemma 4.1. Every shortest closed walk not in W is a cycle.

Proof. Let α be a shortest element not in W and assume, for the sake of contradiction,
that α is not a cycle. Let x be a vertex that is visited twice by the walk α. Let β1 be
a closed subwalk of α between the first and the second appearance of x in α. Let β2 be
the closed walk between the second and the first appearance of x in α. By construction it
holds that α = β1 · β2. Since β1 and β2 are strictly shorter than α, they must belong to W.
However, by the 3-path condition applied to the paths β1, the constant walk consisting of
the single vertex x, and β−12 , it follows that the path β1 · (β−12 )−1 = α is also in W. This is
a contradiction with the choice of α.

Now, let us assume that G is an undirected graph with asymmetric weights, and let
W be a family of closed walks in G that satisfies the 3-path condition. For every vertex s of
G we let Ws be the possibly empty subfamily of loops in W with basepoint s. Because Ws

satisfies the 3-path condition for loops, we can run the generic algorithm of Section 3.4 on
each Ws to return the overall shortest loop, regardless of the basepoint. We conclude that:

Theorem 4.2. The above procedure returns a shortest closed walk not in W, or correctly
report that no such walk exists.

Note that the returned closed walk is necessarily a cycle by the previous lemma.

5 Computing Shortest Non-Trivial Loops and Cycles on Surfaces

For the rest of the paper, let Σ be a compact surface, orientable or not, with genus g and b
boundaries. Let G be a graph cellularly embedded on Σ. In this section, we present improved
algorithms to compute a shortest non-contractible or non-separating loop or closed walk inG.
Let L denote either the family of contractible loops or the family of non-separating loops
based at some vertex s of G; this family satisfies the 3-path condition.

5.1 Computing Shortest Non-Trivial Loops on Surfaces

Theorem 5.1. Let G be an undirected graph with asymmetric weights, V vertices, and
E edges, cellularly embedded on Σ. Let s be one of its vertices. In O(E + V log V ) time,
we can find a shortest non-contractible, respectively non-separating, loop based at s. The
running time improves to O(E) in each of the following cases:

• if the genus is bounded;
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• if G has bounded treewidth;

• if all the weights are one (or symbolically infinite).

Proof. We apply Theorem 3.5.

Computing the shortest path trees T and R takes O(E + V log V ) time, using Di-
jkstra’s algorithm [17] sped up with Fibonacci heaps [28]. However, in some cases T and
R can be computed faster. First note that V = O(E) since G is connected. Shortest path
trees can be computed in O(E) time for proper minor-closed families of graphs [45], and
the graphs with bounded genus or bounded treewidth are such families. (For graphs with
bounded treewidth there are easier linear-time algorithms [13], modulo obtaining a tree-
decomposition.) If all the weights are one or symbolically infinite, we can use breadth-first
search, also obtaining a shortest path tree in O(E) time. In the same amount of time we
can also compute all the lengths `(T [s, x]) and `(R[x, s]) for any vertex x from and to the
base vertex s.

Then we need to determine the set A of edges xy ∈ E(G)\E(T ) such that loopT (xy)
is non-contractible (resp. non-separating); this is possible in O(E) time using an algorithm
from the authors [8, Lemma 4]. Moreover, for any such xy, the λ-length of loopT,R(xy) is
(`(T [s, x])+`(xy)+`(R[x, s]),−`(T [s, x])) and can thus be computed in constant time. The
result follows.

5.2 Computing Shortest Non-Trivial Cycles on Surfaces

Theorem 5.2. Let G be an undirected graph with asymmetric weights, V vertices, and E
edges, that is cellularly embedded on Σ. In O(E+V g+V 2 log V ) time, we can find a shortest
non-contractible (resp. non-separating) closed walk; this is also a shortest non-contractible
(resp. non-separating) cycle. The log V factor can be removed from the running time in each
of the following cases:

• if the genus is bounded;

• if G has bounded treewidth;

• if all the weights are one (or symbolically infinite).

