Coloring graphs on surfaces

Louis Esperet

CNRS, Laboratoire G-SCOP, Grenoble, France
EPIT 2016
May 11, 2016

Introduction

Francis Guthrie (1852)

Is it possible to color the regions of every map with 4 colors, such that adjacent regions receive different colors?

Introduction

Francis Guthrie (1852)

Is it possible to color the regions of every map with 4 colors, such that adjacent regions receive different colors?

1879 : proof of Kempe

Introduction

Francis Guthrie (1852)

Is it possible to color the regions of every map with 4 colors, such that adjacent regions receive different colors?

1879 : proof of Kempe
1890 : Kempe's proof is incorrect (Heawood)

Introduction

Francis Guthrie (1852)

Is it possible to color the regions of every map with 4 colors, such that adjacent regions receive different colors?

1879 : proof of Kempe
1890 : Kempe's proof is incorrect (Heawood)
1977 : computer-assisted proof by Appel and Haken

Introduction

Francis Guthrie (1852)

Is it possible to color the regions of every map with 4 colors, such that adjacent regions receive different colors?

1879 : proof of Kempe
1890 : Kempe's proof is incorrect (Heawood)
1977 : computer-assisted proof by Appel and Haken
1997 : Robertson, Seymour and Thomas simplify the proof

Introduction

Francis Guthrie (1852)

Is it possible to color the regions of every map with 4 colors, such that adjacent regions receive different colors?

1879 : proof of Kempe
1890 : Kempe's proof is incorrect (Heawood)
1977 : computer-assisted proof by Appel and Haken
1997 : Robertson, Seymour and Thomas simplify the proof
2005 : the proof is verified by Gonthier using Coq (a formal proof management system).

Introduction

Introduction

Introduction

Introduction

Coloring

A k-coloring of a graph $G=(V, E)$ is a function $c: V \rightarrow\{1, \ldots, k\}$ such that for any pair u, v of adjacent vertices in $G, c(u) \neq c(v)$.

Coloring

A k-coloring of a graph $G=(V, E)$ is a function $c: V \rightarrow\{1, \ldots, k\}$ such that for any pair u, v of adjacent vertices in $G, c(u) \neq c(v)$.
The chromatic number of G, denoted by $\chi(G)$, is the least k such that G has a k-coloring.

Coloring

A k-coloring of a graph $G=(V, E)$ is a function $c: V \rightarrow\{1, \ldots, k\}$ such that for any pair u, v of adjacent vertices in $G, c(u) \neq c(v)$.
The chromatic number of G, denoted by $\chi(G)$, is the least k such that G has a k-coloring.

Some results:

Coloring

A k-coloring of a graph $G=(V, E)$ is a function $c: V \rightarrow\{1, \ldots, k\}$ such that for any pair u, v of adjacent vertices in $G, c(u) \neq c(v)$.
The chromatic number of G, denoted by $\chi(G)$, is the least k such that G has a k-coloring.

Some results:

- $\chi(G) \leq 2$ if and only if G has no odd cycle.

Coloring

A k-coloring of a graph $G=(V, E)$ is a function $c: V \rightarrow\{1, \ldots, k\}$ such that for any pair u, v of adjacent vertices in $G, c(u) \neq c(v)$.
The chromatic number of G, denoted by $\chi(G)$, is the least k such that G has a k-coloring.

Some results:

- $\chi(G) \leq 2$ if and only if G has no odd cycle.
- Determining whether $\chi(G) \leq 3$ is an NP-complete problem (even if G is planar).

Coloring

A k-coloring of a graph $G=(V, E)$ is a function $c: V \rightarrow\{1, \ldots, k\}$ such that for any pair u, v of adjacent vertices in $G, c(u) \neq c(v)$.
The chromatic number of G, denoted by $\chi(G)$, is the least k such that G has a k-coloring.

Some results:

- $\chi(G) \leq 2$ if and only if G has no odd cycle.
- Determining whether $\chi(G) \leq 3$ is an NP-complete problem (even if G is planar).
- For every planar graph $G, \chi(G) \leq 4$.

Duality

Duality

Duality

Duality

Duality

Duality

Duality

Duality

DUALITY

Duality

The Four color theorem
Planar graphs are 4-colorable.

