
Conforming Delaunay Triangulations in 3D ?
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Abstract
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builds a Delaunay triangulation conforming to this PLC.
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1 Introduction

In the following, the term faces denotes objects in 3D space which are ei-
ther 0-dimensional faces called vertices, 1-dimensional faces called edges or
2-dimensional faces called 2-faces. The vertices are just points, the edges are
straight line segments, and the 2-faces are polygonal regions possibly with
holes and isolated edges or vertices included in their interior. A piecewise
linear complex, called for short PLC, is a finite set C of faces such that:

• the boundary of any face of C is a union of faces of C;
• the intersection of any two faces of C is either empty or a union of faces of
C.

A triangulation T is said to conform to a PLC C if any face of C is a union
of faces of T . In this paper, we propose an algorithm which, given a PLC C,
finds a set of points P whose Delaunay triangulation conforms to C. The set
P includes the vertices of C and a certain number of additional points which
are usually called Steiner points.

This question is motivated by problems in mesh generation and geometric
modeling: in these fields, it is crucial to decompose the space into a set of
simplices which conforms to a given PLC, with the additional restriction that
the shape of the cells must satisfy certain properties. Delaunay triangulations
present several features (see, e.g., [1]) which can be exploited to solve this
problem, and many mesh generation algorithms make use of this concept.

The problem of computing a conforming 2D Delaunay triangulation was solved
by Saalfeld [6] and Edelsbrunner and Tan [3]. The algorithm by Edelsbrunner
and Tan [3] guarantees an O(n3) bound on the number of generated Steiner
vertices, if n is the size of the input. Most of the further works on the subject
are based on the Delaunay refinement approach pioneered by Ruppert [5] and
Chew [2]. Shewchuk [7] gave an algorithm in 3D which builds a conforming
Delaunay triangulation under restrictive conditions on the angles of the PLC.
Murphy, Mount, and Gable [4] found a solution which works under no restric-
tion, but produces far too many points in practice. The main interest of their
paper is to show the existence of a conforming Delaunay triangulation with a
finite set of vertices for any 3D PLC.

Our algorithm uses the Delaunay refinement approach. Initially, the set P is
the set of vertices of the complex C. Points are then added to P until each
edge and each face of the complex C is a union of simplices which are in the
Delaunay triangulation of P.

The main difficulty with such a strategy is to ensure termination. Indeed, it is
known that sharp edges and corners may induce cascading additions of Steiner
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points. To avoid this effect, we first define a protected area around edges and
vertices of the PLC with a special refinement process. Outside the protected
area, the PLC can be refined using Ruppert’s process and the interaction
between refinements in both areas can be controlled. Murphy, Mount, and
Gable use a similar approach. The main difference with our work lies in the
definition of the protected area. In our case, this area adapts to the local
geometry of the input PLC.

The algorithm is presented in Section 2 and proved to be correct in Section 3.
In Section 4, we present the details of the construction of the initial protected
area, skipped in Section 2. Section 5 presents some refinements to improve
the running time of the algorithm and to lower the number of vertices in the
output conforming triangulation. At last, we end with experimental results in
Section 6.

2 The algorithm

After a few definitions, we describe the protected area (Subsections 2.2 and 2.3).
We then define the refinement process used for this area (Subsections 2.4
and 2.5). Finally, we describe the main procedure and summarize the whole
algorithm.

2.1 Definitions and notations

The circumball of a segment ab is the ball admitting the segment ab as diam-
eter. The circumball of a triangle abc is the ball admitting the circumscribing
circle of abc as great circle.

An edge (resp. a triangle) is said to have the Gabriel property if its circumball
contains no point of P in its interior. A point in the interior of the circumball
of an edge (resp. a triangle) is said to encroach upon this edge (resp. this
triangle).