Proof. The algorithm consists essentially in applying V times Theorem 5.1, choosing each
vertex in turn to be the basepoint. However, this gives a running-time of O(V E+V 2 log V ).
To obtain the complexity in the theorem, we use Proposition 5.3 below. This proposition
says that, after O(E) pre- and post-processing, we may assume E = O(V + g). This leads
to the running time O(E + V (V + g) + V 2 log V ), as claimed. (Again, the log V factor
disappears if one of the specified conditions is met, by Theorem 5.1.)

The output of the algorithm is a cycle by Lemma 4.1.

Proposition 5.3. Assume we want to compute a shortest non-contractible or non-separating
cycle in G. With O(E) time pre-processing and post-processing, this reduces to computing
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the shortest such cycle on another graph G′ with V vertices and E′ = Θ(V + g) edges,
cellularly embedded on a surface Σ′ with the same genus and orientability as Σ and no more
boundary components than Σ.

Proof. We focus on the non-separating case first. In this case, we may assume b = 0, since
attaching a disk to each boundary component does not change the separability character of
a cycle. We will choose Σ′ = Σ.

Whenever a face has degree one, we may remove the incident loop edge, which is
contractible. Whenever a face has degree two, we may merge the two homotopic edges e1
and e2, with endpoints x and y, into a single edge e with the same endpoints. The weight
of e, oriented from x to y, is the minimum of the weights of e1 and e2 from x to y, and
similarly for the weight from y to x.

This way, we can remove in linear time all the faces with degree one or two to obtain
a graph G′ cellularly embedded on Σ. In each homotopy class the shortest cycles in G and
G′ have the same length. So, a shortest non-separating cycle in G′ corresponds to a shortest
non-separating cycle in G; recovering the corresponding cycle in G takes O(E) time.

Let E′ and F ′ be the number of edges and faces of G′. Since G and G′ have the same
(number of) vertices, we get E′ = V +F ′ + Θ(g) from Euler’s formula. By double counting
of the edge-face incidences we also get F ′ ≤ 2E′/3, whence E′ = Θ(V + g).

For the non-contractible case, the same simplification algorithm works, except that
we cannot eliminate faces of degree two that are punctured, so this only gives us E′ =
O(V +g+b). We next show how to modify the algorithm in order to still get E′ = Θ(V +g).
Recall that the embedding of G is given by an embedding in Σ and by further specifying
a number of perforations in each face of this embedding. As far as contractibility of closed
walks is concerned, this exact number is unimportant and we only need to know if a face
is perforated or not. When Σ is a sphere, we may assume that at least two faces of G are
perforated since otherwise every cycle in G would be contractible.

The strategy is as in the non-separating case, except that we may remove some
non-contractible cycles during the simplification from G to G′. Our algorithm maintains
(1) an embedded graph G′, such that every non-contractible cycle in G′ corresponds to a
non-contractible cycle in G of the same length, and (2) some non-contractible cycle α in G.
The invariant is that the shortest non-contractible cycle in G either is α or corresponds to
the shortest non-contractible cycle in G′. Initially, G′ = G and α is undefined.

If a face (of the embedded graph G on Σ) has degree one or two, and is not perforated
in Σ, we proceed exactly as in the non-separating case to simplify the graph. We now assume
that every face of degree one or two is perforated.

If a (perforated) face has degree one, its incident loop edge, say β, is non-contractible;
we remove it and merge the two incident faces into a single perforated face. Also, we let α
be the shortest cycle among β, β−1 and the current cycle α.

