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Abstract. We describe algorithms to compute the shortest path homotopic to a given path, or
the shortest cycle freely homotopic to a given cycle, on an orientable combinatorial surface. Unlike
earlier results, our algorithms do not require the input path or cycle to be simple. Given a surface
with complexity n, genus g ≥ 2, and no boundary, we construct in O(gn log n) time a tight octagonal
decomposition of the surface—a set of simple cycles, each as short as possible in its free homotopy
class, that decompose the surface into a complex of octagons meeting four at a vertex. After the
surface is preprocessed, we can compute the shortest path homotopic to a given path of complexity
k in O(gnk) time, or the shortest cycle homotopic to a given cycle of complexity k in O(gnk log(nk))
time. A similar algorithm computes shortest homotopic curves on surfaces with boundary or with
genus 1. We also prove that the recent algorithms of Colin de Verdière and Lazarus for shortening
embedded graphs and sets of cycles have running times polynomial in the complexity of the surface
and the input curves, regardless of the surface geometry.
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Introduction. We consider the following topological version of the shortest path
problem in geometric spaces: Given a path or cycle γ on an arbitrary surface, find the
shortest path or cycle that can be obtained from γ by continuous deformation, keeping
the endpoints fixed if γ is a path. Except in very special cases (such as hyperbolic
surfaces), local improvement algorithms do not always converge to the true shortest
path, but only to a local minimum. A more global approach is required.

Versions of this problem have been studied by several authors during the last
decade. Hershberger and Snoeyink [21] find the shortest path or cycle homotopic to a
given path or cycle in a triangulated piecewise-linear surface where every vertex lies
on the boundary—for example, a triangulated polygon with holes in the plane. Using
techniques developed by Cabello et al. [4], Efrat et al. [12] and Bespamyatnikh [1]
describe algorithms to find homotopic shortest paths in the plane minus a finite set
of points.

Building on earlier work, we formulate the shortest homotopic curve problem in
the combinatorial surface model. A combinatorial surface is an abstract 2-manifold
provided with a weighted embedded graph such that each face of the embedding
is a disk; the curves considered are walks on this graph (in the graph-theoretical
sense: paths in the graph, possibly with repeated vertices and edges). For example, a
polyhedral surface where the curves are drawn on its 1-skeleton falls into this model.
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Many previous works consider topological problems in combinatorial surfaces.1

Vegter and Yap [28] and Lazarus et al. [24] describe how to build canonical polygo-
nal schemata in this model. Dey and Guha [10] describe an algorithm to determine
whether two paths or cycles are homotopic in linear time. Several algorithms have
been developed recently for computing shortest families of curves with certain topo-
logical properties: Examples include the shortest non-contractible or non-separating
cycle (Erickson and Har-Peled [15], Cabello and Mohar [5], Kutz [23], and Cabello
and Chambers [2]), the shortest cut graph (Erickson and Har-Peled [15]), the shortest
fundamental system of loops (Erickson and Whittlesey [16]). Colin de Verdière and
Lazarus [7, 8] describe algorithms to compute the shortest simple loop homotopic
to a given simple loop, or the shortest cycle homotopic to a given simple cycle, in
time polynomial in the complexity of the surface, the complexity of the input curve,
and the ratio between the largest and smallest edge lengths. A variant by Colin
de Verdière [6] allows to compute the shortest graph embedding isotopic, with fixed
vertices, to a given graph embedding.

In this paper, a curve is tight if it is as short as possible in its homotopy class.2

Our main contribution is to provide efficient algorithms to tighten possibly non-simple
paths and cycles in polynomial time, regardless of the surface geometry:

Main Theorem. Let M be an orientable combinatorial surface with complexity
n, genus g, and b boundaries. Let γ be a (possibly non-simple) path or cycle on M,
represented as a closed walk of complexity k in the vertex-edge graph of the combina-
torial surface.

After a preprocessing of the surface that takes O((g + b)n) space, we can compute
a shortest path or cycle homotopic to γ with complexity k′ = O((g+b)nk); the running
times of the preprocessing step and of the shortening step depend on g and b and are
indicated in the table below, where k̄ = min{k, k′}.

preprocessing step path tightening cycle tightening

g ≥ 2, b = 0 O(gn log n) O(g(k + nk̄)) O(g(k + nk̄ log(nk̄)))

g = 1, b = 0 O(n log n) O(k + nk̄2) O(k + nk̄2 log(nk̄))

b ≥ 1 O(n log n + (g + b)n) O((g + b)(k + nk̄)) O((g + b)(k + nk̄ log(nk̄)))

For the case of genus at least two and without boundary, the O(gn log n) prepro-
cessing step makes use of an independent result by Cabello et al. [3]. Without this
result, the preprocessing step would require O(n2 log n) time.

For the preprocessing step, we decompose the surface with a set of tight arcs or
cycles C, such that the way a curve γ crosses C determines (a) its homotopy class
and (b) the way some shortest curve homotopic to γ crosses C. Decompositions
introduced in earlier papers [10, 7, 8, 6] share, at least partly, these properties. Using
this decomposition, we prove that a shortest curve homotopic to a given curve lifts to
a (small) portion of the universal cover of the surface; solving the shortest homotopic
path problem then essentially amounts to computing shortest paths in this region.

In the case of a surface with boundary, such a decomposition is provided by a
so-called tight system of arcs, generalizing the greedy system of loops constructed

1In some of these papers, an appropriate notion of disjointness of curves is necessary: Two
curves, even sharing edges and vertices of the graph, are said disjoint provided they can be spread
out infinitesimally so as to become really disjoint on the surface. This is equivalent to what we do
in the dual “cross-metric surface”, see §1.2.

2Erickson and Whittlesey [16] define a cycle to be tight if it contains the global shortest path
between any two of its points. Our notion of tightness is different.
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by Erickson and Whittlesey [16]. Surfaces without boundary are considerably more
difficult (and interesting), because we cannot decompose them with pairwise disjoint
curves. For this case, we introduce the notion of tight regular decomposition of the
surface: an arrangement of tight cycles where every vertex of the arrangement has
degree four and every face is a disk with the same number of sides; the efficiency of our
algorithm follows from classical results in combinatorial group theory and hyperbolic
geometry.

The existence of the decompositions described above also implies that the algo-
rithms of Colin de Verdière and Lazarus [7, 8, 6] for shortening simple curves run in
polynomial time.

This paper is organized as follows. We first introduce the background in topology
and dualize the problem from combinatorial surfaces to cross-metric surfaces, which
enable to keep track of crossings between curves. We introduce a series of tools on
tight curves in §2. Then we describe our algorithms for tightening curves, for surfaces
without boundary and with genus at least two (§3 and §4), for the torus (§5), and for
the case of surfaces with boundary (§6). We finally give our improved analysis of the
algorithms by Colin de Verdière and Lazarus [7, 8, 6] in §7.

1. Background.

1.1. Topology. We begin by recalling several standard definitions from manifold
topology. Further background can be found in textbooks by Hatcher [19] and Stillwell
[27].

A surface (or 2-manifold possibly with boundary) M is a topological Hausdorff
space where each point has a neighborhood homeomorphic to either the plane or
the closed half-plane. The points without neighborhood homeomorphic to the plane
comprise the boundary of M. A (g, b)-surface is any surface homeomorphic to a
sphere with g handles attached and b open disks removed. Every compact, connected,
orientable surface M is a (g, b)-surface for unique integers g (its genus) and b (its
number of boundaries). A sphere is a (0, 0)-surface; a disk is a (0, 1)-surface; an
annulus (or cylinder) is a (0, 2)-surface; a pair of pants is a (0, 3)-surface; a torus is
a (1, 0)-surface.

We distinguish between four different types of curves. A path on a surface M is
(the image of) a continuous map p : [0, 1] → M; its endpoints are p(0) and p(1). A
loop is a path p whose endpoints coincide. An arc is a path intersecting the boundary
of a surface exactly at its endpoints. A cycle is (the image of) a continuous map
γ : S1 → M where S1 = R/Z is the standard circle. A curve is simple if does not
self-intersect (except, for a loop, at its basepoint).

Two paths p and p′ are homotopic if there is a continuous map h : [0, 1]× [0, 1] →
M such that h(0, t) = p(t) and h(1, t) = p′(t) for all t, and h(·, 0) and h(·, 1) are
constant maps. Two cycles γ and γ′ are (freely) homotopic if there is a continuous
map h : [0, 1] × S1 → M such that h(0, t) = γ(t) and h(1, t) = γ′(t) for all t. A
loop or cycle is contractible if it is homotopic to a constant loop or cycle; an arc is
contractible if it is homotopic to a path on the boundary. A simple loop, arc, or cycle
is separating if M minus (the image of) this curve is disconnected. In particular,
every simple contractible curve is separating. Any cycle homotopic to the boundaries
of an annulus is called a generating cycle.

A map π : M′ → M between two surfaces is called a covering map if each point
x ∈ M lies in an open neighborhood U such that (1) π−1(U) is a countable union of
disjoint open sets U1 ∪ U2 ∪ · · · and (2) for each i, the restriction π|Ui

: Ui → U is a
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homeomorphism. If there is a covering map π from M′ to M, we call M′ a covering
space of M.

If p is a path in M and π(x′) = p(0) for some point x′ ∈ M′, there is a unique
path p′ in M′ such that p′(0) = x′ and π◦p′ = p. This path p′ is called a lift of p. Two
paths are homotopic in M if and only if they have homotopic lifts in M′. Similarly, a
lift of a cycle γ is either a cycle γ′ on M′ such that π ◦ γ′ = γ, or a continuous ‘open
arc’ p′ : R → M′ such that π(p′(t)) = γ(t mod 1) for all t. Any lift of a contractible
cycle is itself a contractible cycle.

Every surface M has a unique covering space M̃ in which every cycle is con-
tractible, called the universal cover of M.

Let γ be a non-contractible cycle on a surface M. An annular cover of M with
respect to γ is a covering space in which every simple cycle is either contractible
or homotopic to a lift of γ or to its reverse [14, Lemma 2.5], [19, Proposition 1.36].
Topologically, the annular cover is an annulus with some points of the boundary
removed.

All surfaces considered in this paper are connected, compact, and orientable,
although their covering spaces are of course not necessarily compact.

1.2. Combinatorial and Cross-Metric Surfaces. In this paper, a combi-
natorial surface is a surface M together with a weighted undirected graph G(M),
embedded on M so that each open face is a disk, and the boundary of M is the
union of some edges in G(M). (We will simply write G if the surface M is clear from
context.) In this model, the only allowed curves are walks in G: as usual, a walk is
an alternating sequence of vertices and edges of G, starting and ending with a vertex,
such that two contiguous elements in this sequence are incident. A walk is closed if
the first and last vertex are identical. The length of a curve is the sum of the weights
of the edges traversed by the curve, counted with multiplicity. The complexity of a
curve is the number of edges of G it uses, counted with multiplicity. The complexity
of a combinatorial surface is the total number of vertices, edges, and faces of G.