In the following, we note bd(B) the boundary of a ball B, int(B) the interior
of B and circum(ab) (resp circum(abc)) the circumball of the segment ab (resp.
of the triangle abc).
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2.2 Protecting balls

The 1-skeleton Sk of the complex C is the union of the 0- and 1-dimensional
faces of C. The protected area is defined by means of a set B of closed balls,
called protecting balls, satisfying the following requirements:

(i) the union of the balls in B covers the 1-skeleton Sk of the complex C;
(ii) the balls are centered on points which are in Sk ;
(iii) if two balls intersect, their centers belong to the same edge of the complex

C;
(iv) if a face of C intersects a ball, then it contains the center of this ball;
(v) the intersection of any three balls in B is empty;
(vi) any two balls are not tangent;
(vii) the center of any ball is inside no other ball.

(i) and (iv) imply that any vertex in C is the center of a ball in B. We show
in Section 4 how to build a set of balls satisfying these requirements. Fur-
thermore, in Section 5, we show that there is in fact no need to cover all the
edges.

2.3 Center-points, h-points, p-points, and SOS-points

We describe here a few subsets of points, included in the balls of B, that we
need to add first in the set P. See Figure 1.

Let B be a ball in B with center o. Let BB be the set of balls in B that
intersect B. By condition (v), the intersections of B with the elements of BB

are disjoint.

We first add the center o of B. Such a point will be called a center-point.
Then, for each element Bi of BB, consider the radical plane of B and Bi. It
intersects the line joining the centers of B and Bi at a point hi, which is on an
edge of C by condition (iii). The point hi is added to the set P. Such points
will be called h-points.

By condition (iv), any face of C which intersects B∩Bi contains the centers of
B and Bi, and thus can be either the edge including the segment ooi (oi is the
center of Bi) or a 2-face incident this edge. For each 2-face F of C intersecting
B∩Bi, we add to P the intersection points of F with the circle bd(B)∩bd(Bi).
We called those points p-points.

Consider the plane Q of a 2-face of C intersecting B (and thus containing
o). The edges of C split the disk Q ∩ B into one or several sectors. We focus
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Fig. 1. The situation in the neighborhood of a ball B, incident to three other balls
B1, B2 and B3. There are two faces in the complex, limited by three edges, in the
plane of the figure. Point hi is added on the radical plane of B and Bi. p-points
a, b, c, and d belong to the boundary of two balls and to a face, they are therefore
also inserted in P. Incident to o are four right-angled triangles (e.g., oh2a) and two
isosceles triangles (e.g., oab). The shield edges are ab and cd.

on sectors which are included in C. The p-points further split these sectors
in subsectors. We call right-angled subsectors the subsectors limited by an
edge of C and a p-point and isosceles subsectors the subsectors limited by two
p-points.

If some isosceles subsectors form an angle ≥ π/2, we add some points on their
bounding circular arcs to subdivide them in new subsectors forming an angle
< π/2. For reasons that will be clear in Subsection 2.4, these points are called
SOS-points. The new subsectors with angle < π/2 are still called isosceles
subsectors.

Center-points and h-points are the only categories of points added in the
interior of protecting balls. p-points and SOS -points lie on the boundaries of
protecting balls. SOS -points belong to a single protecting ball while p-points
belong to the intersection of two balls.

Isosceles subsectors are defined by the center o of a ball B and by two points
a and b (either p-points or SOS -points) on bd(B). Line segments such as ab,
joining two points that define an isosceles subsector, are called shield edges.
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Fig. 2. The SOS strategy: We split the shield edge ab by inserting the point c on
the boundary of the ball.

In the following, triangles defined by center-points and shield edges such as
oab are referred to as isosceles triangles. Triangles spanned by a center-point,
a h-point and a p-point on the boundary of some right-angled subsector are
referred to as right-angled triangles.

Definition 1 The protected area is the union of the isosceles and right-angled
triangles. See the dark gray area in Figure 1. In particular, the protected area
is included in the union of the protecting balls.

Definition 2 The unprotected area is the complex C, minus the protected
area.