Assume now that a face of degree two is surrounded by two other faces of degree two.
We thus have four parallel edges e1, e2, e3, and e4 such that eie−1i+1 (i = 1, 2, 3) bounds a
perforated face of degree two. The shortest non-contractible cycle in G might be contained
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in e2 ∪ e3, so we let α be the shortest cycle among e2 · e−13 , e−12 · e3, and the current α.
Otherwise, since it has no repeated vertices, it uses at most one of e2 and e3, and at most
once, so we may remove the face between e2 and e3, merging e2 and e3 into a single edge e
with appropriate weights. This is valid since any cycle without repeated vertices using e2
or e3 must be non-contractible (for otherwise it would bound a disk, contradicting the fact
that e2 and e3 are incident to perforated faces on both of their sides), so the shortest one
uses whichever is cheaper.

The pre-processing and post-processing steps can be implemented to run in O(E)
time. The new graph G′ has V vertices; let E′ and F ′ be its number of edges and faces. It
remains to prove that E′ = Θ(V + g). Euler’s formula implies that E′ = Ω(V + g), and we
now prove E′ = O(V + g). Let G′′ be the graph G′ where we iteratively remove every edge
incident to a face of degree two; it has V vertices; let E′′ be its number of edges. Then G′′

contains no face of degree one or two, so we have E′′ = O(V + g) as before. Furthermore,
transformingG′ intoG′′ removes at most two thirds of the edges, by the preceding paragraph.
So E′ = O(E′′), which concludes the proof.

6 Improved Algorithm for Sublinear Genus or Constant Treewidth

Let Σ be a surface (orientable or not) with genus g and b boundaries. In this section, we
improve the result of the previous section in the case where g = o(V ) or the treewidth is
bounded.

6.1 Sublinear Genus

Theorem 6.1. Let G be an undirected graph with asymmetric weights, V vertices, and E
edges, that is cellularly embedded on Σ. We can compute a shortest non-contractible or non-
separating cycle in G in O(E + V g log g + g1/2V 3/2 log V ) time, or O(E + V 3/2) time if
g = O(1).

The proof uses topology-preserving divide-and-conquer : we compute a separator of
the embedded graph, and recurse on two instances in which different parts of the graph are
simplified while the topology of the surface is preserved. Figure 4 illustrates this strategy.

Lemma 6.2. Let H be a non-empty subgraph of G. In O(E) time, we can contract some
edges of E(G) \ E(H) such that the resulting graph is still cellularly embedded in Σ but
contains only vertices of H.

Proof. The strategy is to compute an initially empty set F of edges of E(G) \ E(H) such
that contracting all of them does not change the topology of the surface and removes all
vertices of G \H.

For every component K of the graph induced by the vertices in G \H, we compute
a spanning tree T of K. This tree must be incident to at least one edge with a vertex in H
because G is connected. Let e be one such edge; we add the edges of T and the edge e to
the set F .
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Figure 4: Topologically preserving divide and conquer. The light part of the surface rep-
resents the graph. The darker part represents faces without vertices. The bold curves
represent the separator of the graph.

The union of the edges in F is a forest (any cycle using only these edges would
enter and leave at least one tree T , which is connected to the remaining part of F by at
most one edge). So we can perform the contraction of the edges of F topologically, on the
embedding G. After this operation, the new graph contains only vertices of H.

It remains to check that the contraction of F can be performed in O(E) time while
preserving the embedding information. This essentially amounts to maintaining the cyclic
ordering of the edges around each vertex of H. Note that an edge of G incident to a vertex
of H either is not in F or is an edge e connecting a tree T as above. The edges in E(G) \F
incident to T form a fan that replaces e in the contracted graph. This set of edges as well
as its ordering in the fan is easily deduced from an Euler tour of T , starting from e. This
takes time proportional to the size of T and the fan, and thus takes O(E) time in total.

Proof of Theorem 6.1. We describe the algorithm for non-separating cycles; the same argu-
ment applies to non-contractible cycles. By Proposition 5.3, using O(E) pre-processing and
post-processing time, we may assume that E = Θ(V +g). If V = O(g), we just compute the
optimal solution using Theorem 5.2. Thus, it only remains to consider the case V = Ω(g).