Duality

The Four color theorem
Planar graphs are 4-colorable.

The Four color theorem

The edges of every 2-edge-connected cubic planar graph can be colored with 3 colors (i.e. partitioned into 3 perfect matchings).

PLANAR GRAPHS

Theorem (Folklore)
Planar graphs are 6-colorable.

Planar graphs

Theorem (Folklore)
Planar graphs are 6-colorable.

Euler's formula. If G is a connected planar graph, with N vertices, M edges, and F faces, then $N-M+F=2$.

Planar graphs

Theorem (Folklore)

Planar graphs are 6-colorable.

Euler's formula. If G is a connected planar graph, with N vertices, M edges, and F faces, then $N-M+F=2$.

Assume that each vertex v has weight $w(v)=d(v)-6$ and each face f has weight $w(f)=2 d(f)-6 \geq 0$.

Planar graphs

Theorem (Folklore)

Planar graphs are 6-colorable.

Euler's formula. If G is a connected planar graph, with N vertices, M edges, and F faces, then $N-M+F=2$.

Assume that each vertex v has weight $w(v)=d(v)-6$ and each face f has weight $w(f)=2 d(f)-6 \geq 0$.
The total weight is $(2 M-6 N)+(4 M-6 F)=-6(N-M+F)=-12$.

Planar graphs

Theorem (Folklore)

Planar graphs are 6-colorable.

Euler's formula. If G is a connected planar graph, with N vertices, M edges, and F faces, then $N-M+F=2$.

Assume that each vertex v has weight $w(v)=d(v)-6$ and each face f has weight $w(f)=2 d(f)-6 \geq 0$.
The total weight is $(2 M-6 N)+(4 M-6 F)=-6(N-M+F)=-12$.
As a consequence, any planar graph contains a vertex of degree at most 5 .

Discharging

Theorem (Folklore)

Any planar graph contains a vertex of degree at most 4 or a vertex of degree 5 adjacent to a vertex of degree at most 6 .

Discharging

Theorem (Folklore)

Any planar graph contains a vertex of degree at most 4 or a vertex of degree 5 adjacent to a vertex of degree at most 6.

Proof. We can assume that the graph is a planar triangulation.

Discharging

Theorem (Folklore)

Any planar graph contains a vertex of degree at most 4 or a vertex of degree 5 adjacent to a vertex of degree at most 6 .

Proof. We can assume that the graph is a planar triangulation.
Assume for the sake of contradiction that the minimum degree is 5 , and all the neighbors of a vertex of degree 5 have degree at least 7 .

Discharging

Theorem (Folklore)

Any planar graph contains a vertex of degree at most 4 or a vertex of degree 5 adjacent to a vertex of degree at most 6 .

Proof. We can assume that the graph is a planar triangulation.
Assume for the sake of contradiction that the minimum degree is 5 , and all the neighbors of a vertex of degree 5 have degree at least 7 .

Give each vertex v a weight $w(v)=d(v)-6$. (The total weight is still ≤-12).

Discharging

Theorem (Folklore)

Any planar graph contains a vertex of degree at most 4 or a vertex of degree 5 adjacent to a vertex of degree at most 6 .

Proof. We can assume that the graph is a planar triangulation.
Assume for the sake of contradiction that the minimum degree is 5 , and all the neighbors of a vertex of degree 5 have degree at least 7 .
Give each vertex v a weight $w(v)=d(v)-6$. (The total weight is still ≤-12).

Discharging

Theorem (Folklore)

Any planar graph contains a vertex of degree at most 4 or a vertex of degree 5 adjacent to a vertex of degree at most 6 .

Proof. We can assume that the graph is a planar triangulation.
Assume for the sake of contradiction that the minimum degree is 5 , and all the neighbors of a vertex of degree 5 have degree at least 7 .
Give each vertex v a weight $w(v)=d(v)-6$. (The total weight is still ≤-12).

Each vertex of degree ≥ 7 gives $1 / 5$ to each neighbor of degree 5

Discharging

Theorem (Folklore)

Any planar graph contains a vertex of degree at most 4 or a vertex of degree 5 adjacent to a vertex of degree at most 6 .