2.4 The “split-on-a-sphere” strategy

During the process, it will be necessary to split shield edges. Since we do not
want to add more points inside the balls in B, we use a special treatment
to split such a shield edge, called the “split-on-a-sphere” strategy (SOS for
short). See Figure 2.

Let ab be a shield edge to be split, in a ball B. We distinguish two cases: a
and b are both SOS -points and belong to a single ball B, or at least one of
these two points (for example a) is a p-point and belongs also to another ball
B′.

If a and b belong only to B, let c be the midpoint of the shortest geodesic arc
ab on bd(B). To refine edge ab, we add c to P and replace the shield edge ab
by two shield edges ac and cb.

If a is a p-point belonging to bd(B)∩bd(B ′), the idea is quite similar; however,
if we do not take care, the SOS strategy could lead to cascading insertions of
points, because refining an edge on B would lead to refinement of an edge on
B′, and so on. We thus use a strategy “à la Ruppert” [5], using circular shells.
We consider the length of the segment ab, divided by two, and round it to the
nearest distance d which is of the form 2k, k ∈ Z (the unit distance has been
chosen arbitrarily at the beginning of the algorithm). Let c be the point of the
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shortest geodesic arc ab on bd(B) at distance d from a. We split the shield
edge ab using the point c.

In both cases, the added point c belongs to the category of SOS -points. Note
that, due to the SOS refinement strategy, the protected and unprotected areas,
still defined as in Subsection 2.3, will slightly evolve during the algorithm. Each
SOS refinement increases the protected area and decreases the unprotected
area.

2.5 The protection procedure

This procedure adds some points to set P to ensure that shield edges and
isosceles triangles have the Gabriel property. It uses recursively the SOS strat-
egy and works as follows: While there is an encroached shield edge ab or an
encroached isosceles triangle oab, refine the edge ab using the SOS strategy.

2.6 The whole algorithm

Let us recall that the algorithm works by adding points to set P. We note
Dt3(P) the 3D Delaunay triangulation of points in P. For each plane Q of a
2-face in C, we note Dt2(P ∩ Q) the 2D Delaunay triangulation of points in
P ∩Q. These triangulations are updated upon each insertion of a point in P.

The algorithm performs the initialization step and the main procedure de-
scribed below.

The Initialization Step:

• Construct and initialize the protected area (as described in 2.2 and 2.3);
• execute the protection procedure.

We will see later that the Delaunay triangulation of P conforms to the part
of C which is inside the protected area. Because the algorithm maintains the
Gabriel property of shield edges, in each plane Q of a 2-face F of C, the 2D
triangulation Dt2(P∩Q) conforms to the shield edges in this plane and thus to
the unprotected part Fu of F . The main procedure ensures that the triangles
of Dt2(P ∩ Q) included in Fu appear in the 3D triangulation Dt3(P).

The Main Procedure:

The Main Procedure consists in executing the following loop: While there is
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a triangle T in the 2D Delaunay triangulation Dt2(P ∩ Q) of the plane Q of
a 2-face F of C such that:

(a) T is included in the unprotected part Fu of F ,
(b) T does not appear in Dt3(P),

refine T trying to insert its circumcenter c, that is:

• if c encroaches upon no shield edge, insert it;
• otherwise, split all the shield edges encroached upon by c using the SOS

strategy, and then execute the protection procedure.

3 Proof of the algorithm

Two steps are involved for the proof of this algorithm. First, we prove invari-
ants of the algorithm concerning the positions of the points added and the
Gabriel property of some triangles and edges. After that, we are able to prove
termination.

3.1 Properties maintained in the algorithm

Lemma 3 At the beginning (and the end) of each execution of the main loop,
the shield edges have the Gabriel property.