In O(V ) time, we find a graph separator X for G of size O(
√
gV ) [20, Theorem 5.1];

that is, X is a set of O(
√
gV ) vertices such that G−X is the disjoint union of two subgraphs

H1 and H2, each with at most 2V/3 vertices. If V = Θ(g), we simply set X = V (G). Now,
by Theorem 5.1, we can compute the shortest non-separating loop α0 passing through any
of the vertices in X, in O(

√
gV (V +g+V log V )) = O(g1/2V 3/2 log V ) time.5 There remains

to compute the shortest non-separating loop avoiding X. If X = V (G), there is nothing to
do. Otherwise, in O(V ) time, we simplify the embedding G to a cellular embedding G1 that
contains H1 and has the same vertex set as H1 (Lemma 6.2), and put infinite weights on the
edges not in H1. We can recursively compute a shortest non-separating cycle α1 in G1 (the
pre-processing and post-processing step of Proposition 5.3 takes O(V ) time). Similarly, we

5An additional property of the separator X is that the graph G − X is the union of connected planar
graphs. However, the embedding of such connected components in Σ is not contained in a disk, but in a
sphere with (possibly multiple) punctures, and thus may contain non-trivial cycles.
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simplify G to a cellular embedding G2 that contains H2 and has the same vertex set as H2,
and compute a shortest non-separating cycle α2 in G2. The shortest of α0, α1, and α2 is a
shortest non-separating cycle in G.

Let T (V ) be the time spent in the recursive calls for an input with V vertices,
without taking into account the time needed at the bottom of the recursion, that is, when
the subproblem has V = O(g). We thus have T (V ) = 0 when V = O(g). When V = Ω(g)
we have

T (V ) ≤ O(g1/2V 3/2 log V ) + max{T (V1) + T (V2)},

where the maximum is taken over values V1, V2 that satisfy

V1 + V2 ≤ V and 0 ≤ V1, V2 ≤ 2V/3.

This solves to T (V ) = O(g1/2V 3/2 log V ).

Note that at the bottom of the recursion we get subproblems with pairwise disjoint
subsets of vertices. Therefore, at the bottom of the recursion, we have Θ(V/g) subproblems,
each of them with O(g) vertices. Including the O(E) pre- and post-processing time, and
the time to solve the subproblems at the bottom of the recursion, we obtain a total running
time of O(E + V g log g+ g1/2V 3/2 log V ). The log factors disappear if g = O(1), because of
Theorems 5.1 and 5.2.

6.2 Constant Treewidth

Similarly, we get an improvement when the treewidth is constant:

Theorem 6.3. Let G be an undirected graph with asymmetric weights and V vertices that
is cellularly embedded on Σ. Assume that G has bounded treewidth. We can compute the
shortest non-contractible or non-separating cycle in G in O(E + V g + V log V ) time.

Proof. The proof is basically the same as that of Theorem 6.1. The main difference is that
some operations can be handled faster on graphs of constant treewidth. We can compute
in linear time a separator of constant size either using an approximate algorithm, like [42],
or computing a tree-decomposition of minimum width [2] and extracting the separator from
it. See [3] for a careful discussion connecting separators and treewidth. Recall also that
shortest non-contractible or non-separating loops (Theorem 5.1) can be computed in linear
time.

We note that the operations we performed in the proof of Theorem 6.1 are edge
contractions and removals, which cannot increase the treewidth, so all graphs considered in
the recursion have bounded treewidth. The recurrence for V = Ω(g) is now

T (V ) ≤ O(V ) + max{T (V1) + T (V2)},

where the maximum is taken over values V1, V2 that satisfy

V1 + V2 ≤ V and 0 ≤ V1, V2 ≤ 2V/3.
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We stop the recursion when the number V ′ of vertices is Θ(g) (hence the number of edges is
Θ(g)), in which case we compute the shortest non-separating cycle using Theorem 5.2. This
costs O(V ′2) = O(V ′g). Because the leaves of the recursion tree correspond to disjoint vertex
sets, the total cost for those leaves is O(V g). The above recurrence solves to O(V log V ) for
the rest of the recursion tree. Adding the O(E)-term for the pre- and post-processing yields
the result.