Most of our results are developed in a dual formulation of this model, which allows
to define crossings between curves. A cross-metric surface is an abstract surface M
together with an undirected weighted graph G∗ = G∗(M), embedded so that every
open face is a disk, and the boundary of M is the union of some edges in G∗. We
consider only regular paths and cycles on M, which intersect the edges of G∗ only
transversely and away from the vertices. The length of a regular curve p is defined to
be the sum of the weights of the dual edges that p crosses, counted with multiplicity.
To emphasize this usage, we sometimes refer to the weight of a dual edge as its crossing
weight.

Fig. 1.1. Primal (solid) and dual (dashed) graphs on a combinatorial annulus.

To any combinatorial surface (M, G), we associate by duality a cross-metric sur-
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face (M, G∗), where G∗ is the dual graph G∗ of G built as follows (see Figure 1.1).
G∗ has a vertex f∗ in the interior of each face f of G, and a vertex ē∗ in the relative
interior of each boundary edge e of G. There are three types of dual edges. First, for
each non-boundary edge e separating faces f1 and f2, there is a dual edge e∗ between
dual vertices f∗

1 and f∗
2 . Second, for each boundary edge e incident to face f , there is

a dual edge e∗ between dual vertices f∗ and ē∗. Finally, for each boundary vertex v
incident to boundary edges e1 and e2, there is a dual edge v̄∗ between dual vertices ē∗1
and ē∗2. Each dual edge e∗ in G∗ intersects only its corresponding edge e in G and has
the same weight as that edge. Each dual edge v̄∗ lies entirely on the boundary of the
surface and has infinite weight. Each face of G∗ corresponds to a vertex of G. To any
curve on a combinatorial surface, traversing edges e1, . . . , ep, we can associate a curve
in the corresponding cross-metric surface, crossing edges e∗1, . . . , e

∗
p, and conversely.

This transformation preserves the lengths and homotopy classes of the curves. So
far, the notions of combinatorial and of cross-metric surfaces are thus essentially the
same, up to duality.

A path or cycle is tight if it is as short as possible among all homotopic regular
paths or cycles. A set of curves is tight if all its curves are tight. From the discussion
above, to be able to tighten curves in a combinatorial surface, it suffices to be able to
tighten curves in the dual cross-metric surface. We can easily construct shortest paths
on a cross-metric surface by restating the usual algorithms (for example, Dijkstra’s
algorithm) on G in terms of the dual graph G∗.

We can represent an arbitrary arrangement of possibly (self-)intersecting curves
on a cross-metric surface M by maintaining the arrangement of G∗ and of the curves.
Contrary to combinatorial surfaces, this data structure also encodes the crossings
between curves. The initial arrangement is just the graph G∗, without any additional
curve. We embed each new curve regularly: every crossing point of the new curve and
the existing arrangement, and every self-crossing of the new curve, creates a vertex
of degree four.

Whenever we split an edge e∗ of G∗ to insert a new curve, we give both sub-edges
the same crossing weight as e∗. Each segment of the curve between two intersection
points becomes a new edge, which is, unless noted otherwise, assigned weight zero.
However, it is sometimes desirable to assign a non-zero weight to the edges of a curve.
For example, the cross-metric surface M\α obtained by cutting M along an embedded
curve α can be represented simply by assigning infinite crossing weights to the edges
that comprise α, indicating that these edges cannot be crossed by other curves. Also
it is sometimes very useful to assign to all edges of a curve a crossing weight that is
a fixed formal infinitesimal ε > 0.3 The number of curve crossings becomes thus a
tie-breaking measure for computing shortest paths when two curves have the same
length with respect to G∗: this ensures that later shortest-path computations always
prefer paths with fewer crossings when the lengths (with respect to the original G∗)
are equal. These modifications change the length of the regular curves in M by at
most a multiple of ε; in particular, any path that is tight with respect to the refined
graph is tight with respect to the original graph G∗.

We sometimes need to glue surfaces together along a common boundary; again,
our representation easily supports this operation. Finally, for any (even infinite)
covering space M′ of M, the graph G∗(M′) is simply a lift of G∗(M).

3Equivalently, we can take the crossing weight of any edge in G∗ to be a vector (ℓ, 0) for some
non-negative real number ℓ, and the crossing weight of any edge of the curve to be (0, 1). Crossing
weights are now vectors, which are added normally and compared lexicographically.
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We emphasize that combinatorial and cross-metric surfaces do not have any ‘ge-
ometry’ in the usual sense; only the combinatorial structure is important. Eppstein’s
gem representation [13] is a convenient data structure for maintaining this informa-
tion.

The multiplicity of a set of curves at some edge e of M is the number of times e∗

is crossed by the curves. The multiplicity of a set of curves is the maximal multiplicity
of the curves at any edge e of M.

In this paper, M is a combinatorial or a cross-metric surface with genus g and b
boundaries; n denotes its complexity. Since each face of G(M) (or G∗(M)) is a disk,
Euler’s formula implies that g = O(n) and b = O(n).

2. Toolbox on Tight Curves. We will need several tools on tight curves on
cross-metric surfaces, described in this section.

2.1. Basic Results. A few trivial facts will be used repeatedly without notice
but are worth mentioning:

• A shortest path is tight.
• Any subpath of a tight path or cycle is tight.
• Let M and N be two surfaces with N ⊂ M. If a curve in N is tight in M,

then it is tight in N .
• Let M′ be a covering space of M. Let c be a path (resp. a cycle) on M,

lifting to a path (resp. a cycle) c′ on M′. Then c is tight on M if and only
if c′ is tight on M′.

We also note that tightening curves on a sphere or a disk is trivial, because every
loop or cycle is contractible and any two paths with the same endpoints are homotopic:
to tighten a loop or a cycle, simply return a constant loop or cycle; to tighten a path,
simply return the shortest path between its endpoints.

We will need the following lemma, also noted in [7, Lemma 3].

Lemma 2.1. Let c be either a non-contractible simple cycle in the interior of M or
a simple arc in M. Then each lift of c separates M̃ into two connected components.

We will also use results by Hass and Scott [18], which we restate here for com-
pleteness. Let C be a set of curves, each being an arc or a cycle. We assume that
the curves in C are in general position: they pairwise (self-)intersect at finitely many
points, where exactly one crossing between exactly two curves occurs, or exactly one
self-crossing occurs. A monogon in C is a contractible subpath of some curve in C.
A bigon in C is a pair of homotopic subpaths of curves in C. A monogon is embedded
if it is simple; a bigon is embedded if both subpaths are simple and disjoint, except
at their endpoints; hence an embedded monogon or bigon bounds a disk. We say
that two curves have excess intersection if they can be homotoped to intersect in less
points.

Proposition 2.2. The following holds.

(a) Let γ be a non-simple arc or cycle in general position that is homotopic to a
simple arc or cycle. Then γ has an embedded monogon or bigon [18, Theorems
2.1 and 2.7].

(b) Let γ and δ each be a simple arc or cycle such that they are in general position.
If γ and δ have excess intersection, then there is an embedded bigon between
γ and δ whose interior meets neither γ nor δ [18, Lemma 3.1].

In the rest of this section, M is a cross-metric surface.
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2.2. Tight Curves Cross Minimally. An easy consequence of the previous
proposition is the following result.4

Lemma 2.3. Let C be a set of pairwise disjoint, simple, tight curves on M, each
being an arc or a cycle. Let γ be a simple arc or cycle that is tight, in the cross-metric
surface M where we put infinitesimal crossing weights for the curves in C. Then γ
has excess intersection with no curve in C.

Proof. Assume γ has excess intersection with a curve c in C. Applying Propo-
sition 2.2(b), we obtain an embedded bigon between γ and c. Let x and y be the
endpoints of the associated subpaths γ1 and c1 of γ and c. In γ, we replace the sub-
path γ1 by a path running along c1, obtaining a curve γ′ that does not cross c at x
and y.

The paths γ1 and c1 are homotopic and tight. This implies that γ and γ′ are
homotopic and have the same length with respect to the original graph G∗. Further-
more, the interior of c1 does not intersect any other curve in C because the curves
in C are disjoint; so γ′ has at least two crossings fewer with C than γ has. This
contradicts the fact that γ is tight with respect to the graph G∗ with infinitesimal
weights for the curves in C.

2.3. Tightness and Cut. The following proposition is crucial.

Proposition 2.4. Let α and β be each a simple arc or cycle in M such that α
and β are disjoint. Assume that α is tight in M, and, if it is a cycle, assume it is
non-contractible. Then β is tight in M\ α if and only if β is tight in M.

Proof. If β is tight in M, then it is obviously tight in M\α. We assume β is tight
in M\ α and prove that it is tight in M. The result is obvious if β is a contractible
cycle in M: in that case, it bounds a disk; this disk cannot contain α, because α is
either an arc or a non-contractible cycle; so β is contractible in M\ α and thus has
length zero; hence it is tight in M.

Let β′ be a shortest arc or cycle homotopic, in M, to β. It suffices to prove that β
and β′ have the same length. We may assume that α, β, and β′ are in general position
by slightly perturbing them if necessary (and moving slightly the endpoints of β′ so
that they are disjoint with the endpoints of β, if β is an arc). If β′ is not simple,
then, by Proposition 2.2(a), it must have an embedded monogon or bigon. Removing
the monogon or flipping the bigon neither increases the length of β′ nor changes its
homotopy class, and removes at least one self-intersection. So, by induction, we may
assume that β′ is simple.

If β′ intersects α, then, by Proposition 2.2(b), there is an embedded bigon between
them, so we can push the part of β′ that is on the boundary of the bigon across the
bigon. This does not change the homotopy class of β′. The two subpaths bounding
the bigon must have the same length, since α and β′ are tight, so this operation does
not change the length of β′. This does not introduce self-intersections on β′ and
removes exactly two crossings with α, since the interior of the bigon meets neither α
nor β′. We can continue by induction. So we may assume that α and β′ are disjoint
and that β′ is simple.

If β′ intersects β, then, again by Proposition 2.2(b), we can move β′ across an
embedded bigon bounded by β and β′. As above, this creates no self-intersection
on β′ and removes exactly two crossings between β and β′. Furthermore, α does not
meet the bigon, since neither β nor β′ intersects α and since α is not a contractible

4We will use this result only in special cases where the existence of a bigon, provided by Propo-
sition 2.2, could be easily proved by hand, but we prefer to mention it in whole generality.
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cycle. In particular, this change introduces no crossing between β′ and α. It also
follows that both subpaths are homotopic in M \ α; since they are tight in M \ α,
this does not modify the length of β′. We can continue by induction. Hence, we may
assume that α, β, and β′ are simple and pairwise disjoint.

Assume first that β and β′ are two arcs; then they bound a disk, which cannot
meet α, since α does not meet the boundary of the disk and is not a contractible
cycle. The arcs β and β′ must thus have the same length, since they are homotopic
in M\ α and both tight in M\ α. The result follows.

Finally, assume that β and β′ are non-contractible cycles: they bound an annu-
lus A in M. If α does not meet A, then β and β′, being homotopic in M\α and both
tight in M\α, have the same length. Otherwise, since α does not meet the boundaries
β and β′ of A, it is a cycle; since it is simple and non-contractible, it is homotopic
to β and β′ or to their reverses. So A is the union of two annuli, one bounded by
β and α, and the other one bounded by α and β′. Hence the length of β equals the
length of α, which in turn equals the length of β′. This concludes the proof.