Proof. Indeed, this is true before the first execution of the main loop, because
the protection procedure, which has just been executed, ensures this property;
for the same reason, this also holds after an execution of the loop leading to
the split of shield edges. At last, a circumcenter is inserted in P only if it does
not violate this property. 2

In the following, we define an added circumcenter to be a circumcenter inserted
in the set P, and a rejected circumcenter to be a circumcenter considered in
the algorithm but not inserted because it encroaches upon some shield edge.

Lemma 4 Any circumcenter (added or rejected) considered by the algorithm
lies in the unprotected area, outside the protecting spheres. In particular, no
point is added inside the protecting spheres after the initialization step, and P
is included in C.
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Fig. 4. The intersection of the unprotected area with the union of protecting balls
is included in the circumballs of shield edges.

Proof. Let T be a triangle whose circumcenter is considered at some step of
the algorithm. T lies in the unprotected area, and belongs to the 2D Delaunay
triangulation Dt2(P ∩ Q) of the plane Q of some 2-face in C. Let p be the
circumcenter of T . Assume for contradiction that p lies outside the unpro-
tected area. Let m be a point in T . Since shield edges enclose the connected
component of the unprotected area which contains T , the segment pm must
intersect a shield edge ab. The vertices a and b cannot be inside circum(T )
because T belongs to Dt2(P ∩Q). Hence (Figure 3), triangle T belongs to the
circumball of ab, which is impossible by Lemma 3.

Moreover, since the circumballs of shield edges cover the intersection of the
unprotected area with the protecting balls (see Figure 4), any added circum-
center is actually outside the protecting spheres. 2

Proposition 5 At the beginning (and the end) of each execution of the main
loop, the isosceles triangles have the Gabriel property.

Proof. The proposition is obvious after the initialization step because the
protection procedure is called and enforces the Gabriel property of isosceles
triangles. For the same reason, it is also the case when a circumcenter has just
been rejected because it encroaches upon some shield edge.
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It remains to see that this proposition is still true when a circumcenter has
just been inserted: such a circumcenter lies outside the protecting spheres (by
Lemma 4) and outside the circumball of any shield edge (otherwise it is not
inserted in P). Let ab be such a shield edge, belonging to ball B. We note
that the boundaries of B, circum(ab), and circum(oab) belong to a pencil of

spheres. Because the angle âob is smaller than π/2, we have circum(oab) ⊂
circum(ab) ∪ B (Figure 5). The result follows. 2

Lemma 6 Let B be a ball with center o, and p be a point on the boundary
of B. If, at some stage of the algorithm, the segment op is encroached upon,
the encroaching point is a h-point hi on the radical plane of B and Bi, and p
belongs to bd(B) ∩ int(Bi).

Proof. The circumball of op is inside B. Therefore, op can only be encroached
upon by a vertex in this ball, and not by the center of B, hence only by a
h-vertex in B. Suppose that op is encroached upon by a vertex hi, belonging to
B and Bi. The encroachment condition can be rewritten ôhip > π/2. Because

points q in bd(B) that satisfy ôhiq > π/2 lie in bd(B) ∩ int(Bi), p belongs to
int(Bi). 2

Proposition 7 At each stage of the algorithm, the right-angled triangles have
the Gabriel property.

Proof. Suppose that a right-angled triangle ohjp does not have the Gabriel
property at some stage of the algorithm: hj is on the radical plane between
B and Bj, and p is on the boundary of B and Bj. Because the circumball of
ohjp is the circumball of op, by Lemma 6, the encroching point is a h-point,
and p has to belong to the interior of a third ball Bi, which is impossible by
condition (v). 2
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Center points and h-points cut the edges of C in subedges. Note that Propo-
sition 7 implies that these subedges are edges of Dt3(P).

3.2 Termination proof

Proposition 8 The protection procedure always terminates.

The proof is a straightforward consequence of the following lemma.

Lemma 9 For each call to the protection procedure, there exists θ > 0 such
that no isosceles triangle with angle at the center of the ball less than θ will be
split.

