Algorithmic Aspects of Embeddability

Higher-Dimensional Analogues of Graph Planarity

ULI WAGNER

Institute of Science and Technology

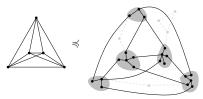
joint work with

Martin Čadek, Marek Krčál, Jiří Matoušek, Eric Sedgwick, Francis Sergeraert, Martin Tancer, Lukáš Vokřínek

École de Printemps d'Informatique Theéorique, CIRM, 12 May, 2016

Starting Point: Graphs & Planarity

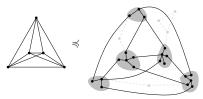
- ► A graph (=1-dimensional complex) G is planar if it can be embedded into the plane R² (equivalently, into the sphere S²)
- Classical notion in topology, graph theory, discrete and computational geometry, theoretical computer science
- Combinatorics & Structure
 - Characterization of planar graphs by forbidden minors K₅, K_{3,3} (Kuratowski 1930, K. Wagner 1937)



- Algorithms & Complexity
 - ► Planarity of a given graph G algorithmically testable in linear time O(|V|) (Hopcroft-Tarjan 1974).

Starting Point: Graphs & Planarity

- ► A graph (=1-dimensional complex) G is planar if it can be embedded into the plane R² (equivalently, into the sphere S²)
- Classical notion in topology, graph theory, discrete and computational geometry, theoretical computer science
- Combinatorics & Structure
 - Characterization of planar graphs by forbidden minors K₅, K_{3,3} (Kuratowski 1930, K. Wagner 1937)

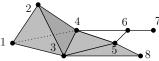


- Algorithms & Complexity
 - ► Planarity of a given graph G algorithmically testable in linear time O(|V|) (Hopcroft-Tarjan 1974).

 Building blocks: k-dimensional simplices (vertices, edges, triangles, tetrahedra,...)

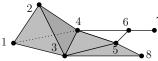
 Building blocks: k-dimensional simplices (vertices, edges, triangles, tetrahedra,...)

 Simplicial complex: finite collection X of simplices, plus combinatorial specification how to fit them together along common faces.



 Building blocks: k-dimensional simplices (vertices, edges, triangles, tetrahedra,...)

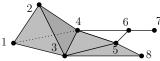
 Simplicial complex: finite collection X of simplices, plus combinatorial specification how to fit them together along common faces.



 Combinatorial description of an underlying topological space by a decomposition into simple pieces (triangulation)

 Building blocks: k-dimensional simplices (vertices, edges, triangles, tetrahedra,...)

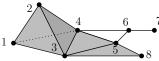
 Simplicial complex: finite collection X of simplices, plus combinatorial specification how to fit them together along common faces.



- Combinatorial description of an underlying topological space by a decomposition into simple pieces (triangulation)
- Abstract specification: list the vertices in each simplex

 Building blocks: k-dimensional simplices (vertices, edges, triangles, tetrahedra,...)

 Simplicial complex: finite collection X of simplices, plus combinatorial specification how to fit them together along common faces.



- Combinatorial description of an underlying topological space by a decomposition into simple pieces (triangulation)
- Abstract specification: list the vertices in each simplex
- Graphs: 1-dimensional special case

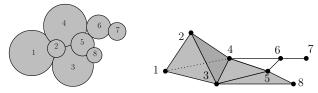
Natural model in computational topology

- Natural model in computational topology
- Encode interactions between three or more objects

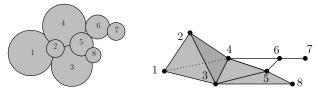
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Natural model in computational topology
- Encode interactions between three or more objects
- (Combinatorial) applications, e.g.
 - combinatorial theory of polytopes and linear programming;

- Natural model in computational topology
- Encode interactions between three or more objects
- (Combinatorial) applications, e.g.
 - combinatorial theory of polytopes and linear programming;
 - intersection patterns (nerves) of convex sets, e.g., balls (e.g., atoms in a molecule with van der Waals radii):