2.4. Curves Wrapping Around Cycles. A path p : [0, 1] → M wraps around
a cycle γ if p(t) = γ((ut + v) mod 1) for some real numbers u and v; in particular,
if p is a subpath of γ, then p wraps around γ. A cycle δ : S1 → M wraps around γ
if δ(t) = γ((m · t) mod 1), for some integer m; one also says that δ is the mth power
of γ. We will need the following result:

Proposition 2.5. Any path or cycle on M that wraps around a tight cycle is
tight.

Proof. We first observe that it suffices to prove the assertion for cycles. Indeed, if
p is a path wrapping around a tight cycle γ, then p is necessarily a subpath of some
power of γ; hence, if we can prove that every power of γ is tight, then p will be also
tight.

So we prove the result for a cycle wrapping around a tight cycle γ. As a special
subcase, we assume that M is an annulus with generating cycle γ. We first introduce
some notations. For each cycle δ, we let c(δ) be the number of self-crossings of δ. Let
k(δ) be the unique integer such that δ is homotopic to the (k(δ))th power of γ. Finally,
let |δ| be the length of δ. With these notations, we need to prove that |δ| ≥ k(δ)|γ|,
and we do this by induction on c(δ).

If c(δ) = 0, then δ is either contractible or homotopic to γ or to its reverse (equiv-
alently, k(δ) ∈ {−1, 0, +1}), so the result follows from the tightness of γ. Assume now
that c(δ) ≥ 1 and that the result is true for any cycle with smaller value of c. Let p
be a simple closed subpath of δ, and let δ′ be the cycle δ where the loop p has been
removed; we have c(δ′) = c(δ) − 1, so by the induction hypothesis |δ′| ≥ k(δ′)|γ|.

Henceforth, we consider p as a cycle. Since it is simple, we have k(p) ∈ {−1, 0, +1}.
We distinguish two cases according to the value of k(p). If k(p) = 0, then |δ| ≥
|δ′| ≥ k(δ′)|γ| (as shown above) which is in turn equal to k(δ)|γ|; this implies the
desired result. In the other case, we have |δ| = |δ′| + |p|. But |δ′| ≥ k(δ′)|γ|, and
|p| ≥ |γ| by tightness of γ and since p is homotopic to γ or to its reverse, so we have
|δ| ≥ (k(δ′)+ 1)|γ|. Since k(δ) and k(δ′) differ by at most one, this is at least k(δ)|γ|.
This concludes the proof.

To prove the general case, we may clearly assume that γ is non-contractible. We
consider the annular cover M̂ of M generated by a lift γ̂ of γ. Since γ is tight in M,
its lift γ̂ is tight in M̂; so each power of γ̂ is tight in M̂, by the special case proved
above; by projection, each power of γ is tight in M.
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2.5. Multiplicity of Some Tight Cycles. The tool we introduce now bounds
the multiplicity of certain tight cycles.

Proposition 2.6. Any tight simple cycle γ homotopic to a boundary δ of M has
multiplicity at most two.

Proof. Let N be the surface M with a disk glued to δ. Let Ñ be its universal
cover, with covering map π : Ñ → N . Every lift γ̃ of γ is a simple cycle enclosing
exactly one lift δ̃ of δ; conversely, every lift of δ is enclosed by exactly one lift of γ.

First, we claim that every lift γ̃ of γ has multiplicity one in Ñ . Suppose to the
contrary γ̃ crosses some edge ẽ of G∗(Ñ ) at points x and y, and let xy denote the
open segment of ẽ between these two intersection points. If some lift of γ crosses xy,
the Jordan curve theorem implies that it has to cross xy again in the other direction.
Thus, by choosing the lift γ̃ and points x and y appropriately, we can assume that no
lift of γ crosses xy.

The intersection points x and y split γ̃ into two paths. Gluing xy to these paths
gives us two disjoint simple cycles γ̃1 and γ̃2, each of which is shorter than γ̃ (because
they do not cross ẽ). Because no other lift of γ crosses xy, the cycle γ does not
intersect the segment π(xy) in N . Thus, γ1 = π(γ̃1) and γ2 = π(γ̃2) are disjoint
simple cycles in N , both strictly shorter than γ.

Since γ1 is simple, all its lifts to Ñ are pairwise disjoint, and therefore each lift
of γ1 encloses at most one lift of δ. (Otherwise, two lifts of γ1 would enclose two sets
of lifts A and B of δ such that A 6⊆ B and B 6⊆ A, which is excluded by the Jordan
curve theorem.) The same holds for γ2. Let γ̃1 and γ̃2 be lifts of γ1 and γ2. If γ̃1

encloses a lift of δ, then γ1 is homotopic to γ in M, which is impossible since γ is
tight. On the other hand, if γ̃1 does not enclose a lift of δ, then γ1 is contractible
in M, which implies that γ2 is homotopic to γ in M, which is also impossible. This
completes the proof of our claim.

Now suppose γ crosses some edge of G∗(M) three or more times. Then there is

an edge ẽ of G∗(Ñ ) that is crossed at least three times by lifts of γ, at some points
x1, x2, and x3, labeled in order along ẽ. By our earlier claim, these intersection points
lie on three different lifts γ̃1, γ̃2, and γ̃3 of γ. Each lift γ̃i encloses exactly one lift δ̃i

of δ. Since γ̃2 is a simple cycle that crosses ẽ exactly once, the Jordan curve theorem
implies that it encloses either γ̃1 or γ̃3. But then γ̃2 must also enclose δ̃1 or δ̃3, which
is impossible. We conclude that the multiplicity of γ is at most two.

2.6. Construction of Tight Curves. We introduce six elementary construc-
tions of tight arcs and cycles on a cross-metric surface. Our algorithms will combine
these elementary constructions by computing a tight simple arc or cycle on the input
surface M, cutting M along it, and iterating on the resulting surface. Proposition 2.4
implies that the arcs and cycles computed in this fashion are always tight on the orig-
inal surface M.

Let M be a cross-metric surface with boundary δ. We say that an edge e of M is
adjacent to δ if e shares with δ a vertex v such that e is the only non-boundary edge
incident to v.

Proposition 2.7.

(a) If x and y are points on the boundary of M, we can compute in O(n log n)
time a shortest arc with endpoints x and y. The computed arc is simple and
has multiplicity one.

(b) If b ≥ 2, we can compute in O(n log n) time a shortest arc joining two spec-
ified boundaries. The computed arc is simple, has multiplicity one, and has
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multiplicity zero at each edge of G∗ adjacent to one of the two specified bound-
aries.

(c) If b = 1 and g 6= 0, we can compute in O(n log n) time a shortest non-
contractible, or non-separating, arc. The computed arc is simple, has multi-
plicity at most two, and has multiplicity zero at each edge of G∗ adjacent to
the boundary.

(d) If b = 0, we can compute in O(n log n) time a tight non-separating cycle that
is simple and has multiplicity at most six.

(e) If g = 0 and b = 2, we can compute in O(n log n) time a shortest generating
cycle. The computed cycle is simple and has multiplicity one.

(f) If g = 0 and b = 3, we can compute in O(n log n) time a shortest cycle
homotopic to a chosen boundary cycle. The computed cycle is simple and has
multiplicity at most two.

Proof.

(a) Compute a shortest path between x and y using Dijkstra’s algorithm.
(b) Temporarily fill the two specified boundaries with a disk, and assign infinites-

imal crossing weights to the edges of the boundary of each of these disks. Pick
points x and y inside each of these disks. Compute a shortest path from x
to y using Dijkstra’s algorithm. This path is simple; it crosses each of the
boundaries of the aforementioned disks exactly once, so it corresponds to a
shortest arc in M. This arc cannot cross an edge e of G∗ adjacent to one
of the two prescribed boundaries, because otherwise it could be shortened by
removing the crossing with that edge.

(c) Temporarily fill the boundary with a disk, and assign infinitesimal crossing
weights to the edges of the boundary of this disk. Pick a point p inside this
disk, and compute a shortest non-contractible or non-separating loop with
basepoint p, using an algorithm of Erickson and Har-Peled [15, Lemmas 5.2
and 5.4]. This loop is simple and corresponds to the desired arc on M.

(d) This follows from a result by Cabello et al. [3, Theorem 4.3]. More precisely,
they prove that the following algorithm provides a tight non-separating simple
cycle: cut the surface along a shortest simple non-separating loop with an
arbitrary basepoint; for each of the two boundaries of the resulting surface,
compute a shortest cycle homotopic to that boundary; return the shortest of
these two cycles. The resulting cycle has multiplicity at most six, since the
initial loop has multiplicity at most two, and by Proposition 2.6.5

(e) It is known [15, Lemma 5.2] that some shortest non-contractible cycle γ in
the annulus is simple, hence generating. We claim that γ passes at most
once through a given face of G∗(M). Indeed, otherwise, there would be two
points x and y on two different pieces of γ in a given face f∗ of G∗(M), such
that some path xy between x and y belongs to f∗ and does not intersect γ
except at x and y. These points x and y split γ into two paths, γ1 and γ2.
The cycle γ is generating, hence non-contractible, hence, for i = 1 or i = 2,
the concatenation of γi and of xy (maybe with reverse orientation) is non-
contractible, and also simple, hence generating; it is strictly shorter than γ;
so γ was not a shortest generating cycle. This proves the claim.

5In a previous version of this paper, the result by Cabello et al. was not available, and we
used a shortest non-separating cycle, computed with an algorithm of Erickson and Har-Peled [15,
Lemma 5.4], instead. However, the result by Cabello et al. improves the time complexity of our
preprocessing step from O(n2 log n) to O(gn log n).
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Thus, γ can be viewed as a circuit in G(M), that is, a closed walk without
repeated vertices. So we are actually looking for a shortest generating circuit
in G(M). Now, by a result by Reif [25, Propositions 1 and 2], a shortest
generating circuit in G(M) is the dual of a minimum cut in G∗(M). We
can compute such a minimum cut in O(n log n) time by using an algorithm
of Frederickson [17, Theorem 7]; its dual is the desired cycle, and indeed has
multiplicity one.

(f) Colin de Verdière and Lazarus describe an algorithm for this problem [8].
Let δ1, δ2, and δ3 denote the boundaries of M, and suppose we want a
cycle homotopic to δ1. Compute a shortest arc α between δ2 and δ3 (by
part (b)) and compute the shortest generating cycle γ in the annulus M\α (by
part (e)), of multiplicity one on M\ α. This cycle is simple; Proposition 2.4
implies that it is tight in M. Since it has multiplicity one on M\α and since
α has multiplicity one, it has multiplicity at most two on M.

3. Tight Octagonal Decompositions. In this section and the following one,
we assume that M has genus at least two and has no boundary (g ≥ 2, b = 0), and we
prove our Main Theorem in this case. We will first describe the preprocessing phase
of our path- and cycle-shortening algorithm; the algorithm for tightening curves will
be described in the next section.