Proof. Let oab be an isosceles triangle with shield edge ab in a protecting
ball B. We consider in turn three kinds of possible encroaching points: points
on the boundary of B (case 1), points in the interior of B (case 2), and points
outside B (case 3). In each case k, we prove the existence of a value θk, such

that neither oab nor ab can be encroached upon by a point of type k if âob < θk.

Recall that the three balls B, circum(ab) and circum(oab) belong to a pencil

of spheres. Because the angle âob is smaller than π/2, we have circum(oab) ⊂
B ∪ circum(ab) and circum(ab) ∩ B ⊂ circum(oab) (see Figure 5). Therefore,
it is enough to check that points on the boundary of B or outside B (cases 1
and 3) do not encroach upon ab and that points in B (case 2) do not encroach
upon oab.

(1) For a plane Q of a 2-face of C intersecting B, we consider the circle
bounding B ∩ Q and we denote by S(Q, B) the union of arcs on this
circle spanned by the isosceles triangles in Q. Notice that all the SOS -
points inserted on B are located on such a set S(Q, B).

If Q is the plane containing oab, no point of S(Q, B) encroaches upon
ab. If Q′ is another plane, the distance between S(Q, B) and S(Q′, B)
is strictly positive, so there is a value θ1(B, Q, Q′) such that ab is not

encroached upon by a point on S(Q′, B) if âob < θ1. Setting θ1 =
min{θ1(B, Q, Q′)} achieves the proof of case 1.

(2) The only points in a ball B which can encroach upon an isosceles triangle
oab in B are the h-points in B. Suppose that a point hi (on the radical
plane of B and Bi) encroaches upon oab.

If hi is in the plane Q of oab, we prove that encroachment is not possible.
Indeed, if hi encroaches upon oab, hi encroaches either upon oa or upon
ob. Thus a or b would belong to bd(B) ∩ int(Bi), by Lemma 6, which is
impossible because a and b are either p-points or SOS -points.
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Let us now deal with the case where hi does not belong to the plane Q.
Let c ∈ S(Q, B); c does not belong to Bi, for otherwise hi would belong
to Q. Let us prove that hi is not in the closed ball circum(oc). If hi is in
the interior of circum(oc), this means that oc is encroached upon by hi,
hence, by Lemma 6, c belongs to int(Bi), which is not the case. Similarly,
if hi is on the boundary of circum(oc), c belongs to Bi.

Hence, the distance between hi and the ball circum(oc) is strictly
positive. Let δ(B, Q, hi) be the minimum (strictly positive) of this dis-
tance for c ∈ S(Q, B). Let δ′(B, θ) be the Hausdorff distance between
circum(oc) and circum(oa′b′) where oa′b′ is an isosceles triangle with a′

and b′ on bd(B), axis oc and â′ob′ = θ. As δ′(B, θ) goes to 0 when θ goes
to 0, there exists θ2(B, Q, hi) such that δ′(B, θ) < δ(B, Q, hi) for any
θ < θ2(B, Q, hi). It follows that oab cannot be encroached upon by hi if

âob < θ2(B, Q, hi). Setting θ2 = min{θ2(B, Q, hi)} achieves the proof of
case 2.

(3) Consider now the case where edge ab is encroached upon by a point p
outside the ball B. At each call of the protection procedure, the set of
points outside the protecting spheres is fixed. Also, the distance between
two sets S(Q1, B1) and S(Q2, B2) which do not share a p-point is bounded

from below. Thus, there is a value θ′

3 such that, if âob < θ′

3, edge ab cannot
be encroached upon by p except if p belongs to S(Q, B ′) where Q is the
plane of oab and B′ intersects B. Therefore, the only case remaining to
be considered is the case where a is a p-point in Q∩ bd(B)∩ bd(B ′) and
ab is encroached upon by a point p of S(Q, B ′). However, in this case, we
split edges incident to a using circular shells. Hence, after a few splits,
the edges incident to a will have the same lengths and will be unable to
encroach upon each other. Therefore, we get a value θ3 ≤ θ′

3 satisfying
the desired requirement.