Proof. We can assume that the graph is a planar triangulation.
Assume for the sake of contradiction that the minimum degree is 5 , and all the neighbors of a vertex of degree 5 have degree at least 7 .
Give each vertex v a weight $w(v)=d(v)-6$. (The total weight is still ≤-12).

Each vertex of degree ≥ 7 gives $1 / 5$ to each neighbor of degree 5

Discharging

Theorem (Folklore)

Any planar graph contains a vertex of degree at most 4 or a vertex of degree 5 adjacent to a vertex of degree at most 6 .

Proof. We can assume that the graph is a planar triangulation.
Assume for the sake of contradiction that the minimum degree is 5 , and all the neighbors of a vertex of degree 5 have degree at least 7 .
Give each vertex v a weight $w(v)=d(v)-6$. (The total weight is still ≤-12).

Each vertex of degree ≥ 7 gives $1 / 5$ to each neighbor of degree 5

Discharging

Theorem (Folklore)

Any planar graph contains a vertex of degree at most 4 or a vertex of degree 5 adjacent to a vertex of degree at most 6 .

Proof. We can assume that the graph is a planar triangulation.
Assume for the sake of contradiction that the minimum degree is 5 , and all the neighbors of a vertex of degree 5 have degree at least 7 .
Give each vertex v a weight $w(v)=d(v)-6$. (The total weight is still ≤-12).

Each vertex of degree ≥ 7 gives $1 / 5$ to each neighbor of degree 5

Discharging

Theorem (Folklore)

Any planar graph contains a vertex of degree at most 4 or a vertex of degree 5 adjacent to a vertex of degree at most 6 .

Proof. We can assume that the graph is a planar triangulation.
Assume for the sake of contradiction that the minimum degree is 5 , and all the neighbors of a vertex of degree 5 have degree at least 7 .
Give each vertex v a weight $w(v)=d(v)-6$. (The total weight is still ≤-12).

Each vertex of degree ≥ 7 gives $1 / 5$ to each neighbor of degree 5

A vertex of degree $d \geq 7$ starts with $d-6$ and gives at most $\frac{d}{2} \cdot \frac{1}{5}$

Discharging

Theorem (Folklore)

Any planar graph contains a vertex of degree at most 4 or a vertex of degree 5 adjacent to a vertex of degree at most 6 .

Proof. We can assume that the graph is a planar triangulation.
Assume for the sake of contradiction that the minimum degree is 5 , and all the neighbors of a vertex of degree 5 have degree at least 7 .
Give each vertex v a weight $w(v)=d(v)-6$. (The total weight is still ≤-12).

Each vertex of degree ≥ 7 gives $1 / 5$ to each neighbor of degree 5

A vertex of degree $d \geq 7$ starts with $d-6$ and gives at most $\frac{d}{2} \cdot \frac{1}{5}$
Its final charge is at least $d-6-\frac{d}{2} \cdot \frac{1}{5} \geq 0$

Graphs on surfaces

Theorem (Heawood 1890)
If G is embedded in a surface of Euler genus $g>0$, then

$$
\chi(G) \leq \frac{1}{2}(7+\sqrt{1+24 g}) .
$$

Graphs on surfaces

Theorem (Heawood 1890)
If G is embedded in a surface of Euler genus $g>0$, then

$$
\chi(G) \leq \frac{1}{2}(7+\sqrt{1+24 g}) .
$$

Proof. We can assume without loss of generality that G is cellularly embedded in Σ, and all faces have degree at least 3 .

Graphs on surfaces

Theorem (Heawood 1890)

If G is embedded in a surface of Euler genus $g>0$, then

$$
\chi(G) \leq \frac{1}{2}(7+\sqrt{1+24 g}) .
$$

Proof. We can assume without loss of generality that G is cellularly embedded in Σ, and all faces have degree at least 3 .
Again, Euler's formula implies that $\sum_{v}(d(v)-6) \leq 6 g-12$.