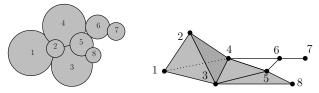


- Natural model in computational topology
- Encode interactions between three or more objects
- (Combinatorial) applications, e.g.
 - combinatorial theory of polytopes and linear programming;
 - intersection patterns (nerves) of convex sets, e.g., balls (e.g., atoms in a molecule with van der Waals radii):



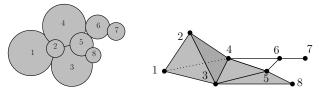
- topological methods in graph theory, complexity, etc., e.g.
 - independent sets in graphs (hard particle models)

- Natural model in computational topology
- Encode interactions between three or more objects
- (Combinatorial) applications, e.g.
 - combinatorial theory of polytopes and linear programming;
 - intersection patterns (nerves) of convex sets, e.g., balls (e.g., atoms in a molecule with van der Waals radii):



- topological methods in graph theory, complexity, etc., e.g.
 - independent sets in graphs (hard particle models)
 - chromatic numbers of graphs (Kneser's conjecture)

- Natural model in computational topology
- Encode interactions between three or more objects
- (Combinatorial) applications, e.g.
 - combinatorial theory of polytopes and linear programming;
 - intersection patterns (nerves) of convex sets, e.g., balls (e.g., atoms in a molecule with van der Waals radii):



- topological methods in graph theory, complexity, etc., e.g.
 - independent sets in graphs (hard particle models)
 - chromatic numbers of graphs (Kneser's conjecture)
 - monotone graph properties and evasiveness

Embeddings of simplicial complexes

Several natural classes of embeddings:

linear

piecewise linear (PL)

topological

Embeddings of simplicial complexes

Several natural classes of embeddings:

linear

piecewise linear (PL)

topological

 For graphs in the plane, TOP/PL/LINEAR embeddability are equivalent (only *one* notion of planarity).

Embeddings of simplicial complexes

Several natural classes of embeddings:

linear

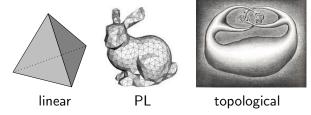
piecewise linear (PL)

topological

- For graphs in the plane, TOP/PL/LINEAR embeddability are equivalent (only *one* notion of planarity).
 - TOP \Rightarrow PL: easy compactness argument,
 - ▶ $PL \Rightarrow LINEAR$: nontrivial [Steinitz, Fáry].

Embeddings $X \hookrightarrow \mathbb{R}^d$ of a simplicial complex, dim X = k

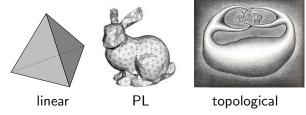
• Subtle differences in higher dimensions $(d \ge 3)$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Embeddings $X \hookrightarrow \mathbb{R}^d$ of a simplicial complex, dim X = k

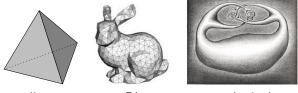
• Subtle differences in higher dimensions $(d \ge 3)$



▶ PL \Rightarrow LINEAR for $d \ge 3$ [Brehm, Brehm & Sarkaria]

Embeddings $X \hookrightarrow \mathbb{R}^d$ of a simplicial complex, dim X = k

• Subtle differences in higher dimensions $(d \ge 3)$



linear

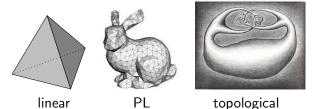
PL

topological

- ▶ PL \Rightarrow LINEAR for $d \ge 3$ [Brehm, Brehm & Sarkaria]
- Also TOP ⇒ PL in some cases (e.g., k = 4, d = 5).
 However, TOP ⇔ PL if d ≤ 3 [Papakyriakopoulos, Bing] or d k ≥ 3 [Bryant].