2

Theorem 10 The algorithm terminates, and, once it is the case, the Delau-
nay triangulation of P conforms to the complex C.

Proof. It is sufficient to prove that the main procedure terminates: indeed,
once it is the case, Propositions 5 and 7 show that the Delaunay triangulation
of P conforms to the protected area of C, and the fact that the algorithm
ends precisely means that the Delaunay triangulation of P also conforms to
the unprotected area of C. We prove the termination of the main procedure
by proving first that the number of added circumcenters is finite and second
that the number of shield edges encroached upon by rejected circumcenters is
finite. Because the protection procedure is already known to terminate, these
two facts imply the termination of the main procedure.
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By construction of the protecting spheres, the unprotected area is a disjoint
union of plane regions. Let Fu be such a region. As previously noticed, ow-
ing to the SOS strategy, these unprotected regions slightly evolve during the
algorithm; however, they are always shrinking. Consequently, the distance be-
tween Fu and the other regions as well as the distance between Fu and the
set of center-points and h-points added in the interior of the protecting balls
can be bounded from below by a constant δF . Let T be a triangle in Fu whose
circumcenter has to be inserted in P and let CT be the circumcircle of T . As
T does not belong to Dt3(P), its circumball circum(T ) contains a point in P
which is not in the plane of Fu. Such a point can be inside a protecting ball (a
center-point or a h-point), on the boundary of a protecting ball (and thus on
the boundary of another region), or an added circumcenter (in another region
by Lemma 4). Therefore circum(T ) either contains a point added in the inte-
rior of a protecting sphere or intersects another unprotected region, and the
radius of CT is thus larger than δF . Because T belongs to the 2D Delaunay
triangulation in the plane of Fu, CT encloses no point of P. The area of Fu

being finite, this shows that the number of added circumcenters is bounded.

Let us now show that the total number of edges encroached upon by rejected
circumcenters is finite. For this purpose, consider a shield edge encroached
upon by the center p of a circumcircle C in a region Fu. C being empty and
of radius larger than δF , it is easy to show that the shield edge has length at
least δF

√
2 (see Figure 6). Thus the number of those edges is finite. 2

4 Construction of the protecting balls

We have to build the set B of protecting balls satisfying the conditions de-
scribed in Subsection 2.2. The efficiency of the algorithm really depends on
this construction: the less balls there are, the less points will be produced in
P.
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Definition 11 Let C be a PLC. The local feature size of a point p with respect
to C is the distance between p and the union of faces of C that do not contain
p.

Let lfs(p) denote the local feature size of point p with respect to the PLC which
is given as input of the algorithm. We address the following construction of
the enclosing balls. Let α be a real, 0 < α < 1

2
(typically α = 0.4).

First, for each vertex v of the PLC, construct a ball of radius α · lfs(v).

Then, on each edge e, do the following. While e is not completely covered by
balls, consider a maximal open line segment a1a2 in e and outside the union
of the balls in the current set B. Point ai (i = 1, 2) is an intersection of ball
Bi (with center oi and radius ri) with edge e. We will insert a ball between
B1 and B2. Let o be the midpoint of a1a2. Insert a new ball B in B, of center
o and radius r, with:

r = min
{
α · lfs(o), oa1 +

r1

2
, oa2 +

r2

2

}
.

To ensure condition (vi), if r = oa1, we replace r by (1−ε)r where ε is a small
positive constant.

Lemma 12 This construction terminates.

Proof. Consider an edge e, whose vertices have just been protected by two
spheres. Let A be the union of the (open) line segments which are in e minus
the union of the current set of balls. Call A0 the set A just after the protection
of the endpoints of e. The distance d = min{lfs(p)| p ∈ A0} is strictly positive
(the lfs function is continuous on A0, and lfs does not vanish on A0). The
insertion of a new ball:

• either increases by one the number of connected components of A and de-
creases the measure of A by at least 2(1 − ε) · α · d (hence this case can
happen only a finite number of times),

• or decreases by one the number of connected components of A (without
increasing the measure of A).