Graphs on surfaces

Theorem (Heawood 1890)

If G is embedded in a surface of Euler genus $g>0$, then

$$
\chi(G) \leq \frac{1}{2}(7+\sqrt{1+24 g}) .
$$

Proof. We can assume without loss of generality that G is cellularly embedded in Σ, and all faces have degree at least 3 .
Again, Euler's formula implies that $\sum_{v}(d(v)-6) \leq 6 g-12$. Let δ be the minimum degree of a vertex of G.

Graphs on surfaces

Theorem (Heawood 1890)

If G is embedded in a surface of Euler genus $g>0$, then

$$
\chi(G) \leq \frac{1}{2}(7+\sqrt{1+24 g}) .
$$

Proof. We can assume without loss of generality that G is cellularly embedded in Σ, and all faces have degree at least 3 .
Again, Euler's formula implies that $\sum_{v}(d(v)-6) \leq 6 g-12$. Let δ be the minimum degree of a vertex of G.
Then $\delta \leq 6+(6 g-12) / N \leq 6+(6 g-12) /(\delta+1)($ since $N \geq \delta+1)$.

Graphs on surfaces

Theorem (Heawood 1890)

If G is embedded in a surface of Euler genus $g>0$, then

$$
\chi(G) \leq \frac{1}{2}(7+\sqrt{1+24 g}) .
$$

Proof. We can assume without loss of generality that G is cellularly embedded in Σ, and all faces have degree at least 3 .
Again, Euler's formula implies that $\sum_{v}(d(v)-6) \leq 6 g-12$. Let δ be the minimum degree of a vertex of G.
Then $\delta \leq 6+(6 g-12) / N \leq 6+(6 g-12) /(\delta+1)$ (since $N \geq \delta+1)$.
Equivalently, $\delta(\delta+1) \leq 6(\delta+1)+6 g-12$.

Graphs on surfaces

Theorem (Heawood 1890)

If G is embedded in a surface of Euler genus $g>0$, then

$$
\chi(G) \leq \frac{1}{2}(7+\sqrt{1+24 g}) .
$$

Proof. We can assume without loss of generality that G is cellularly embedded in Σ, and all faces have degree at least 3 .
Again, Euler's formula implies that $\sum_{v}(d(v)-6) \leq 6 g-12$. Let δ be the minimum degree of a vertex of G.
Then $\delta \leq 6+(6 g-12) / N \leq 6+(6 g-12) /(\delta+1)$ (since $N \geq \delta+1)$.
Equivalently, $\delta(\delta+1) \leq 6(\delta+1)+6 g-12$.
As a consequence, $\delta \leq \frac{1}{2}(5+\sqrt{1+24 g})$.

Graphs on surfaces

Theorem (Heawood 1890)
If G is embedded in a surface of Euler genus $g>0$, then

$$
\chi(G) \leq \frac{1}{2}(7+\sqrt{1+24 g}) .
$$

Theorem (Ringel and Youngs 1968)

For any surface Σ of Euler genus g, except the Klein bottle, the complete graph on $\left\lfloor\frac{1}{2}(7+\sqrt{1+24 g})\right\rfloor$ can be embedded in Σ.

Graphs on surfaces

Theorem (Heawood 1890)
If G is embedded in a surface of Euler genus $g>0$, then

$$
\chi(G) \leq \frac{1}{2}(7+\sqrt{1+24 g}) .
$$

Theorem (Ringel and Youngs 1968)

For any surface Σ of Euler genus g, except the Klein bottle, the complete graph on $\left\lfloor\frac{1}{2}(7+\sqrt{1+24 g})\right\rfloor$ can be embedded in Σ.

For the Klein bottle, Heawood's formula gives a bound of 7, whereas it can be proved that every graph embedded on the Klein bottle has chromatic number at most 6 (and this is best possible, since K_{6} vertices can be embedded in this surface).

LOCALLY PLANAR GRAPHS

A graph embedded on some surface of Euler genus g is locally planar if it has large edge-width ($=$ minimum length of a non-contractible cycle) compared to g.

LOCALLY PLANAR GRAPHS

A graph embedded on some surface of Euler genus g is locally planar if it has large edge-width ($=$ minimum length of a non-contractible cycle) compared to g.

Theorem (Thomassen 1993)

Locally planar graphs are 5-colorable.