An octagonal decomposition of a surface is an arrangement of simple cycles in
which every vertex has degree four and every face has eight sides. See Figure 3.1.

Fig. 3.1. An octagonal decomposition built by our algorithm.

If we lift the cycles of an octagonal decomposition to the universal cover of the
surface, we obtain a tiling of the plane with octagons, where each vertex has degree
four. This tiling is actually isomorphic to the tiling of the hyperbolic plane by regular
right-angled octagons; hence, our decomposition imposes a crude regular hyperbolic
structure on any cross-metric surface, thereby allowing us to exploit classical results
in combinatorial hyperbolic geometry and combinatorial group theory, primarily in
§3.3 and §4.1.

3.1. Construction. Theorem 3.1. Let M be a cross-metric surface with com-
plexity n, genus g ≥ 2, and no boundary. In O(gn log n) time, we can construct a
tight octagonal decomposition of M in which each cycle has multiplicity O(1).

Proof. Our construction algorithm has four phases and uses repeatedly Proposi-
tion 2.7.

Phase 1: Unzipping. We begin by ‘unzipping’ the surface into a disk using one cycle
and 2g−1 paths. Let τ1 be a tight cycle in M that is tight, simple, non-separating, and
has multiplicity at most six (Proposition 2.7(d)). Let β1 be the shortest arc βetween
the two boundary components of M\τ1, and let M1 = M\ (τ1∪β1). For each i from
1 to g− 1, let αi+1 be the shortest non-separating αrc in Mi; let βi+1 be the shortest
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arc βetween the two boundaries of Mi \ αi+1; and let Mi+1 = Mi \ (αi+1 ∪ βi+1).
For each i, the surface Mi has genus g− i and one boundary cycle. See Figure 3.2(a).
Proposition 2.7 implies that the union of the cycle τ1 and the arcs αi and βi has
multiplicity at most six on M (since no arc intersects edges of G∗ crossed by the cycle
and the arcs created before) and that we can compute these curves in O(gn log n)
total time.

(a)

(b)

(c)

(d)

Fig. 3.2. (a) The surface M unzipped. (b) Computing τ+

3
and τ−

3
. (c) Computing σ2. (d)

The final pants decomposition.

Phase 2: Pants decomposition. Next, we use the curves in the previous phase
to help construct a set of 3g − 3 tight simple cycles, each with multiplicity O(1),
that decompose M into 2g − 2 pairs of pants (Figure 3.2). Henceforth, all the cycles
considered are simple and tight : the tightness in M follows from Proposition 2.4.

Let τg denote the shortest generating cycle in the annulus Mg−1\αg. Let σg−1 be
the shortest cycle in Mg−1 \ τg homotopic to the boundary of Mg−1. For each i from
g−1 down to 2, let τ+

i be the shortest cycle in Mi−1\(αi∪σi) homotopic to a boundary
of Mi−1 \αi; let τ−

i be the shortest cycle, in the component of Mi−1 \ (αi ∪ σi ∪ τ+
i )

that is a pair of pants, homotopic to a boundary of Mi−1 \ αi; and let σi−1 be the
shortest cycle in Mi−1\(τ+

i ∪τ−

i ) homotopic to the boundary of Mi−1. Recall that τ1

is our original starting cycle. All these cycles are tight in M by repeated applications
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of Proposition 2.4.

Every edge of M is split into at most three sub-edges in Mi and Mi−1 \αi, since
the union of the αi’s and βi’s has multiplicity at most 2. Each of the σi and τ±

i is a
shortest cycle homotopic to a boundary of Mi or Mi−1 \ αi, hence of multiplicity at
most 2 on that surface (Proposition 2.6), and thus of multiplicity at most 6 on M. So,
in each case, we are computing a shortest cycle homotopic to a boundary in a pair of
pants of complexity O(n), which can be done in O(n log n) time by Proposition 2.7(f).

The 3g − 3 cycles τ1, σ1, τ
+
2 , τ−

2 , σ2, . . . , τ
+
g−1, τ

−

g−1, σg−1, τg split M into 2g − 2
pairs of pants. Specifically, the cycles σi partition M into a chain of punctured tori
T1∪T2∪· · ·∪Tg, where T1 and Tg each have one boundary (σ1 and σg−1, respectively),
and every other Ti has two boundaries (σi−1 and σi). The first torus T1 (resp. the
last torus Tg) is cut into a pair of pants by τ1 (resp. τg), and each intermediate torus
Ti is cut into two pairs of pants by the cycles τ+

i and τ−

i .

Phase 3: Around the holes. In the next phase, we find tight simple cycles that
go ‘around the hole’ of each punctured torus Ti, crossing the cycle(s) τ±

i exactly
once. Henceforth, we assign infinitesimal weights to the edges of the curves already
constructed, allowing to apply Lemma 2.3.

First consider the torus T1. Let α be the shortest non-contractible arc in T1 \ τ1

with both endpoints on the boundary σ1, and let β be the shortest non-contractible
arc in T1 \ α. Finally, let φ1 be the shortest generating cycle in the annulus T \ β.
Because τ1 is homotopic to the boundary of T1 \ α, the arc β crosses τ1 exactly once,
so φ1 also crosses τ1 exactly once (by applying Lemma 2.3 twice). See Figure 3.3.
Since τ1 and σ1 each have constant multiplicity, so does φ1.

Fig. 3.3. Left: α and β. Right: φ1.

A symmetric construction finds a tight cycle φg in the torus Tg that crosses τg

exactly once.

Now, for some 2 ≤ i ≤ g − 1, consider the torus Ti, whose boundary consists of
σi−1 and σi. Let α− be the shortest non-contractible arc with endpoints on σi−1 in
Ti \ (τ+

i ∪ τ−

i ). Similarly, let α+ be the shortest non-contractible arc with endpoints
on σi in Ti \ (τ+

i ∪ τ−

i ). These arcs α− and α+ split Ti into two annuli, one containing
τ+
i and the other τ−

i . Let β+ and β− be shortest arcs, one on each of these annuli,
joining a point of σi−1 and a point of σi. The arc β+ crosses τ+

i once (Lemma 2.3)
and does not cross τ−

i ; symmetrically, β− crosses τ−

i once and does not cross τ+
i .

Finally, let φi be the shortest generating cycle in the annulus Ti \(β+∪β−); this cycle
crosses each of τ+

i and τ−

i exactly once (Lemma 2.3). See Figure 3.4. Since τ±

i and
σi each have constant multiplicity, so does φi.

Proposition 2.7 implies that each curve φi is computed in time O(ni log ni), where
ni denotes the complexity of Ti. Since

∑
i ni = O(n), the overall running time of this

phase is O(n log n).
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Fig. 3.4. Left: α+ and α−. Middle: β+ and β−. Right: φi.

Phase 4: Around the handles. Finally, for each i between 1 and g − 1, let Mi be
the pair of ‘monkey pants’ formed by gluing together the two pairs of pants with σi

as their common boundary. The boundaries of Mi are τ+
i , τ−

i , τ+
i+1, and τ−

i+1. (Here

τ+
1 and τ−

1 denote the two copies of τ1 in M1, and τ+
g and τ−

g denote the two copies

of τg in Mg−1.) Let γ+ be the shortest arc in Mi \ (φi ∪ φi+1) between τ+
i and τ+

i+1,

and let γ− be the shortest arc in Mi \ (φi ∪φi+1 ∪γ+) between τ−

i and τ−

i+1. The arcs
γ+ and γ− are disjoint and cross σi exactly once (Lemma 2.3 applied twice). Finally,
let θi be the shortest generating cycle in the annulus Mi \ (γ+ ∪ γ−). It follows from
Lemma 2.3 that θi crosses σi exactly twice and φi and φi+1 each exactly once. See
Figure 3.5. Finally, since all the earlier cycles have constant multiplicity, so does θi.
As in the previous phase, Proposition 2.7 implies that this phase of the algorithm
runs in O(n log n) time.

Fig. 3.5. Left: γ+ and γ−. Right: θi.

To summarize, the tight simple cycles τ±

i , φi, and θi decompose the surface M into
octagons exactly as shown in Figure 3.1. Proposition 2.4 implies that each of these
cycles is tight in M.

If we do not discard the cycles σi, we obtain a tight hexagonal decomposition
of M. Our remaining results use an octagonal decomposition, but this hexagonal
decomposition could be used as well, applying exactly the same arguments.

3.2. Limiting Crossings. In the actual curve-shortening algorithm, we need to
bound the number of times an input curve crosses the cycles in our octagonal decom-
position. To that end, we will actually construct our decomposition on a refinement
of the input surface M.

Let G+ = G+(M) be the graph obtained by overlaying the primal graph G(M)
and the dual graph G∗(M) (see Figure 1.1; recall that in the present case, M has no
boundary). The vertices of G+ are either vertices of G, vertices of G∗, or intersections
between an edge e of G and its dual edge e∗ in G∗. Each edge of G and dual edge in
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G∗ is partitioned into two edges in G+. Finally, each face of G+ is a quadrilateral.

To treat M as a cross-metric surface with ‘dual’ graph G+, we assign a crossing
weight to each edge e+ of G+ as follows. If e+ is contained in an edge of G∗, it has
the same crossing weight as that dual edge. If it is contained in an edge of G, its
crossing weight is a fixed formal infinitesimal ε′ << ε. Any curves that are tight with
respect to G+ are also tight with respect to G∗. Among all tight curves that cross
each other as few times as possible, our algorithms choose curves that cross the edges
of G as few times as possible.

We actually apply Theorem 3.1 in this augmented cross-metric surface. In time
O(gn log n), we obtain an octagonal decomposition O of M where each cycle is tight,
each edge of G∗ is crossed O(1) times by each cycle in O, and each edge of G is crossed
O(1) times by each cycle in O. In particular, any walk in G of length k crosses the
cycles in O a total of O(gk) times.

3.3. Universal Cover. Let O be a tight octagonal decomposition of a sur-
face M without boundary. As we mentioned earlier, the universal cover of this de-
composition is a four-valent octagon tiling of the plane, as is the regular tiling of the
hyperbolic plane by right-angled octagons (see Figure 3.6), which can also be viewed
as an infinite arrangement of hyperbolic lines. Building on this intuition, we call any
lift of a cycle in O to the universal cover M̃ a line. The set of lines is denoted by Õ.
This terminology is further motivated by Corollary 3.3 and Lemma 3.5.

Fig. 3.6. Universal cover of an octagonal decomposition.

Lemma 3.2 (Dehn [9]; see also Stillwell [27, p. 188]). Let S be the non-empty
union of finitely many octagons in the four-valent octagon tiling of the plane. Some
octagon in S has five consecutive sides on the boundary of S.

A trivial but important corollary is:

Corollary 3.3. Let S be the non-empty union of finitely many octagons in the
four-valent octagon tiling of the plane. Then at least five distinct lines contain edges
on the boundary of S. In particular, two lines in the tiling cross at most once.

The perimeter of a set of octagons is the number of edges on its boundary.
Lemma 3.4. Any union of N octagons, 1 ≤ N < ∞, in the four-valent octagon

tiling of the plane has perimeter at least 2N + 6.