The result follows. 2

Conditions (i), (ii), (iv), (vi) and (vii) are obviously satisfied. (iii) follows from
the fact that if two points o and o′ do not belong to the same edge, oo′ is larger
than or equal to lfs(o) and lfs(o′). If two balls B and B′, centered at o and
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o′ with radii r and r′, are in B, then r < 1

2
lfs(o) and similarly for r′. Thus

r + r′ < oo′, hence the balls cannot intersect.

(v) is also true. Indeed, if three balls intersect, their centers must be vertices
of a triangle in C. But it follows from our construction that two balls centered
on vertices of the PLC cannot intersect because α < 1

2
.

Hence we have:

Proposition 13 This construction of B is correct.

5 Improvements

5.1 Speeding up the protection procedure

The following proposition shows that when the protection procedure is called
from the main procedure, there is no need to check whether isosceles triangles
have the Gabriel property.

Proposition 14 After the initialization process, enforcing Gabriel property
for shield edges in the protection procedure is enough to ensure Gabriel property
for isosceles triangles.

Proof. Upon termination of the initialization step, all isosceles triangles have
the Gabriel property. Suppose that, at some stage of the algorithm, a point
encroaches upon some isosceles triangle oab without encroaching ab. Let B be
the ball containing oab. Since circum(oab) is included in the union of B and
circum(ab) (Figure 5), the encroaching point must be inside B.

Hence it is sufficient to show that no isosceles triangle is encroached upon
by a vertex inside its protecting ball during the algorithm. By contradiction,
let T = oab be the first isosceles triangle encroached upon by a vertex in
B. Since no point is inserted inside the balls during the main procedure, T
must be a triangle which results from the splitting of some triangle T ′ = oac.
The encroaching point can thus only be a h-point hi lying inside B. Arguing
that circum(oab), circum(oac), and circum(oa) belong to a sphere pencil and
comparing their radii, we deduce (Figure 7) that circum(oab) ⊂ circum(oac)∪
circum(oa). However, hi does not belong to circum(oac) because T ′ = oac was
not encroached upon by hi, nor to circum(oa) (by Lemma 6). Therefore hi

does not belong to circum(oab), which yields the contradiction. 2
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Fig. 7. circum(oab) ⊂ circum(oac) ∪ circum(oa).

5.2 Restricting the area where balls are required

In 2.2, the set B is constructed so that the balls cover the whole 1-skeleton Sk
of C. We explain here that this is not always necessary. Indeed, the balls are
introduced to avoid troubles with small angles; they are thus not required at
places where faces intersect with an angle large enough. This remark enables to
put less balls in B, hence to reduce the size of the output P. We first describe
the modification in the construction of the balls, and then prove that, despite
this slight modification, the algorithm is still correct.

Let e = o1o2 be an edge of the PLC so that all angles between faces incident
to e are ≥ π/2. We modify the algorithm in the following way. Still construct
balls B1 and B2 centered at the vertices o1 and o2. In P, insert o1, o2, and the
two intersections p1 and p2 of e with the boundaries of B1 and B2.

Consider p1p2 as a shield edge in the main procedure. In other words, whenever
this edge would be encroached upon by the insertion of a point in P, split this
edge in the middle, to keep it protected at each stage of the algorithm. The
original edge of C is thus not in the protected area, but the process is exactly
like in the standard algorithm.

There are only minor modifications for the proof of the algorithm. The un-
protected area is still bounded with shield edges. The proof of termination
of the protection procedure is analogous: Lemma 9 can be adapted without
difficulty to show that there also exists a length δ > 0 such that the protection
procedure never splits a shield edge which is a part of an edge and with length
less than δ. The only difficulty is to show the following proposition.