Embeddings $X \hookrightarrow \mathbb{R}^d$ of a simplicial complex, dim X = k

• Subtle differences in higher dimensions $(d \ge 3)$



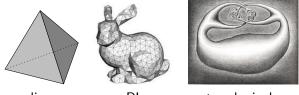
▶ PL \Rightarrow LINEAR for $d \ge 3$ [Brehm, Brehm & Sarkaria]

Also TOP ⇒ PL in some cases (e.g., k = 4, d = 5).
 However, TOP ⇔ PL if d ≤ 3 [Papakyriakopoulos, Bing] or d - k ≥ 3 [Bryant].

 Linear embeddability always in PSPACE (solvability of polynomial inequalities in real variables).

Embeddings $X \hookrightarrow \mathbb{R}^d$ of a simplicial complex, dim X = k

• Subtle differences in higher dimensions $(d \ge 3)$



linear

topological

- ▶ PL \Rightarrow LINEAR for $d \ge 3$ [Brehm, Brehm & Sarkaria]
- Also TOP ⇒ PL in some cases (e.g., k = 4, d = 5). However, TOP ⇔ PL if d ≤ 3 [Papakyriakopoulos, Bing] or d - k ≥ 3 [Bryant].
- Linear embeddability always in PSPACE (solvability of polynomial inequalities in real variables).
- ► For algorithmic questions we consider PL embeddability

Algorithmic Embeddability Testing

 $k \le d$ fixed positive integers EMBED_{k→d} is the following algorithmic problem:

Input: A simplicial complex K of dimension (at most) k. Question: Is K (PL) embeddable into \mathbb{R}^d ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Algorithmic Embeddability Testing

 $k \le d$ fixed positive integers EMBED_{k→d} is the following algorithmic problem:

Input: A simplicial complex K of dimension (at most) k. Question: Is K (PL) embeddable into \mathbb{R}^d ?

- EMBED_{1 \rightarrow 2} is GRAPH PLANARITY
- $d \ge 2k + 1$ trivial: embeds always (general position).

Algorithmic Embeddability Testing

 $k \le d$ fixed positive integers EMBED_{k→d} is the following algorithmic problem:

Input:A simplicial complex K of dimension (at most) k.Question:Is K (PL) embeddable into \mathbb{R}^d ?

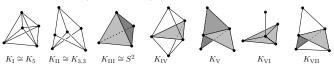
- EMBED_{1 \rightarrow 2} is GRAPH PLANARITY
- $d \ge 2k + 1$ trivial: embeds always (general position).
- For d = 2k, there exist k-dimensional complexes not embeddable into ℝ^{2k}:
 - complete k-complex K^k_{2k+3} = skel_k(Δ^{2k+2}) (all simplices of dimension ≤ k on 2k + 3 vertices)
 - complete multipartite k-complex K^k_{3,...,3}
 - ▶ for k ≥ 2, infinitely other minimally non-embeddable complexes (no straightforward analogue of Kuratowski)

Algorithmic Embeddability: Classical Results

- Embeddability classical topic in geometric topology
- ▶ but no prior systematic study from a computational viewpoint (unlike its cousin, knot theory, isotopy of embeddings of the circle S¹ into ℝ³).

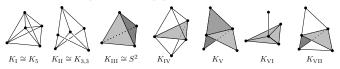
Algorithmic Embeddability: Classical Results

- Embeddability classical topic in geometric topology
- ▶ but no prior systematic study from a computational viewpoint (unlike its cousin, knot theory, isotopy of embeddings of the circle S¹ into ℝ³).
- ► EMBED_{1→2}: O(n)-algorithm for graph planarity testing (Hopcroft, Tarjan 1974).
- ► EMBED_{2→2}: characterization by forbidden subcomplexes (Halin, Jung 1964) yields O(n) algorithm.