Proof. Removing an octagon with at least five consecutive sides on the boundary
of the union (Lemma 3.2) reduces the perimeter by at least two. The base case is a
single octagon.
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Lemma 3.5. Let p̃ be a path in M̃, with endpoints x and y; let L be the set
of lines in Õ crossed an odd number of times by p̃. Let p̃′ be a shortest path with
endpoints x and y, where the lines in Õ are assigned infinitesimal crossing weight ε.
Then p̃′ crosses exactly once each line in L and no other line.

Proof. Since each line ℓ in Õ separates the plane (Lemma 2.1), a path connecting
x and y crosses ℓ an odd number of times if and only if ℓ separates x and y. Hence it
suffices to prove that p̃′ crosses each line at most once.

If p̃′ crosses some line ℓ at least twice, at points u and v, then p̃′ and ℓ form
a bigon. Since ℓ is a lift of a tight cycle, every subpath of ℓ is a shortest path, by
Proposition 2.5. Thus, we can remove the bigon from p̃′ by replacing the subpath
from u to v with the shortest path in ℓ. Since any pair of lines in Õ intersect at most
once, this exchange results in a path with fewer line crossings (and possibly shorter
length), which is impossible.

4. Tightening Curves on Surfaces Without Boundary. In this section, we
explain how to compute a tight path or cycle homotopic to a given path or cycle in
polynomial time, again in the case g ≥ 2 and b = 0. Our algorithm is much faster
than previous results [7, 8, 6], and unlike those results, it does not require the input
curve to be simple.

Consider an arbitrary path p on a surface M. Let p̃ be a lift of p to the universal
cover M̃, and let p̃′ be a shortest path in M̃ between the endpoints of p̃. Projecting p̃′

back down to M gives us a shortest path homotopic to p. Our algorithm exploits
this characterization by constructing a subset of M̃ of small complexity that contains
both p̃ and some shortest path p̃′. Compared to previous approaches [26, 11], the
construction of this part of the universal cover is very simple once we have computed
an octagonal decomposition of the surface.

4.1. Building the Relevant Region. Let O be the tight octagonal decompo-
sition of M as computed in §3. Consider a path p in M, and let p̃ be a lift of p to
the universal cover M̃. For any line ℓ in Õ, let ℓ+ denote the component of M̃ \ ℓ
that contains the starting point p̃(0).

Let ℓ1, ℓ2, . . . , ℓz be the sequence of lines in Õ crossed by p̃, in order of their first
crossing. Let L0 = ∅, and for any integer i between 1 and z, let Li = Li−1 ∪{ℓi}. For

each i, let M̃i be the subset of M̃ reachable from p̃(0) by crossing only (a subset of)

lines in Li, in any order. Combinatorially, the region M̃i is a ‘convex polygon’ formed
by intersecting the ‘half-planes’ ℓ+ for all lines ℓ not in the set Li. By Lemma 3.5,
some shortest path p̃′ between the endpoints of p̃ crosses only a subset of the lines
that p̃ crosses; so p̃′ is contained in M̃z. For this reason, M̃z is called the relevant
region of M̃ (with respect to p̃).

Lemma 4.1. For any line ℓ and any i ≥ 0, ℓ∩M̃i is either empty or connected.
Proof. Let ℓ[x, y] be the segment of ℓ between two points x and y in ℓ∩ M̃i, and

suppose some line ℓ′ crosses ℓ[x, y]. Since two lines cross at most once, the points x

and y are on different sides of ℓ′. Since ℓ′ separates the plane but M̃i is connected,
this line must be in the set Li. It follows that the entire segment ℓ[x, y] belongs to M̃i.

Since ℓi separates M̃, Lemma 4.1 implies that ℓi intersects M̃i−1 on its boundary,
along a connected set of octagons O1, O2, . . . , Ou. For each j between 1 and u, let
O′

j be the reflection of Oj across ℓi. See Figure 4.1. The octagons O′
j do not belong

to M̃i−1.

Lemma 4.2. M̃i = M̃i−1 ∪ O′
1 ∪ · · · ∪ O′

u.
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ℓi

O1 O2 O3 O4

O′
1

O′
2

O′
3

O′
4

⋆ ⋆

Fig. 4.1. From fMi−1 (dark shaded) to fMi (all shaded).

Proof. Let Ñ = O′
1 ∪ · · · ∪ O′

u (the lightly shaded region in Figure 4.1). To

prove the lemma, it suffices to show that none of the lines bounding Ñ are in the set
L = {ℓ1, . . . , ℓi−1}. Obviously ℓi is not in this set. Each octagon O′

j is bounded by
eight lines: ℓi, two inner lines that cross ℓi at a vertex of O′

j , and five outer lines.
If some outer line ℓ of some octagon O′

j intersected ℓi, then it would also intersect
an inner line ℓ′ 6= ℓ of O′

j . Thus the lines ℓ, ℓ′, and ℓi would pairwise intersect, and

these three lines would bound a disk in the tiling Õ, contradicting Lemma 3.2.

Hence, since every line in L has a point in ℓ+
i , no outer line can be in L. Only

the first and last inner lines contribute a side to the boundary of Ñ . Neither of these
two lines is in L, for otherwise one of the starred octagons in Figure 4.1 would also
belong to M̃i−1.

Lemma 4.3. M̃z contains at most 7z + 1 octagons.
Proof. Let v be a vertex on the boundary of M̃z. Depending on whether zero or

one line incident to v belong to {ℓ1, . . . , ℓz}, either one or two octagons incident to v

belong to M̃z. In the former case, we say that v is an extremal boundary vertex, and
in the latter case, we say that v is a flat boundary vertex. If there is no flat boundary
vertex, then there is exactly one octagon, and the lemma holds.

Every flat boundary vertex is the intersection of some line ℓi with the boundary
of M̃z. There are at most 2z such vertices by Lemma 4.1. Between two consecutive
flat boundary vertices, there are trivially at most 6 extremal boundary vertices, all on
the boundary of the same octagon. Thus, the perimeter of M̃z is at most 14z. The
lemma now follows directly from Lemma 3.4.

Constructing the relevant region M̃z is now straightforward. M̃0 is a copy of
the octagon containing p(0), the starting point of p. To compute M̃i, we follow p̃

until it exits the previous region M̃i−1. At the exit point, the path is crossing ℓi into

some octagon O′
j (with the notation of Figure 4.1). To complete M̃i, we append the

octagons O′
1, . . . , O

′
u.

4.2. Tightening Paths. We now prove the Main Theorem in the case g ≥ 2,
b = 0, and if the input curve is a path.

The preprocessing consists of building the tight octagonal decomposition O on
the cross-metric surface defined by G+(M). Let x be the number of crossings of
p with O; as we argued earlier, x = O(gk). Let p̃ be an arbitrary lift of p to the
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universal cover M̃ of M. We first compute the relevant region of M̃ with respect to
p̃, ignoring the internal structure of the surface within each octagon of Õ. In other
words, we construct a subset of the abstract regular octagon tiling. The construction
is described in Lemma 4.2. We require only constant time for every edge of p, every
crossing between p and O, and every relevant octagon; Lemma 4.3 shows that this
phase takes time O(k + x).

Now let L be the set of lines crossed an odd number of times by p̃. By Lemma 3.5,
there is a shortest path q̃ with the same endpoints as p̃ that crosses each line in L
exactly once and no other line. Let x′ be the number of lines in L. We now compute
the set of octagons accessible from p̃(0) by crossing only these lines, this time building
also the internal surface structure of the octagons. There are O(x′) such octagons
by Lemma 4.3; since each cycle in O has constant multiplicity, each octagon has
complexity O(n). Thus, the relevant region has total complexity O(x′n) and can be
constructed in time O(x′n).

Finally, we compute a shortest path p̃′ between the endpoints of p̃ in this rele-
vant region, in time O(x′n) using the planar shortest path algorithm by Henzinger
et al. [20]. By giving the lines L infinitesimal crossing weight, we guarantee that p̃′

crosses each line in L exactly once. The projection p′ = π(p̃′) onto G(M) is the
desired output path. The total time spent is O(k + x + x′n).

The complexity k′ of p′ (the number of edges of G∗ crossed by p′) is at most
O(x′n) = O(xn) = O(gnk). To complete the time analysis, we observe that x′ =
O(g min{k, k′}).

4.3. Tightening Cycles. We still consider the case g ≥ 2, b = 0, and we prove
the Main Theorem for cycles. Our algorithm uses similar ideas as for paths, but is
more complicated. As we saw, tightening a path can be done by (1) computing a
lift of that path in the universal cover, (2) computing a shortest path between the
endpoints of that lift, in a relevant region of the universal cover, and (3) projecting
back to the surface. To tighten a cycle, we will (1) compute a lift of that cycle in
the annular cover generated by that cycle, (2) compute a shortest generating cycle
in a relevant region of that annulus using Proposition 2.7(e), and (3) project back to
the surface. The main difficulty is to compute the region of the annular cover that is
relevant for our purposes. Before describing the algorithm, we have to explain some
structural properties of the annular cover.

Consider a non-contractible cycle γ; let M̂ be the annular cover generated by γ.
Let Â ⊆ M̂ be a union of octagons of M̂ that contains a shortest generating cycle
in M̂ and is, topologically, an annulus (for example, Â = M̂). Since the cycles of the

octagonal decomposition O are simple, the maximal pieces of their lifts in Int Â are
simple curves of three possible types: (1) simple generating cycles on Â; (2) simple

arcs with both endpoints on the same boundary component of Â; and (3) simple arcs

with one endpoint on each of the boundary components of Â.

Lemma 4.4. Any shortest generating cycle in Â (using infinitesimal crossing
weights for the lifts of the cycles in O) crosses no curve of type (1) and (2), and
crosses exactly once every arc of type (3).

Proof. By the assumption on Â, a shortest generating cycle in Â is also a shortest
generating cycle in M̂. Let ĉ be a lift in Â of a cycle in O.

If ĉ is of type (1), then a generating cycle crossing ĉ lifts, in M̃, to a curve crossing
a given line several (actually infinitely many) times; thus such a cycle cannot be a
shortest homotopic cycle by Lemma 3.5 and Proposition 2.5.
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If ĉ is of type (2), it separates Â into an annulus and a disk. If a generating cycle
crosses ĉ, a maximal part of it inside the disk forms a bigon with ĉ. This implies
that the cycle lifts in M̃ to a curve crossing a lift of ĉ at least twice, hence, again by
Lemma 3.5 and Proposition 2.5, this cycle cannot be a shortest homotopic cycle.

If ĉ is of type (3), then a generating cycle in Â has to cross it an odd number of
times. If some generating cycle crosses it at least twice, then it must cross it twice
consecutively in opposite directions. Then, as in the previous case, this generating
cycle is not as short as possible in its homotopy class.

Corollary 4.5. In M̂, there exists at least one lift of a cycle in O with one
endpoint on each boundary component of M̂.

Proof. Otherwise, by Lemma 4.4, the shortest generating cycle in M̂ would cross
no lift of the lines in Õ. But, on M, the cycles crossing no curve of the octagonal
decomposition are contractible.