6.3 Improved Algorithm for Genus Zero

In the case of a sphere with boundaries (orientable, g = 0), if b is fixed, we can get an
almost linear dependence on the complexity of the input graph. In this case, since every
cycle is separating, only the non-contractible case is relevant. Essentially, we exploit the
fact that a minimum (s, t)-cut in the dual graph of a planar graph G gives a shortest cycle
in G separating s and t, which is standard at least in the undirected case, and was used in
the directed case e.g. by Janiga and Koubek [32]. The following theorem and its proof can
be considered as folklore, but we include the result for the sake of completeness.

Theorem 6.4. Assume Σ is a sphere with b boundaries. Let G be an undirected graph with
asymmetric weights and E edges that is cellularly embedded on Σ. We can compute the
shortest non-contractible cycle in G in O(bE logE) time.

Proof. Let B1, . . . , Bb be the boundary components of Σ. A cycle on Σ is non-contractible if
and only if it separates B1 from another boundary component of Σ. Let i ∈ {2, . . . , b}. We
now prove that computing the shortest cycle that has B1 on its left and Bi on its right is
possible in O(E logE) time, which concludes (because the same reasoning allows to compute
the shortest cycle that has B1 on its right and Bi on its left).

We view G as an undirected plane graph. Let G∗ be its dual graph with respect to
the sphere without boundary obtained after attaching a disk to every boundary component;
for each k, let B∗k be the vertex of G∗ corresponding to Bk. If e is an oriented edge of G,
then e∗ is the dual edge of G∗ oriented so that e∗ crosses e from left to right. Let X be a
set of oriented edges of G. Then X contains the oriented edges of some cycle with B1 on its
left and Bi on its right if and only if every path from B∗1 to B∗i in G∗ uses an oriented edge
in X∗ [14, Lemma 7.2].

In O(E logE), we compute a minimum cut on G∗ from B∗1 to B∗i , where the capacity
of a dual oriented edge is the length of its primal oriented edge; this can be done, for
example, by computing a maximum flow [4, 21] and using the max-flow min-cut theorem.
If all lengths are non-zero (which can be assumed by putting infinitesimally small lengths
if necessary), this gives an inclusionwise minimum cut of smallest capacity, hence, by the
preceding paragraph, a shortest cycle having B1 on its left and Bi on its right.

7 The Unweighted Case: an Output-Sensitive Algorithm

In this section, we consider the case where our input directed graph is unweighted, and we
describe an output-sensitive algorithm for computing shortest non-trivial cycles. The case
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of unweighted, undirected graphs was covered in our paper [8]. Here we combine techniques
from that paper [8] with our previous characterizations for directed graphs. Recall that the
complexity, n, of an embedded graph G denotes the total number of vertices and edges of G.

Theorem 7.1. Let G be an unweighted directed graph of complexity n cellularly embedded
on a surface Σ. Given an integer k, in O((g+b)nk) time (resp. O(gnk) time) we can decide
whether there exists a non-contractible (resp. non-separating) cycle of length at most k, and,
if this is the case, we can compute a shortest such cycle in G.

The main result is an immediate corollary of the previous theorem:

Corollary 7.2. Let G be an unweighted directed graph of complexity n cellularly embedded
on a surface Σ. Let k0 be the length of a shortest non-contractible (resp. non-separating)
cycle on G. We can compute a shortest non-contractible (resp. non-separating) cycle on G
in O((g + b)nk0) time (resp. O(gnk0) time).

Proof. Apply Theorem 7.1 with k = 20, 21, 22, . . . until a non-trivial cycle is found, namely,
when k ≥ k0.