Algorithmic Embeddability: Classical Results

- Embeddability classical topic in geometric topology
- ▶ but no prior systematic study from a computational viewpoint (unlike its cousin, knot theory, isotopy of embeddings of the circle S¹ into ℝ³).
- ► EMBED_{1→2}: O(n)-algorithm for graph planarity testing (Hopcroft, Tarjan 1974).
- ► EMBED_{2→2}: characterization by forbidden subcomplexes (Halin, Jung 1964) yields O(n) algorithm.



van Kampen obstruction (van Kampen 1932; Shapiro, Wu), yields polynomial-time algorithm for EMBED_{k→2k}, k ≥ 3.

Current State of Knowledge: Complexity of $\text{EMBED}_{k \rightarrow d}$

						d							
k	2	3	4	5	6	7	8	9	10	11	12	13	14
1	Ρ												
2	Ρ	D	NPh										
3		D	NPh	NPh	Р								
4			NPh	und	NPh	NPh	Р						
5				und	und	NPh	NPh	Р	Р				
6					und	und	NPh	NPh	NPh	Ρ	Ρ		
7						und	und	NPh	NPh	NPh	Ρ	Ρ	Ρ

 $\label{eq:und} \begin{array}{l} \text{und} = \text{algorithmically undecidable [Matoušek, Tancer, W.]} \\ \text{NPh} = \text{NP-hard [Matoušek, Tancer, W.]} \end{array}$

$$\begin{split} D &= \text{algorithmically decidable [Matoušek, Sedgwick, Tancer, W.]} \\ P &= \text{polynomial-time solvable; new results based on algorithmic homotopy classification of (equivariant) maps [Čadek, Krčál, Matoušek, Sergeraert, Vokřínek, W.]} \end{split}$$

Current State of Knowledge: Complexity of $\text{EMBED}_{k \rightarrow d}$

						d							
k	2	3	4	5	6	7	8	9	10	11	12	13	14
1	Ρ												
2	Ρ	D	NPh										
3		D	NPh	NPh	Р								
4			NPh	und	NPh	NPh	Ρ						
5				und	und	NPh	NPh	Ρ	Р				
6					und	und	NPh	NPh	NPh	Ρ	Ρ		
7						und	und	NPh	NPh	NPh	Ρ	Ρ	Ρ

und = algorithmically undecidable [Matoušek, Tancer, W.]NPh = NP-hard [Matoušek, Tancer, W.]

D = algorithmically decidable [Matoušek, Sedgwick, Tancer, W.]
 P = polynomial-time solvable; new results based on algorithmic homotopy classification of (equivariant) maps [Čadek, Krčál, Matoušek, Sergeraert, Vokřínek, W.]

Dividing line: metastable range $d \ge 3(k+1)/2$ [Haefliger–Weber] (small dimensions d = 2, 3 somewhat exceptional)

• *K* a space, $f: K \to \mathbb{R}^d$ an embedding; $x \neq y \Rightarrow f(x) \neq f(y)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• *K* a space, $f: K \to \mathbb{R}^d$ an embedding; $x \neq y \Rightarrow f(x) \neq f(y)$.

► $K_{\Delta}^2 := \{(x, y) \in K \times K : x \neq y\}$, the deleted product of K (= Cartesian product with omitted diagonal = F(K, 2))

• K a space, $f: K \to \mathbb{R}^d$ an embedding; $x \neq y \Rightarrow f(x) \neq f(y)$.

- K²_Δ := {(x, y) ∈ K × K : x ≠ y}, the deleted product of K
 (= Cartesian product with omitted diagonal = F(K, 2))
- ► Gauss map $g: K_{\Delta}^2 \to S^{d-1}$, $g(x, y) := \frac{f(x) f(y)}{\|f(x) f(y)\|}$ is \mathbb{Z}_2 -equivariant, i.e., g(y, x) = -g(x, y).