Let γ be the input cycle of our algorithm. We choose an arbitrary point u on γ
and view temporarily γ as a loop with basepoint u. We consider an arbitrary lift u0

of u in M̃. Let (ui)i∈Z be points in M̃ such that ui+1 is the target of the lift of γ
starting at ui. (Hence the ui’s are uniquely determined once u0 has been fixed.)

As above, x and x′ denote the number of crossings of the input and output cycles
with O; let x̄ = min{x, x′}. Again, in the first phase of the algorithm, we ignore
the O(n) internal complexity of the octagons. We first build the relevant part of the

universal cover M̃ associated to a lift of γ3 starting at u0 (that is, the set of octagons
one can reach from the source of this lift by crossing only lines crossed by this lift);
Lemma 4.2 explains how to do this computation, and Lemma 4.3 shows that this
takes O(k + x) time. We also build points u0, u1, u2, and u3.

We can easily identify in O(x) time the set of lines separating u1 and u2 but not
u0 and u1 nor u2 and u3, which is non-empty by Corollary 4.5 (unless the input cycle
is contractible, in which case the algorithm is trivial). Let ℓ2 be such a line, oriented
such that u1 is on its left and u2 is on its right. As above, for each i ∈ Z, we define
the lines ℓi by translation of ℓ2 (in particular, ℓi has ui−1 on its left and ui on its
right). We can find ℓ3 in O(x) time.

Lemma 4.6. For each i, ℓi has ℓi−1 on its left and ℓi+1 on its right.

ℓ1 ℓ2 ℓ3

u0 u1 u2 u3

u′
1

u′
2

u′
3

r1 r2 r3

Fig. 4.2. The notations for the proof of Lemma 4.6.

Proof. See Figure 4.2. It follows from the definition that ℓi is different from ℓi−1

and ℓi+1. Since the ℓj are all lifts of a given simple cycle, two ℓj must be disjoint,
unless they are identical.

Let r2 be a shortest path from u1 to u2, with infinitesimal crossing weights for
the lines in Õ. By Lemma 3.5, r2 crosses every line at most once. Let u′

2 be the
intersection point of r2 with ℓ2. We also define rj and u′

j, j ∈ Z, by translation of r2

and u′
2.

Since, by definition, ℓ2 does not separate u2 and u3, it does not cross r3, so u′
3 is
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on the right of ℓ2. Hence ℓ3 is on the right of ℓ2. Similarly, ℓ1 is on the left of ℓ2. The
lemma follows by translation.

By Lemma 4.6, we are in the situation depicted in Figure 4.3. Let v2 be an
intersection point of ℓ2 with the lift of γ between u1 and u2; define the points vj by
translation of v2. In particular, we can determine in O(k + x) time the position of v2

and v3 in the abstract octagon tiling. Let pi be the part of the lift of γ connecting vi

to vi+1. We are looking for a shortest cycle homotopic to the cycle corresponding to
the projection of p2 onto M.

ℓ0 ℓ1 ℓ2 ℓ3 ℓ4 ℓ5

v0 v1 v2 v3 v4 v5

w0 w1 w2 w3 w4 w5

q2

Fig. 4.3. The part of the universal cover containing the lifts of γ and δ, and the lines ℓi. Other
lines in this area are also shown.

We consider the strip S of the universal cover that is the region comprised between
lines ℓ2 and ℓ3, and we identify these two lines so that the points v2 and v3 are
identified. We thus obtain the annular cover M̂ of M. The path p2 projects, in M̂,
to a cycle γ̂, which itself projects to γ in M. Finding the shortest cycle homotopic
to γ now boils down to finding the shortest cycle homotopic to γ̂ in M̂. The idea is
to determine a subset of small complexity of M̂ that is relevant for this computation.

We still ignore the O(n) internal structure of the surface, only manipulating

abstract octagons. We consider a set R of octagons in M̃ that is the intersection of
the following two regions of M̃:

• the strip S, and
• the relevant space of the concatenation p0,...,4 of the pi’s for i = 0, . . . , 4,

as described in §4.1. Recall that this is the set of octagons of M̃ reachable
from v0 by crossing only lines crossed by p0,...,4. This region has complexity
O(x) by Lemma 4.3.

Identifying the portions of ℓ2 and ℓ3 of R so as to make p2 a cycle, we obtain an
annular region Â that is a subset of the annular cover M̂. Again, this takes O(k + x)
time; R has complexity O(x).

Lemma 4.7. Some shortest cycle homotopic to γ (using infinitesimal crossing

weights for the cycles in O) has a lift that is a generating cycle in Â.
Proof. Refer to Figure 4.3. Let δ be a shortest cycle homotopic to γ, assuming

infinitesimal crossing weights for the cycles of the octagonal decomposition. The
homotopy from γ to δ lifts, in M̂, to a homotopy from γ̂ to a generating cycle δ̂ that
is a lift of δ. This generating cycle crosses exactly once the projection of the lines ℓi,
by Lemma 4.4, so, in S, it corresponds to a path q2 from a point w2 ∈ ℓ2 to a point
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w3 ∈ ℓ3. As for γ, we construct a sequence (qi)i∈Z of lifts in M̃ of the projection
of q2, and a sequence (wi)i∈Z of points, such that qi has endpoints wi and wi+1.

No line crosses the concatenation of the qi’s more than once, because otherwise
δ would not be tight by Proposition 2.5 and Lemma 3.5. Hence any line disjoint
from q2 and separating q2 from both v0 and v5 crosses four consecutive lines ℓi. Also,
if a line crosses q2, then it either crosses p0,...,4, or it crosses three consecutive lines ℓi.
It follows that q2 belongs entirely to R (which concludes the proof), unless a line ℓ
crosses three consecutive lines ℓi; so we can now assume that it is the case.

There is at most one line that crosses both ℓ2 and ℓ3, for otherwise there would be,
in the four-valent octagon tiling, a region bounded by four lines, which is impossible
by Corollary 3.3. Thus, since ℓ crosses three consecutive lines ℓi, the translation of
the universal cover that takes vi to vi+1 leaves ℓ invariant. This implies that there is
exactly one such line and that ℓ is a lift of a cycle homotopic to γ. This cycle is tight
by Proposition 2.5. Now, if we take q2 to run along this line, on the adequate side,
the same arguments as in the previous paragraph show that q2 belongs to R. This
concludes the proof.

Since every generating cycle in Â projects to a cycle homotopic to γ, it suffices to
compute a shortest generating cycle in Â. To improve the time complexity, we further
discard some unnecessary pieces of this annulus.

The maximal parts of the lifts of the cycles in O in IntM̂ are of three possible
types, according to their intersection with Â, as explained above. Using a traversal
of the arrangement of the octagons on Â, we can easily determine in O(x) time the
type of each curve. If there is a curve of type (1), then it is tight by Proposition 2.5,
so the output of the algorithm is its projection on M, which can be computed in
O(k + x + nx̄) = O(gk + gnk̄) time.

So we assume there are only curves of type (2) and (3). Let δ̂ be the shortest

generating cycle of the annular part Â, using infinitesimal crossing weights on the
octagonal decomposition. By Lemma 4.4, δ̂ does not cross any curve of type (2).

Given a curve of type (2), we run a tandem search on the components of the
complement of this arc to compute the Euler characteristic of one of them and deter-
mine which component is a disk and which component is an annulus. We discard this
disk from the surface, since we know δ̂ does not enter it. The type of the curves is
unchanged when cutting off the disk from the annulus. We iterate this process over
all curves of type (2). The time necessary for each of these operations is linear in the
complexity of the part discarded, so this takes O(x) total time.

Finally, we obtain an annular subset Â′ of M̂ containing δ and made of curves of
type (3) only; note that each of them has to be crossed by the output cycle. We build
the O(n) internal structure of these octagons and compute the shortest generating

cycle of Â′; the output of the algorithm is its projection on M.

Each of the O(x′) curves of type (3) in Â′ crosses the projection of ℓ2 on Â′ at
most twice, by a reasoning analogous to the end of the proof of Lemma 4.7. Thus
every such curve of type (3) in Â′ corresponds, in the strip S, to at most three different

lines. The annulus Â′ is included in the relevant space built by allowing to cross these
O(x′) lines, and thus has complexity O(x′n) by Lemma 4.3. So the running time for
this computation is O(nx′ log(nx′)) by Proposition 2.7(e). The total time complexity
is O(x + nx′ log(nx′)). Recall that x = O(gk) and x′ = O(gk′); furthermore, we have
x′ = O(x); this completes the proof.
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5. Tightening Curves on a Torus. We here prove the Main Theorem in the
case where M is a torus (g = 1, b = 0). The ingredients are essentially similar to the
case g ≥ 2, b = 0, so we only briefly indicate the differences.

It is not difficult to prove that a torus cannot have an octagonal decomposition,
using Euler’s formula and the fact that the Euler characteristic of the torus is zero.
Instead of an octagonal decomposition, a quadrilateral decomposition can be used.
It is comprised of two tight non-separating cycles that cross exactly once, which we
can compute in O(n log n) time as follows. The first cycle γ1 is a tight non-separating
cycle, obtained by Proposition 2.7(d). Cutting along it yields an annulus; each point
on a boundary has a “twin” point on the other one. We can compute the O(n) shortest
arcs in this annulus between each pair of twin vertices; the shortest such arc gives the
second cycle γ2. The multiplicity is O(1). These shortest paths can be computed in
O(n log n) total time using an algorithm by Klein [22].

The polygonal schema of this quadrilateral decomposition has four sides, and
the lift of the quadrilateral decomposition in the universal cover is combinatorially
isomorphic to the Euclidean grid. The major difference, compared to the hyperbolic
case, is that the relevant region, obtained by allowing to cross x lines, has complexity
O(x2), and not necessarily O(x) as in Lemma 4.3, hence the difference in the time
complexity.

For i = 1, 2, let mi be the number of times the input path or cycle crosses γi

from left to right minus the number of times it crosses it from right to left; this can
be computed in O(k + x) time. For clarity of the exposition we assume m1 and m2

to be nonnegative; we have m1 ·m2 = O(x2). These two numbers determine uniquely
the homotopy class of the input curve, since the fundamental group of the torus is
Abelian.

If the input curve is a path p, we build an (m1 + 1)× (m2 + 1)-grid, also building
the O(n) internal structure of each quadrilateral. Then we compute the shortest
path between the lift of p(0) in the leftmost lower square and the lift of p(1) in the
rightmost upper square. Its projection is the desired shortest homotopic path, by a
reasoning analogous to Lemma 3.5. This takes O(nx′2) time. The total running time
is O(k + x + nx′2), where x = O(k), x′ = O(k), and x′ = O(k′); hence, in total, this
is O(k + nk̄2).

If the input curve is a cycle γ, we can assume (m1, m2) 6= (0, 0); for example,
m1 6= 0. We build an m1 × (m2 + 1)-grid, and we glue together the vertical side
incident to the leftmost lower vertex to the vertical side incident to the rightmost
upper vertex; this gives an annulus Â that is a part of the annular cover M̂ with
respect to the cycle γ. Some shortest cycle γ′ homotopic to γ must have a lift, in
the annular cover, that belongs actually to this region Â. We compute the shortest
generating cycle using Proposition 2.7(e). The total time spent is O(k+nk̄2 log(nk̄2)).