Proposition 15 The modified version of the main procedure always termi-
nates.

Proof. Let Fu be a region, in a plane Q, incident to edge e. The distance
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Table 1
Experimental data.

geological data triceratops umbrella

nb input vertices 7566 2832 16

nb non Delaunay faces 1045 2194 5

nb output vertices 25793 27947 122

running time (s) 83 570 0.7
PSfrag replacements
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Fig. 8. In the half-space H+ (above the edge e in the figure), the part of circum(T )
is included in the part of circum(ab) which is, in turn, contained in the part of
circum(a′b′).

between Fu and the regions non-incident to e as well as the distance between
Fu and the set of center-points and h-points outside Q can be bounded from
below by a constant δF > 0. Let p be the circumcenter of a triangle T in Fu,
added to P. We will show that the circumball of T cannot contain a vertex of
another face incident to e, which implies that the radius of this circumball is
larger than δF , like in the proof of Theorem 10.

Suppose for contradiction that T is encroached upon by a point p′ of P on a
face incident to e. Necessarily, because the angles of the faces of C are obtuse
at e, the circumball of T must intersect e. Let a and b be the intersection
points of the boundary of circum(T ) with e. Let a′b′ be the unique shield edge
included in e which is intersected by circum(T ). (The uniqueness follows from
the fact that points in P, like a′ and b′, cannot lie in circum(T ).) Let H be the
plane orthogonal to Fu and containing e, and H+ be the half-space bounded
by H and not containing T . Clearly, circum(T ) ∩ H+ ⊆ circum(ab) ∩ H+ ⊆
circum(a′b′) ∩ H+ (see Figure 8). The point p′ is in circum(T ) ∩ H+, hence
in circum(a′b′), which means that p′ encroaches upon the shield edge a′b′ and
yields the contradiction.

The remaining part of the proof of termination of the main procedure is exactly
the same as in the proof of Theorem 10. 2
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6 Experimental results

The algorithm has been implemented and tested using the Computational Ge-
ometry Algorithms Library CGAL 1 . Results for several models are displayed
in Table 1 and Figures 9, 10, 11, and 12.

Table 1 gives for each model, the number of vertices of the input PLC (nb
input vertices), the number of 2-faces to which the Delaunay triangulation
of input vertices does not conform (non Delaunay faces), and the number of
vertices of the conforming output triangulation (nb output vertices). In those
examples and in most cases, the number of vertices in the output conform-
ing triangulation and the number of input vertices are in a ratio comprised
between 3 to 1 and 10 to 1.

The running times, measured on a PC with 500Mhz processor, do not include
the computations of local feature size values, because the current implementa-
tion uses a very slow brute force algorithm for it. We are currently designing
a data structure devoted to speed up these computations.

7 Conclusion

We have presented an algorithm for computing a conforming Delaunay tri-
angulation of any three-dimensional piecewise linear complex. The most im-
portant innovation, compared to the paper by Murphy et al. [4], is to enclose
critical places by balls whose radii fit the local complexity of the complex,
with the use of the local feature size. Our experimental results show that it
is valuable in practice. The algorithm could be easily modified to guarantee
in the resulting mesh the Gabriel property for any triangle included in a con-
straint. The next step currently under work is to investigate how conforming
meshes with guarantees on the shape and size of the elements can be obtained.
Several questions remain open: we did not try to find the time complexity of
our algorithm. It would also be interesting, as in [3] in the plane, to find a
bound on the output depending on the size of the initial complex and/or (like
in [5]) the lfs function.

1 http://www.cgal.org/
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Fig. 9. Detail of a geological formation (Courtesy of T-surf and Mr. Reinsdorff).
Solid line segments stand for shield edges.

Fig. 10. Umbrella. Solid line segments stand for shield edges.
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Fig. 11. Triceratops.

Fig. 12. Detail of the triceratops. Solid line segments stand for shield edges.
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