- K a space, $f: K \to \mathbb{R}^d$ an embedding; $x \neq y \Rightarrow f(x) \neq f(y)$.
- K²_Δ := {(x, y) ∈ K × K : x ≠ y}, the deleted product of K
 (= Cartesian product with omitted diagonal = F(K, 2))
- ► Gauss map $g: K_{\Delta}^2 \to S^{d-1}$, $g(x, y) := \frac{f(x) f(y)}{\|f(x) f(y)\|}$ is \mathbb{Z}_2 -equivariant, i.e., g(y, x) = -g(x, y).
- ► Thus, a necessary condition for embeddability of K in ℝ^d is the existence of an equivariant map K²_Δ →_{ℤ₂} S^{d−1}

(日) (同) (三) (三) (三) (○) (○)

- *K* a space, $f: K \to \mathbb{R}^d$ an embedding; $x \neq y \Rightarrow f(x) \neq f(y)$.
- ► $K_{\Delta}^2 := \{(x, y) \in K \times K : x \neq y\}$, the deleted product of K (= Cartesian product with omitted diagonal = F(K, 2))
- Gauss map $g: K_{\Delta}^2 \to S^{d-1}$, $g(x, y) := \frac{f(x) f(y)}{\|f(x) f(y)\|}$ is \mathbb{Z}_2 -equivariant, i.e., g(y, x) = -g(x, y).
- ► Thus, a necessary condition for embeddability of K in ℝ^d is the existence of an equivariant map K²_Δ →_{ℤ₂} S^{d−1}

Theorem (Haefliger-Weber)

If K is a k-dimensional simplicial complex and $d \ge \frac{3(k+1)}{2}$ (metastable range) then K embeds in \mathbb{R}^d iff there is an equivariant map $K^2_{\Delta} \to_{\mathbb{Z}_2} S^{d-1}$.

The deleted product obstruction and Haefliger-Weber

- K a space, $f: K \to \mathbb{R}^d$ an embedding; $x \neq y \Rightarrow f(x) \neq f(y)$.
- ► $K_{\Delta}^2 := \{(x, y) \in K \times K : x \neq y\}$, the deleted product of K (= Cartesian product with omitted diagonal = F(K, 2))
- Gauss map $g: K_{\Delta}^2 \to S^{d-1}$, $g(x, y) := \frac{f(x) f(y)}{\|f(x) f(y)\|}$ is \mathbb{Z}_2 -equivariant, i.e., g(y, x) = -g(x, y).
- ► Thus, a necessary condition for embeddability of K in ℝ^d is the existence of an equivariant map K²_Δ →_{ℤ₂} S^{d−1}

Theorem (Haefliger-Weber)

If K is a k-dimensional simplicial complex and $d \ge \frac{3(k+1)}{2}$ (metastable range) then K embeds in \mathbb{R}^d iff there is an equivariant map $K^2_{\Delta} \to_{\mathbb{Z}_2} S^{d-1}$.

Remark

For all (d, k) outside the metastable range, $d \ge 3$, the deleted product obstruction is known to be incomplete (Segal, Spież, Freedman, Krushkal, Teichner, A. Skopenkov).

Hardness of $EMBED_{2\rightarrow 4}$: A Sketch

Theorem

It is NP-hard to decide whether a given 2-complex embeds into \mathbb{R}^4 .

• Reduction from 3-SAT: for every 3-CNF formula φ , e.g.,

 $\varphi = (x_1 \vee \bar{x}_2 \vee x_4) \wedge (x_1 \vee \bar{x}_4 \vee x_5) \wedge \ldots,$

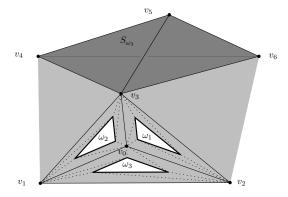
construct a 2-dimensional simplicial complex K_{φ} such that

 φ is satisfiable $\Leftrightarrow K_{\varphi} \hookrightarrow \mathbb{R}^4$

- K_{φ} is built from clause gadgets and conflict gadgets
- Gadgets based on examples of Freedman, Krushkal and Teichner showing that the van Kampen obstruction is incomplete for embeddings into R⁴.