LOCALLY PLANAR GRAPHS

A graph embedded on some surface of Euler genus g is locally planar if it has large edge-width ($=$ minimum length of a non-contractible cycle) compared to g.

Theorem (Thomassen 1993)

Locally planar graphs are 5-colorable.

Fisk (1978). If G is a triangulation of a surface such that all the vertices except 2 have even degree, and the 2 vertices of odd degree are adjacent, then $\chi(G) \geq 5$.

Locally planar graphs

A graph embedded on some surface of Euler genus g is locally planar if it has large edge-width ($=$ minimum length of a non-contractible cycle) compared to g.

Theorem (Thomassen 1993)

Locally planar graphs are 5-colorable.
Fisk (1978). If G is a triangulation of a surface such that all the vertices except 2 have even degree, and the 2 vertices of odd degree are adjacent, then $\chi(G) \geq 5$.

Locally planar graphs with even faces

Theorem (Hutchinson 1995)

If G is embedded in \mathbb{S}_{g} with edge-width at least $2^{3 g+5}$, such that all faces have even size, then G is 3 -colorable.

Locally planar graphs with even faces

Theorem (Hutchinson 1995)

If G is embedded in \mathbb{S}_{g} with edge-width at least $2^{3 g+5}$, such that all faces have even size, then G is 3 -colorable.

Youngs (1996). Any non-bipartite quadrangulation G of the projective plane satisfies $\chi(G)=4$.

Locally planar graphs with even faces

Theorem (Hutchinson 1995)

If G is embedded in \mathbb{S}_{g} with edge-width at least $2^{3 g+5}$, such that all faces have even size, then G is 3 -colorable.

Locally planar graphs with even faces

Theorem (Hutchinson 1995)

If G is embedded in \mathbb{S}_{g} with edge-width at least $2^{3 g+5}$, such that all faces have even size, then G is 3 -colorable.
G quadrangulation with edge-width at least $2^{3 g+5}$.

g even cycles, far apart, such that after cutting along them, the resulting graph is planar

Locally planar graphs with even faces

Theorem (Hutchinson 1995)

If G is embedded in \mathbb{S}_{g} with edge-width at least $2^{3 g+5}$, such that all faces have even size, then G is 3 -colorable.
G quadrangulation with edge-width at least $2^{3 g+5}$.

g even cycles, far apart, such that after cutting along them, the resulting graph is planar

Locally planar graphs with even faces

Theorem (Hutchinson 1995)

If G is embedded in \mathbb{S}_{g} with edge-width at least $2^{3 g+5}$, such that all faces have even size, then G is 3 -colorable.
G quadrangulation with edge-width at least $2^{3 g+5}$.

g even cycles, far apart, such that after cutting along them, the resulting graph is planar

Locally planar graphs with even faces

Theorem (Hutchinson 1995)

If G is embedded in \mathbb{S}_{g} with edge-width at least $2^{3 g+5}$, such that all faces have even size, then G is 3 -colorable.
G quadrangulation with edge-width at least $2^{3 g+5}$.

g even cycles, far apart, such that after cutting along them, the resulting graph is planar

Locally planar graphs with even faces

Theorem (Hutchinson 1995)

If G is embedded in \mathbb{S}_{g} with edge-width at least $2^{3 g+5}$, such that all faces have even size, then G is 3 -colorable.
G quadrangulation with edge-width at least $2^{3 g+5}$.

g even cycles, far apart, such that after cutting along them, the resulting graph is planar

Locally planar graphs with even faces

Theorem (Hutchinson 1995)

If G is embedded in \mathbb{S}_{g} with edge-width at least $2^{3 g+5}$, such that all faces have even size, then G is 3 -colorable.
G quadrangulation with edge-width at least $2^{3 g+5}$.

g even cycles, far apart, such that after cutting along them, the resulting graph is planar

Locally planar graphs with even faces

Theorem (Hutchinson 1995)

If G is embedded in \mathbb{S}_{g} with edge-width at least $2^{3 g+5}$, such that all faces have even size, then G is 3 -colorable.
G quadrangulation with edge-width at least $2^{3 g+5}$.

g even cycles, far apart, such that after cutting along them, the resulting graph is planar

Locally planar graphs with even faces

Theorem (Hutchinson 1995)

If G is embedded in \mathbb{S}_{g} with edge-width at least $2^{3 g+5}$, such that all faces have even size, then G is 3 -colorable.