We can view G as an undirected graph with asymmetric coefficients: for each edge,
one direction has length 1 and the other has length∞. We focus on the non-separating case
(thus b = 0), the non-contractible case being entirely analogous (with g replaced by g + b).
Let G1 be the same graph as G, except that all weights in all directions equal 1. Note that
the length of a walk in G is at least its length in G1.

Lemma 7.3. In O(gn) time, we can compute a set K of vertices of G of such that:

• every non-separating cycle has to intersect K;

• K can be split in O(gk) batches, such that within each batch, the distance in G1 between
any two vertices is at least 2k + 2.

Proof. The proof is a variation on a technique introduced in our previous paper [8, Theo-
rem 10]. Here, distances are measured in G1, not in G. Let s be an arbitrary vertex of G1.
We first compute a set K of vertices of G1 that intersects every non-separating closed walk
in G1 and is the union of O(g) shortest paths from s. We can take for K the vertices in
the union of 2g loops {loops,E(ei)}1≤i≤2g, where E is a breadth-first search tree rooted at
s and the edges ei are chosen such that the union of the loops cuts the surface Σ into a
disk. By a result in our previous paper [8, Lemma 8], such a K can be computed in O(n)
time. For each i, 0 ≤ i ≤ n, let Si be the set of vertices of K at distance exactly i from s
in G1. Each Si has cardinality O(g). For each j, 0 ≤ j ≤ 2k + 1, we put the elements of
Sj , S(2k+2)+j , S2(2k+2)+j , . . . into O(g) batches, each containing at most one element from
each of these Si. In total, we have a partition of K into O(gk) batches such that any two
vertices in the same batch are at distance at least 2k+ 2 from each other in G1 (because an
element in Si and an element in Sj are at distance at least |i− j| from each other).
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Henceforth, lengths are measured in G unless noted otherwise. Consider a given
batch B. Note that the length of any path between any two vertices in B is at least 2k+ 2.
Build shortest path trees in G, starting from every vertex of B simultaneously, but stopping
the growth of the trees when the distance from the sources strictly exceeds k; since the
weights of G are either one or infinity, this is easy to do in O(n) time. These shortest path
trees are disjoint by definition of the batches. Extend the union of these shortest path trees
arbitrarily to a spanning tree T of G. Similarly, build a tree of reversed shortest paths
in G, starting from every vertex of B simultaneously, stopping the growth of the trees when
the distance to the sources strictly exceeds k. These trees are disjoint by definition of the
batches. Extend this forest to a spanning tree R of G.

We introduce notation for some loops that are slight variations on those introduced
in Section 3; we just indicate the base point of the loops considered as an additional index.
Let s ∈ B. For any oriented edge xy ∈ E(G) \ E(T ), let loops,T,R(xy) denote the loop
T [s, x] · xy ·R[y, s]. Similarly, let loops,T (xy) denote the loop T [s, x] · xy · T [y, s]. Let Ls be
the set of separating loops with basepoint s. Let Ls be the set of non-separating loops with
basepoint s. Finally, let Ns be the set {loops,T,R(xy) | loops,T (xy) ∈ Ls}.

We define the λ-length as in Section 3.3: intuitively, if two loops based at the same
vertex s have the same length in G, we break some ties by declaring that the shorter is
the one with the longest prefix in T (in terms of number of edges). We have the following
property:

Proposition 7.4. If a λ-shortest element in Ns has length at most k, then it is a shortest
element in Ls. Otherwise, every element in Ls has length at least k + 1.

Proof. We first claim: If a λ-shortest loop in Ls has length at most k, then every λ-shortest
element of Ns is a shortest element of Ls. To prove the claim we consider the restriction
of T to the vertices whose distance from s in G is at most k. By definition of T , this
restriction can be extended to a shortest path spanning tree T ′ in G. We define R′ similarly
by extending the restriction of R to the vertices whose distance to s is at most k. We denote
by N′s the corresponding set of loops (see Equation (1)):

N′s = {loops,T ′,R′(xy) | xy ∈ E(G) \ E(T ′), loops,T ′(xy) ∈ Ls}.