Clause Gadget

- start with K_7^2 (all triangles on 7 vertices)
- make small holes (openings) in the interiors of three triangles sharing a vertex
- for each opening, there is a complementary 2-sphere



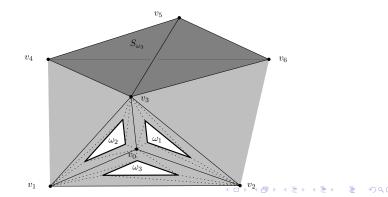
(日)、

э

Linking Lemma

Lemma

- 1. For every PL embedding $f: G \hookrightarrow \mathbb{R}^4$, there is an opening ω_i such that the images $f(\partial \omega_i)$ and $f(S_{\omega_i})$ have odd linking number.
- 2. For every *i*, there exists and embedding such that only $f(\partial \omega_i)$ and $f(S_{\omega_i})$ are linked.

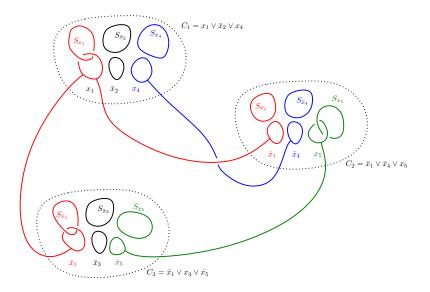


Conflict Gadget

 Squeezed torus, obtained by glueing an octagon to "two circles with a stick".

- ► Can be embedded into ℝ³ if one of the circles is "free" (not linked with any obstacles); asymmetry in the embedding.
- ► Cannot be embedded into ℝ⁴ if both circles are blocked (linked with 2-spheres).

Reduction Sketch



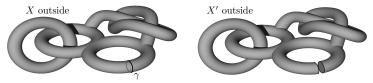
- ► EMBED_{2→3} and EMBED_{3→3} can be reduced, possibly with exponential-time overhead, to the following question: Given a compact 3-manifold X with boundary, does it embed in S³?
 - ► First test if *K* can be *thickened* to a 3-manifold *X*, check all possible thickenings.

- ► EMBED_{2→3} and EMBED_{3→3} can be reduced, possibly with exponential-time overhead, to the following question: Given a compact 3-manifold X with boundary, does it embed in S³?
 - ► First test if *K* can be *thickened* to a 3-manifold *X*, check all possible thickenings.

The boundary of an embeddable X must be a disjoint union of orientable surfaces (spheres with handles).

- ► EMBED_{2→3} and EMBED_{3→3} can be reduced, possibly with exponential-time overhead, to the following question: Given a compact 3-manifold X with boundary, does it embed in S³?
 - ► First test if *K* can be *thickened* to a 3-manifold *X*, check all possible thickenings.
- The boundary of an embeddable X must be a disjoint union of orientable surfaces (spheres with handles).
- Theorem (Fox): If X can be embedded in S³, then there is an embedding such that the complement is a union of balls and handle bodies (solid tori).

- ► EMBED_{2→3} and EMBED_{3→3} can be reduced, possibly with exponential-time overhead, to the following question: Given a compact 3-manifold X with boundary, does it embed in S³?
 - ► First test if *K* can be *thickened* to a 3-manifold *X*, check all possible thickenings.
- The boundary of an embeddable X must be a disjoint union of orientable surfaces (spheres with handles).
- Theorem (Fox): If X can be embedded in S³, then there is an embedding such that the complement is a union of balls and handle bodies (solid tori).
- Strategy: "Guess" a meridian γ, glue a thickened disk to X along γ. Preserves embeddability, simplifies ∂X. Recurse.



▶ Base of the recursion: S^3 -recognition [Rubinstein–Thompson]

Algorithmic Embeddability in \mathbb{R}^3 , cont'd

Key technical result, proved using normal surface theory:

Theorem (Short Meridians; Matoušek, Sedgwick, Tancer, W.) Suppose that X is a 3-manifold with boundary¹ that embeds in S³. Then there exists (a possibly different) embedding of X for which there is a short meridian γ , i.e., an essential² normal curve $\gamma \subset \partial X$ bounding a disk in S³ \ X such that the length of γ , measured as the number of intersections of γ with the edges of the triangulation, is bounded by a computable function of the number of tetrahedra.