6. Surfaces with Boundary. In this section, we consider the case where the
surface has at least one boundary component: b ≥ 1. We remark that the algorithm
for surfaces without boundary gives, without much effort, an algorithm for surfaces
with boundary. Indeed, given the cross-metric surface with boundary M, attach a
handle to each boundary cycle, obtaining a surface without boundary M, and assign
infinite crossing weights to the edges of the handles and of the original boundary
cycles. Then two curves in M ⊂ M are homotopic in M if and only if they are
homotopic in M, and a shortest curve homotopic to a given curve in M must be
in M. So it suffices to tighten the curve in M.

However, this approach is a bit artificial. In this section, we propose a simpler
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approach. We also preprocess the surface with a topological decomposition; but this
decomposition is made of disjoint, simple curves, in contrast to the case of surfaces
without boundary, where crossings were necessary in the octagonal decomposition.
Also, no hyperbolic geometry is involved, and the preprocessing step has running
time O(n log n + (g + b)n), which is slightly better than the O((g + b)n log n) running
time of the approach sketched above.

As for the case of surfaces without boundary, a preliminary step builds a decom-
position of the surface with tight curves, allowing the shortening algorithm to explore
a portion of the universal cover of reasonable complexity.

6.1. Tight Systems of Paths. We first describe a slight extension of a paper
by Erickson and Whittlesey [16]. Let N be a cross-metric surface with complexity n,
genus g, and without boundary. Let P = {p1, . . . , ph} be a set of points on N . A
system of paths with vertex set P is a set of simple paths or loops with endpoints in P
that are pairwise disjoint except possibly at common endpoints, cut the surface into
a disk, and such that every point in P is an endpoint of at least one path. By Euler’s
formula, any system of paths contains exactly 2g + h− 1 paths, and the boundary of
its associated polygonal schema has 4g + 2h− 2 edges.

Lemma 6.1. In O(n log n + (g + h)n) time, we can compute a tight system of
paths with vertex set P on N , in which each path has multiplicity at most two.

Proof. Our algorithm is a variant of the algorithm by Erickson and Whittlesey [16]
to compute the shortest system of loops, based at some given point p, of a cross-
metric surface N without boundary. This algorithm maintains a set of loops L,
initially empty, and iteratively adds to L the shortest loop ℓ with basepoint p such
that N \ (L ∪ {ℓ}) is connected. This greedy process actually provides a shortest
system of loops with basepoint p; each loop is tight and has multiplicity at most two.
It can be implemented so as to run in O(n log n+ gn) time by a single-source shortest
path tree T rooted at p with Dijkstra’s algorithm: the candidate loops are made of a
shortest path in T with starting point p, a single crossing of an edge in G \ T , and a
shortest path in T with terminal point p.

In our variant, we run Dijkstra’s algorithm from all points in P simultaneously,
obtaining a shortest path forest F . The candidate loops are made of a shortest path
in F with starting point in P , a single crossing of an edge in G\F , and a shortest path
in F with final endpoint in P . All the arguments showing that this greedy process
terminates and that every resulting path is tight and has multiplicity at most two
carry through without modification. This takes O(n log n + (g + h)n) time.

We call the tight system of paths obtained in the previous proposition the greedy
system of paths with vertex set P . Let S be such a greedy system. Cutting N along S
also cuts the edges of G∗ into sub-edges. A sub-edge is external if at least one of its
endpoints is an endpoint of the original edge of G∗; otherwise, this sub-edge is internal.
The corners of a system of paths with vertex set P are the copies of the points in P
on the boundary of the associated polygonal schema. The sides of a system of paths
are the parts of the boundary of the polygonal schema between consecutive corners.

Lemma 6.2. Let S be a greedy system of paths on N ; let D be the associated
polygonal schema. Then the shortest path between any two points in D has multiplicity
at most four on N .

Proof. Let q1, . . . , q4g+2h−2 be the corners of D, in this cyclic order around the
boundary of D. Recall that the greedy system of paths is built using a shortest path
forest F on N : each path is the concatenation of two shortest paths in F plus a
crossing of an edge that is outside F and belongs to no other path of the system.
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Internal edges come from the fact that two such shortest paths may share edges in F
and are thus running along each other. In particular, an internal sub-edge necessarily
connects adjacent sides of D, that is, for some i, the side qiqi−1 of D to the side qiqi+1

(here all indices are taken modulo 4g + 2h − 2); see Figure 6.1. In that case, the
internal sub-edge is said to belong to corner qi.

q1
q2

q3

q4

Fig. 6.1. A polygonal schema and the sub-edges. The internal sub-edges have both endpoints
on the boundary of the polygonal schema, while the external sub-edges have at least one endpoint at
a vertex of G∗.

Let p be a shortest path in D; we claim that it crosses internal sub-edges belonging
to at most two corners. For let qi and qj be the corners to which belong the first and
last internal sub-edge crossed by p; let qk be a corner different from qi and qj . Since
the internal sub-edges belonging to qi and qj are on the same side of any internal
sub-edge belonging to qk, the internal sub-edges belonging to qk must be crossed an
even number of times by p, but also at most once by p since p is a shortest path.
Hence p crosses only internal sub-edges belonging qi and qj . This proves the claim.

Each edge of N corresponds to at most two external sub-edges in D, and to at
most one internal sub-edge belonging to qi (for each i). Hence, by the claim in the
previous paragraph, a shortest path in D has multiplicity at most four on N .

6.2. Preprocessing Step. Our preprocessing step consists of the construction
of a triangulated system of arcs on M: a set of simple, pairwise disjoint arcs that cut
the surface into disks, each disk being incident to exactly three (sides of) arcs. By
Euler’s formula and double-counting of the vertex-edge incidences, any triangulated
system of arcs contains exactly 6g + 3b − 3 arcs.

Theorem 6.3. In O(n log n+(g+b)n) time, we can compute a tight triangulated
system of arcs on M such that each arc has multiplicity at most four.

Proof. We fill the b boundaries of M with disks D1, . . . , Db, and assign weights to
the edges of G∗ incident to the disks Di such that all the weights of M are infinites-
imally small compared to them; this gives a new cross-metric N without boundary.
Let P = {p1, . . . , pb} be a set of points in N , one inside each disk Di. We now apply
Lemma 6.1, obtaining, in O(n log n +(g + b)n) time, a greedy system of paths S with
vertex set P . Let D be the polygonal schema associated with S; it has complexity
O((g + b)n).

Let q1, . . . , q4g+2b−2 be the corners of the polygonal schema D. To triangulate D,
we first compute a shortest-path tree inside D with root q1, in O((g + b)n) time using
the linear-time algorithm by Henzinger et al. [20]. Let S′ be the set of shortest paths
in D between q1 and qi, for i = 3, . . . , 4g +2b− 3. Each face of the arrangement of S′

on D is a triangle.
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We now view the elements of S′ as paths or loops in N . Since the curves in S∪S′

have endpoints in {p1, . . . , pb}, and because the weights on the boundaries of the disks
Di are huge, none of these curves meets a disk Di, except to leave the disk containing
its starting point and to enter the disk containing its terminal point. We now remove
the disks Di and the pieces of the paths in S ∪ S′ inside them: we re-obtain the
cross-metric surface M, with a triangulated set of arcs S̄ ∪ S̄′.

Each arc of S̄ is tight, since each element of S is tight. Each arc of S̄′ is tight,
because it is a shortest arc inside the polygonal schema delimited by the tight arcs
in S̄ and by Proposition 2.4. Each arc in S̄ has multiplicity at most two (Lemma 6.1).
Each arc in S̄′ has multiplicity at most four (Lemma 6.2). This concludes.

As for the case of the octagonal decomposition, we will actually apply Theorem 6.3
in the overlay G+(M) of G(M) and G∗(M). More precisely, this graph G+ is defined
as follows for surfaces with boundary. The vertices of G+ are either vertices of G,
vertices of G∗, or intersections between an edge e of G and its dual edge e∗ in G∗.
All the non-boundary edges of G and G∗ are overlaid in G+; therefore, the non-
boundary edges of G, and some non-boundary edges of G∗, are partitioned into two
subedges in G+. Finally, boundary edges are created between consecutive vertices on
the boundary of M. Each face of G+ is a quadrilateral.

The edges e+ of G+ are assigned crossing weights as follows. If e+ is contained
in a non-boundary edge of G∗, it has the same crossing weight as that dual edge.
If it is contained in a non-boundary edge of G, its crossing weight is a fixed formal
infinitesimal ε′ << ε. If e+ is a boundary edge, it has crossing weight ∞. Again, any
curves that are tight with respect to G+ are also tight with respect to G∗.

In O(n log n + (g + b)n) time, we obtain a triangulated system of arcs S of M
where each of the O(g + b) arcs is tight, each edge of G∗ is crossed O(1) times by each
arc in S, and each edge of G is crossed O(1) times by each arc in S. In particular,
any walk in G of length k crosses the arcs in S a total of O((g + b)k) times. The faces
of the triangulated system of arcs have O(n) complexity. These properties are thus
exactly the same as for the octagonal decomposition, with g + b instead of g.

6.3. Tightening Curves. We here prove the Main Theorem in the case where
M is a surface with at least one boundary (b ≥ 1). Our algorithms for tightening
paths in this case essentially follow the technique of Hershberger and Snoeyink [21],
only using a tight triangulated system of arcs in place of a triangulation.

We start with the triangulated system of arcs S described in the previous section.
We call the faces of S triangles (although their boundary is made of three sides of

arcs and three pieces of boundaries of M). Let S̃ be the set of lifts of arcs in S in

the universal cover M̃ of M. A crucial property is that each such lift is separating
(Lemma 2.1), as the lines of an octagonal decomposition.

We first explain how to tighten a path p; let p̃ be one of its lifts in M̃. By
Lemma 2.3, and since each lift of an arc is separating, some shortest path p̃′ with the
same endpoints as p̃ does not cross the lifts in S̃ crossed an even number of times
by p̃. We compute the union of the triangles traversed by p̃, without building the
internal structure of the triangles. The construction is classical, see Hershberger and
Snoeyink [21]: start with a copy of the triangle containing p(0); follow p until it exits
the currently built union of triangles, and add to this region a copy of the triangle
necessary to prolongate the lift p̃ of p; iterate. Then we consider the lifts in S̃ that
are crossed an odd number of times by p̃, and compute the relevant space, that is, the
portion of M̃ accessible from p̃(0) by crossing only (a subset of) these lifts; we build
the O(n) internal structure of these triangles. Finally, we compute the shortest path,
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in the relevant space, between the endpoints of p̃, using the linear-time algorithm by
Henzinger et al. [20]. Its projection is the desired output path. The analysis of the
time complexity is exactly the same as in the case g ≥ 2, b = 0, so we omit it.6

To tighten a cycle γ, we use ideas similar as those in §4.3, proceeding as in
the previous paragraph to build the relevant space. More precisely, Lemma 4.4,
Corollary 4.5, and Lemma 4.6 extend directly to the case of surfaces with boundary.
We obtain a sequence (ai)i∈Z of lifts, in M̃, of an arc in S̃ such that ai−1 is on the
left of ai and ai+1 is on its right, and a sequence (vi)i∈Z of points such that vi ∈ ai,
and we are looking for the shortest cycle homotopic to the cycle corresponding to the
projection of any path from vi to vi+1.

