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Introduction

Is it possible to color the regions of every map with 4 colors, such that adjacent
regions receive different colors?

Francis Guthrie (1852)

1879 : proof of Kempe

1890 : Kempe’s proof is incorrect (Heawood)

1977 : computer-assisted proof by Appel and Haken

1997 : Robertson, Seymour and Thomas simplify the proof

2005 : the proof is verified by Gonthier using Coq (a formal proof management
system).
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Coloring

A k-coloring of a graph G = (V ,E ) is a function c : V → {1, . . . , k} such that for
any pair u, v of adjacent vertices in G , c(u) 6= c(v).

The chromatic number of G , denoted by χ(G ), is the least k such that G has a
k-coloring.

Some results:

χ(G ) ≤ 2 if and only if G has no odd cycle.

Determining whether χ(G ) ≤ 3 is an NP-complete problem (even if G is
planar).

For every planar graph G , χ(G ) ≤ 4.
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The Four color theorem

The edges of every 2-edge-connected cubic planar graph can be colored with 3
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Planar graphs

Planar graphs are 6-colorable.

Theorem (Folklore)

Euler’s formula. If G is a connected planar graph, with N vertices, M edges, and
F faces, then N −M + F = 2.

Assume that each vertex v has weight w(v) = d(v)− 6 and each face f has
weight w(f ) = 2d(f )− 6 ≥ 0.

The total weight is (2M − 6N) + (4M − 6F ) = −6(N −M + F ) = −12.

As a consequence, any planar graph contains a vertex of degree at most 5.
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Discharging

Any planar graph contains a vertex of degree at most 4 or a vertex of degree 5
adjacent to a vertex of degree at most 6.

Theorem (Folklore)

Proof. We can assume that the graph is a planar triangulation.
Assume for the sake of contradiction that the minimum degree is 5, and all the
neighbors of a vertex of degree 5 have degree at least 7.

Give each vertex v a weight w(v) = d(v)− 6. (The total weight is still ≤ −12).
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Graphs on surfaces

If G is embedded in a surface of Euler genus g > 0, then

χ(G ) ≤ 1
2 (7 +

√
1 + 24g).

Theorem (Heawood 1890)

Proof. We can assume without loss of generality that G is cellularly embedded in
Σ, and all faces have degree at least 3.
Again, Euler’s formula implies that

∑
v (d(v)− 6) ≤ 6g − 12.

Let δ be the minimum degree of a vertex of G .

Then δ ≤ 6 + (6g − 12)/N ≤ 6 + (6g − 12)/(δ + 1) (since N ≥ δ + 1).
Equivalently, δ(δ + 1) ≤ 6(δ + 1) + 6g − 12.

As a consequence, δ ≤ 1
2 (5 +

√
1 + 24g).

For any surface Σ of Euler genus g , except the Klein bottle, the complete graph
on b 12 (7 +

√
1 + 24g)c can be embedded in Σ.

Theorem (Ringel and Youngs 1968)

For the Klein bottle, Heawood’s formula gives a bound of 7, whereas it can be
proved that every graph embedded on the Klein bottle has chromatic number at
most 6 (and this is best possible, since K6 vertices can be embedded in this
surface).
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Locally planar graphs
A graph embedded on some surface of Euler genus g is locally planar if it has
large edge-width (= minimum length of a non-contractible cycle) compared to g .

Locally planar graphs are 5-colorable.

Theorem (Thomassen 1993)

Fisk (1978). If G is a triangulation of a surface such that all the vertices except 2
have even degree, and the 2 vertices of odd degree are adjacent, then χ(G ) ≥ 5.
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Youngs (1996). Any non-bipartite quadrangulation G of the projective plane
satisfies χ(G ) = 4.
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Some consequences

Assume that some property P holds for locally planar graphs. Then there is a
function f such that for any graph of Euler genus g , at most f (g) vertices can
be removed so that the resulting graph satisfies property P.

Lemma (Folklore)

As a consequence of the result of Thomassen, in any graph embedded on some
surface of bounded Euler genus, a constant number of vertices can be removed so
that the resulting graph is 5-colorable.

Is there a function f , such that any graph embedded on a surface of Euler genus
g can be made 4-colorable by removing at most f (g) vertices?

Problem (Albertson 1981)
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One more question

Planar graphs are 4-colorable.

The Four color theorem

The edges of every 2-edge-connected cubic planar graph can be colored with 3
colors (i.e. partitioned into 3 perfect matchings).

The Four color theorem

Locally planar graphs are 5-colorable.

Theorem (Thomassen 1993)

Is it true that the edges of every 2-edge-connected cubic locally planar graph
can be colored with 3 colors (i.e. partitioned into 3 perfect matchings)?

Question (Robertson 1992)
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Bonus: List-coloring of planar graphs

If G is planar, and any vertex is given an arbitrary list of 5 colors, then G has
a coloring in which each vertex receives a color from its list.

Theorem (Thomassen 1995)

If G is planar, and vertices have arbitrary lists of size
1 for two adjacent vertices of the outerface

3 for the other vertices of the outerface

5 for the remaining vertices
then G has a coloring in which each vertex receives a color from its list.

Stronger version (for the induction)



Bonus: List-coloring of planar graphs

If G is planar, and any vertex is given an arbitrary list of 5 colors, then G has
a coloring in which each vertex receives a color from its list.

Theorem (Thomassen 1995)

If G is planar, and vertices have arbitrary lists of size
1 for two adjacent vertices of the outerface

3 for the other vertices of the outerface

5 for the remaining vertices
then G has a coloring in which each vertex receives a color from its list.

Stronger version (for the induction)


	Main Talk