We also refer to the λ′-length (`(α),−λT ′(α)) of a loop α based at s exactly as in Section 3.3,
using a prime to emphasize the dependency on T ′ and R′. By Proposition 3.4, every λ′-
shortest loop of N′s is a λ′-shortest element of Ls.

For loops with length at most k, the λ- and λ′-lengths coincide. We assume that a
λ-shortest loop in Ls has length at most k; so the shortest elements in Ls, with respect to
the λ- or the λ′-length, are the same. It now follows from the statement ending the previous
paragraph that the λ′-shortest loops of N′s have length at most k; therefore, the shortest
loops in N′s, with respect to the λ- or the λ′-length, are the same. Now the statement ending
the previous paragraph proves the claim.

By contraposition, this claim implies that, if every λ-shortest element in Ns has
length at least k + 1, then every element in Ls has length at least k + 1. This is the second
part of the proposition.
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Now, assume that a λ-shortest element α in Ns has length at most k. There remains
to prove that it is a shortest element in Ls. By the claim, it suffices to prove that some
loop in Ls has length at most k. This is trivial if α ∈ Ls, so let us assume that α ∈
Ls. Since α ∈ Ns, then α = T [s, x] · xy · R[y, s] for some edge xy ∈ E(G) \ E(T ). We
have T [s, x] · xy · T [y, s] ∈ Ls because α ∈ Ns. Thus, the 3-path condition implies that
T [s, y] · R[y, s] ∈ Ls, and this loop is no longer than α (since the distance from s to y is at
most k), which proves the result.

We can now conclude:

Proof of Theorem 7.1. Let B be one of the O(gk) batches obtained in Lemma 7.3. We will,
in O(n) time, determine a shortest non-separating loop based at any vertex of B, or correctly
report that every such loop has length at least k + 1. Since there are O(gk) batches, this
concludes the proof of the theorem.

We first build the trees T and R corresponding to B, as described above. Moreover,
when building T , we label every vertex v of G at distance at most k from some vertex s
in B with that vertex s and with the λ-length from s to v in T . By definition of the batches,
every vertex receives at most one label. Similarly, we label the vertices of G at distance at
most k to some vertex s in B with that vertex s and the value of that distance.

For every edge xy ∈ E(G)\E(T ), whether loops,T (xy) is separating does not depend
on s. In O(n) time, we can determine the set UT of edges xy such that loops,T (xy) is non-
separating [8, Lemma 4].

By Proposition 7.4, it suffices, in O(n) time, to compute, among all loops in N :=⋃
s∈B Ns, one with the shortest λ-length, or to correctly report that every such loop has

length at least k + 1. Note that N = {loops,T,R(xy) |xy ∈ UT , s ∈ B}. Thus, it suffices
to be able, in O(1) time, to compute, for a given edge xy ∈ UT , a λ-shortest loop in
Nxy := {loops,T,R(xy) | s ∈ B} (represented by edge xy and vertex s), or to correctly report
that every loop in Nxy has length at least k + 1.

Vertex x is at distance at most k + 1 from at most one vertex s of B, and we can
determine whether there is such an s using the labeling described above in O(1) time. If
there is no such s, then Nxy contains no loop of length at most k. Otherwise, again using
the labeling, we can compute the λ-length from s to x in T . We can similarly determine if
there is a path of length at most k from y to some vertex t ∈ B, and if so we can determine
its length. If there is no such t, then Nxy contains no loop of length at most k. Otherwise,
similarly as before, t is unique; if t 6= s, then they are at distance at least 2k + 2 apart
in G1, and thus Nxy contains no loop of length at most k. Finally, if s = t, using the
labeling we can compute the λ-length of loops,T,R(xy) in constant time. If this length is at
most k, we return that loop, and otherwise we report that every loop in Nxy has length at
least k + 1.
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