¹Caveat: We first need to do some preprocessing to ensure that X has certain helpful technical properties:

- X is *irreducible*, neither a ball nor an S^3 ,
- X has incompressible boundary,
- ► X is equipped with a 0-efficient triangulation.

²Meaning that γ does not bound a disk in ∂X .

New Results on Homotopy Classification and Extensions Theorem (ČKMSVW)

Assume we are given the following input: simplicial complexes $A \subseteq X$ and $f : A \to S^r$.

▶ If dim $X \le 2r - 1$ then it can be decided algorithmically whether f can be extended to $\tilde{f} : X \to S^r$.

New Results on Homotopy Classification and Extensions Theorem (ČKMSVW)

Assume we are given the following input: simplicial complexes $A \subseteq X$ and $f : A \to S^r$.

- ▶ If dim $X \le 2r 1$ then it can be decided algorithmically whether f can be extended to $\tilde{f} : X \to S^r$.
- If dim X ≤ 2r − 2 then [X, S^r] is a finitely generated abelian group, and can be computed algorithmically (in terms of generators and relations).

► For fixed r, the algorithms are polynomial-time.

New Results on Homotopy Classification and Extensions Theorem (ČKMSVW)

Assume we are given the following input: simplicial complexes $A \subseteq X$ and $f : A \to S^r$.

- ▶ If dim $X \le 2r 1$ then it can be decided algorithmically whether f can be extended to $\tilde{f} : X \to S^r$.
- If dim X ≤ 2r − 2 then [X, S^r] is a finitely generated abelian group, and can be computed algorithmically (in terms of generators and relations).
- ► For fixed r, the algorithms are polynomial-time.

Remarks

- Generalizes a classical algorithm (Brown, 1957) to compute [X, Y] for Y with all homotopy groups π_i(Y) finite, i ≤ dim X
- Generalization to equivariant maps [Čadek, Krčál, Vokřínek]
- Extension problem undecidable for input $f: A \to S^r$, dim X = 2r, r even.

Embeddability outside the metastable range?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- codimension $d k \ge 3$?
- codimension d k = 2?

- Embeddability outside the metastable range?
 - codimension $d k \ge 3$?
 - codimension d k = 2?
- Explicit construction of embeddings?

If the embeddability test tells us $K \hookrightarrow \mathbb{R}^d$, can we compute an explicit PL embedding?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Embeddability outside the metastable range?
 - codimension $d k \ge 3$?
 - codimension d k = 2?
- Explicit construction of embeddings?

If the embeddability test tells us $K \hookrightarrow \mathbb{R}^d$, can we compute an explicit PL embedding?

- Explicit construction of relevant equivariant maps? (Currently, we compute very implicit representations of homotopy classes)
- Algorithmic Haefliger–Weber?
- ► Recent result [Freedman-Krushkal]: In the case d = 2k, k ≥ 3, an exponential number of subdivisions is sufficient and sometimes necessary.

- Embeddability outside the metastable range?
 - codimension $d k \ge 3$?
 - codimension d k = 2?
- Explicit construction of embeddings?

If the embeddability test tells us $K \hookrightarrow \mathbb{R}^d$, can we compute an explicit PL embedding?

- Explicit construction of relevant equivariant maps? (Currently, we compute very implicit representations of homotopy classes)
- Algorithmic Haefliger–Weber?
- ▶ Recent result [Freedman–Krushkal]: In the case d = 2k, k ≥ 3, an exponential number of subdivisions is sufficient and sometimes necessary.

Embeddability in other ambient manifolds?

- Given a 3-manifold M and a 2-complex K, it is NP-hard to decide whether K → M. True even under the additional assumption that K is a (non-orientable) surface! [Burton, de Mesmay, W.]
- Is the problem in NP? Yes for odd Euler genus nonorientable surfaces. Even Euler genus?

Thank you for your attention!