We consider the relevant space of the part of the lift of γ between v2 and v3; it
is made of O(x) triangles. The shortest cycle homotopic to γ has a lift in this region
that connects a point of a2 to the corresponding point of a3, and crosses only arcs
that separate a2 and a3. We thus compute the space reachable from v2 by crossing
only these lifts, and then build the internal structure of the triangles. Finally, we
compute the shortest generating cycle of the annulus Â′ obtained from this space by
identifying a2 and a3; its projection is the output of the algorithm. The complexity
analysis is, again, identical to the one done in §4.3.

7. Better Analysis of Curve Shortening. The goal of this section is to prove
that the algorithms of Colin de Verdière [6] and Colin de Verdière and Lazarus [7, 8]
for tightening sets of simple, pairwise disjoint curves on combinatorial surfaces run in
time polynomial in the complexity of their input: the number of vertices, edges, and
faces of the surface, plus the total number of edges of the input curves. Previously,
these algorithms were only known to work in time polynomial in the size of the input
and in the ratio α between the largest and smallest length of an edge of the input
surface.

These three algorithms all use the same high-level approach, which we rephrase
now for convenience:

(1) Given a set s of simple, pairwise disjoint arcs [6] (resp. cycles [8]) on a com-
binatorial surface M, the algorithm extends s to a so-called cut system by
paths (resp. doubled pants decomposition): a set of simple, pairwise disjoint
arcs (resp. cycles) s′ = (s′1, . . . , s

′
p) such that each component of M cut along

all curves of s′ except one has a simple topology: a disk (resp. a pair of pants).
(2) The second step is a succession of elementary steps, each of which tightens a

curve s′i in the surface M cut along s′ \ {s′i} (this is easy because this surface
is topologically simple). Elementary steps are applied to each curve s′1, s′2,
. . . , s′p in order, again and again, until stability in length is reached. It is
guaranteed that, once this stability is reached, every arc (resp. cycle) is tight
in M.

(3) Finally, the curves corresponding to the ones added in Step (1) are removed.
The algorithm for tightening arcs also allows, given a graph embedding on the

surface, to compute the shortest graph embedding isotopic, with fixed vertices, to
it [6]: Simply puncture the surface M at each vertex of the graph; each edge of
the graph becomes an arc on this new surface M′; apply the algorithm above, thus
tightening each arc; filling the punctures of M′ to re-obtain M gives indeed the desired
graph embedding. The (earlier) algorithm of Colin de Verdière and Lazarus [7] is a

6We could also build directly the relevant space, without the first step that ignores the internal
surface structure of the triangles, by computing the crossing word of p with S and by reducing it [7].
This is simpler in practice but has asymptotically the same complexity.
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slight variation of this algorithm, in the special case where the graph embedding is a
system of loops.

Anyway, Step (1) is known to run in polynomial time in its input (and trivially
also Step (3)). The bottleneck in complexity is Step (2), which was known to run in
time polynomial in the complexity of its input and in α. We prove that the running
time is polynomial, irrespectively of α:

Theorem 7.1. On a combinatorial (g, b)-surface with complexity n,

(a) the algorithm of Colin de Verdière [6, Theorem 3.13] for shortening a cut
system by paths of complexity k has running time O((g + b)4nk4);

(b) the algorithm of Colin de Verdière and Lazarus [8] for shortening a doubled
pants decomposition of complexity k has running time O((g+b)4nk4 log(nk)).

As mentioned above, the algorithm to shorten a graph [6, Theorem 3.2] is essen-
tially the same as the algorithm for shortening a cut system by paths [6, Theorem
3.13]. So (a) implies that this algorithm also runs in O((g + b + h)4nk4), where h is
the number of vertices of the graph. Similarly, the algorithm to tighten a system of
loops [7] runs in O(g4nk4) time.

Proof. We will use the following known facts, valid for both algorithms:

(1) The number of elementary steps is O(g + b) times the maximum, over i, of
the number of crossings between the input set of curves s′ and any shortest
curve ti homotopic to some input curve s′i.

(2) An elementary step can be performed in O(n + k′) time for case (a) and in
O((n + k′) log(n + k′)) time for case (b), where k′ is the complexity of the
current set of curves.

Below, we prove the two following properties:

(3) The number of crossings between s′ and ti is O((g + b)k2).
(4) At each elementary step, the complexity of the set of curves increases by

O(n).

These two properties conclude. Indeed, (1) and (3) imply that the number of
elementary steps is O((g+b)2k2). With (4), we obtain that the total complexity of the
curves at any given stage of the algorithm is O(k+(g+b)2k2n) = O((g+b)2k2n). Now,
(2) implies that the time spent for an elementary step in case (a) is O((g + b)2k2n);
therefore the time complexity for case (a) is O((g + b)4k4n). The same analysis (with
an extra log factor) holds for case (b).

To prove (3), let U be a tight octagonal decomposition of M (if b = 0 and g ≥ 2),
a quadrilateral decomposition of M (if b = 0 and g = 1), or a tight triangulated
system of arcs of M (if b 6= 0), whose existence follows from Theorem 3.1, §5, and
Theorem 6.3, respectively. Below, by a polygon, we mean an octagon, a quadrilateral,
or a triangle, respectively. The existence of these decompositions where each curve
has multiplicity O(1) in the refined graph G+(M) implies that a curve s′i has at most
O((g + b)k) crossings with U . So the shortest curve ti homotopic to s′i has at most
O((g + b)k) crossings with U . Each subpath of ti inside a polygon is a shortest path
within this polygon. Since the boundary of a polygon is made of at most 8 different
curves, each of which having multiplicity O(1) on M, this implies that each subpath
of ti inside a polygon passes O(1) times through each face of G∗, and is therefore
crossed O(k) times by s′. There are O((g + b)k) such subpaths of ti. Thus s′ and ti
cross O((g + b)k2) times, which was to be proved.

We now prove (4) in case (a). At each elementary step, an arc s′i is replaced by
a shortest arc s′′i in M cut along s′ \ {s′i}. We consider all the edges of G∗, split into
sub-edges by the crossings with the arcs in s′ \ {s′i}. Call the sub-edges that contain
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one or two endpoints of an edge of G∗ external, and the other ones internal. The
arc s′′i crosses each sub-edge at most once. There are O(n) external sub-edges, so
the number of crossings of s′′i with the external sub-edges is O(n). Assume that s′′i
crosses a given internal sub-edge e; it does so exactly once. The endpoints of e are on
the boundary of the disk obtained by cutting M along s′ \ {s′i}. Since s′′i crosses e
exactly once and has the same endpoints as s′i inside the disk, this implies that s′i also
crosses e. We can thus charge this crossing of s′′i with e by the crossing of s′i with e
(because s′i is removed). Thus, the complexity of s′′i equals the complexity of s′i plus
O(n).

To prove (4) in case (b), recall that each elementary step consists of replacing, in
a pair of pants P , a cycle homotopic to one boundary of P by a shortest homotopic
cycle in P . As above, we consider the sub-edges obtained by splitting the edges of G∗

at the crossing points with the cycles in s′\{s′i}. Since the shortest cycle homotopic to
a given boundary of a pair of pants has multiplicity at most two (Proposition 2.7(f)),
and since there are O(n) external sub-edges, the number of crossings of s′′i with the
external sub-edges is O(n). Finally, note that each lift of each internal sub-edge
in P separates the universal cover of P (Lemma 2.1); this implies that the number of
crossings of s′′i with an internal sub-edge is no more than the number of crossings of
s′i with this internal sub-edge.

8. Conclusion. To conclude, we briefly discuss the case of non-orientable sur-
faces. Our tightening algorithm requires orientability at several places. The results
of Hass and Scott [18] (stated in Proposition 2.2) were proven in the orientable case
only. Also, the annular cover is defined for two-sided curves only (for one-sided curves,
it would be a Möbius band); in particular, Proposition 2.5 holds for orientable sur-
faces only. Finally, the construction of the octagonal decomposition does not work
directly for non-orientable surfaces (in particular, one-sided cycles should be handled
separately).

For the problem of path tightening, we can circumvent this problem easily. Let
M be a non-orientable surface, possibly with boundary. Let M2 be the orientable
double cover of M: it is an orientable surface that is a covering space of M, such that
each point of M lifts to exactly two points in M2. Given a path p on M, computing
a shortest path homotopic to p amounts to lifting p to M2, computing in M2 the
shortest path homotopic to that lift, and projecting it back to M. If M is a non-
orientable surface of genus g with b boundaries, then M2 is an orientable surface of
genus g − 1 (by Euler’s formula) and 2b boundaries. Hence we obtain an algorithm
with the following complexity in the non-orientable case:

preprocessing step path tightening

g ≥ 3, b = 0 O(gn log n) O(g(k + nk̄))

g = 2, b = 0 O(n log n) O(k + nk̄2)

g = 1, b = 0 0 O(k + n)

b ≥ 1 O(n log n + (g + b)n) O((g + b)(k + nk̄))

(In the case g = 1, b = 0, the surface M2 is a sphere, and we only have to compute a
shortest path joining the endpoints of the lift of the path.)

However, the problem of tightening cycles on a non-orientable surface is much
more complicated. The difficulty comes from the fact that the lift of a cycle to M2

is not necessarily a cycle. (One may hope to use the fact that the lift of the square of
that cycle is a cycle, but this is not helpful, since that lift may be contractible even if
the original cycle is not; consider for example a non-contractible simple cycle in the
projective plane.) We leave this as an open problem.

28



Acknowledgments. The authors would like to thank Kim Whittlesey for helpful
comments on topology and combinatorial group theory, Francis Lazarus for several
discussions (notably on the use of the annular cover and on a part of the proof of
Theorem 7.1) that arose when writing previous papers [7, 8], and the referees for
carefully reading the document and suggesting helpful modifications. Jeff would like to
thank Michel Pocchiola for his invitation to visit ENS, where this work was initiated.

REFERENCES

[1] S. Bespamyatnikh, Computing homotopic shortest paths in the plane, Journal of Algorithms,
49 (2003), pp. 284–303.

[2] S. Cabello and E. W. Chambers, Multiple source shortest paths in a genus g graph, in
Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
2007, pp. 89–97.

[3] S. Cabello, M. DeVos, J. Erickson, and B. Mohar, Finding one tight cycle, ACM Trans-
actions on Algorithms, 6 (2010), Article No. 61.

[4] S. Cabello, Y. Liu, A. Mantler, and J. Snoeyink, Testing homotopy for paths in the plane,
Discrete & Computational Geometry, 31 (2004), pp. 61–81.

[5] S. Cabello and B. Mohar, Finding shortest non-separating and non-contractible cycles for
topologically embedded graphs, Discrete & Computational Geometry, 37 (2007), pp. 213–
235.
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