Locally planar graphs with even faces

Theorem (Hutchinson 1995)

If G is embedded in \mathbb{S}_{g} with edge-width at least $2^{3 g+5}$, such that all faces have even size, then G is 3 -colorable.

Locally planar graphs with even faces

Theorem (Hutchinson 1995)

If G is embedded in \mathbb{S}_{g} with edge-width at least $2^{3 g+5}$, such that all faces have even size, then G is 3 -colorable.

Locally planar graphs with even faces

Theorem (Hutchinson 1995)

If G is embedded in \mathbb{S}_{g} with edge-width at least $2^{3 g+5}$, such that all faces have even size, then G is 3 -colorable.

Locally planar graphs with even faces

Theorem (Hutchinson 1995)

If G is embedded in \mathbb{S}_{g} with edge-width at least $2^{3 g+5}$, such that all faces have even size, then G is 3 -colorable.

Some consequences

Lemma (Folklore)
Assume that some property \mathcal{P} holds for locally planar graphs. Then there is a function f such that for any graph of Euler genus g, at most $f(g)$ vertices can be removed so that the resulting graph satisfies property \mathcal{P}.

SOME CONSEQUENCES

Lemma (Folklore)
Assume that some property \mathcal{P} holds for locally planar graphs. Then there is a function f such that for any graph of Euler genus g, at most $f(g)$ vertices can be removed so that the resulting graph satisfies property \mathcal{P}.

As a consequence of the result of Thomassen, in any graph embedded on some surface of bounded Euler genus, a constant number of vertices can be removed so that the resulting graph is 5 -colorable.

SOME CONSEQUENCES

Lemma (Folklore)

Assume that some property \mathcal{P} holds for locally planar graphs. Then there is a function f such that for any graph of Euler genus g, at most $f(g)$ vertices can be removed so that the resulting graph satisfies property \mathcal{P}.

As a consequence of the result of Thomassen, in any graph embedded on some surface of bounded Euler genus, a constant number of vertices can be removed so that the resulting graph is 5 -colorable.

Problem (Albertson 1981)

Is there a function f, such that any graph embedded on a surface of Euler genus g can be made 4-colorable by removing at most $f(g)$ vertices?

One more question

The Four color theorem
Planar graphs are 4-colorable.

One more question

The Four color theorem
Planar graphs are 4-colorable.

The Four color theorem

The edges of every 2-edge-connected cubic planar graph can be colored with 3 colors (i.e. partitioned into 3 perfect matchings).

One more question

The Four color theorem
Planar graphs are 4-colorable.

The Four color theorem

The edges of every 2-edge-connected cubic planar graph can be colored with 3 colors (i.e. partitioned into 3 perfect matchings).

Theorem (Thomassen 1993)

Locally planar graphs are 5-colorable.

One more question

The Four color theorem

Planar graphs are 4-colorable.

The Four color theorem

The edges of every 2-edge-connected cubic planar graph can be colored with 3 colors (i.e. partitioned into 3 perfect matchings).

Theorem (Thomassen 1993)

Locally planar graphs are 5-colorable.

Question (Robertson 1992)

Is it true that the edges of every 2-edge-connected cubic locally planar graph can be colored with 3 colors (i.e. partitioned into 3 perfect matchings)?

Bonus: List-coloring of planar graphs

Theorem (Thomassen 1995)

If G is planar, and any vertex is given an arbitrary list of 5 colors, then G has a coloring in which each vertex receives a color from its list.

Bonus: List-coloring of PLANAR graphs

Theorem (Thomassen 1995)

If G is planar, and any vertex is given an arbitrary list of 5 colors, then G has a coloring in which each vertex receives a color from its list.

Stronger version (for the induction)

If G is planar, and vertices have arbitrary lists of size

- 1 for two adjacent vertices of the outerface
- 3 for the other vertices of the outerface
- 5 for the remaining vertices
then G has a coloring in which each vertex receives a color from its list.

