Graphs on surfaces: topological algorithms

Éric Colin de Verdière

École normale supérieure (Paris) and CNRS

ÉPIT 2016

More Results...

Shortest non-trivial closed curves

g: genus, k: size of output (number of edges of shortest non-trivial closed curve)

	non-direct ed	directed
weighted	$ \begin{array}{l} O(n^2\log n) \; [Erickson-Har-Peled'04] \\ O(g^{3/2}n^{3/2}\log n) \; non-sep \\ g^{O(g)}n^{3/2} & non-contr \end{array} \} \; [Cabello-Mohar'07] \\ g^{O(g)}n\log n \; [Kutz'06] \\ O(g^3n\log n) \; [Cabello-Chambers'07] \\ O(g^2n\log n) \; [Cabello-Chambers-Erickson'12] \\ g^{O(g)}n\log\log n \; [Italiano \; et \; al.'11] \\ \end{array} $	$O(n^2 \log n) \text{ [Cabello-CdV-Lazarus'10]} \\ O(g^{1/2}n^{3/2} \log n) \text{ [Cab-CdV-Laz]} \\ 2^{O(g)}n \log n \text{ non-sep [Erickson-Nayyeri'1:} \\ O(g^2 n \log n) \text{ non-sep} \\ g^{O(g)}n \log n \text{ non-contr} \end{bmatrix} \text{ [Erickson'11]} \\ O(g^3 n \log n) \text{ non-contr [Fox'13]}$
ınweighted	$O(n^3)$ [Thomassen'90] $O(n^2)$ [Cabello-CdV-Lazarus'10] O(gnk) [Cabello-CdV-Lazarus'10] O(gn) for 2-approx [Erickson-Har-Peled'04] $O(gn/\varepsilon)$ for $(1+\varepsilon)$ -approx [Cabello-CdV-Lazarus'1	$O(n^2)$ [Cabello-CdV-Lazarus'10] $O(gnk)$ [Cabello-CdV-Lazarus'16]

Other problems solved

Curves and decompositions

- shortest curves: shortest splitting cycle [Chambers et al., 2006], shortest essential cycle [Erickson, Worah, 2010], some non-separating cycle as short as possible in its homotopy class [Cabello et al., 2008];
- decompositions: canonical system of loops [Lazarus et al., 2001];
- bounds on their length [CdV, Hubard, de Mesmay, 2015].

Decision problems on deformations

Deciding homotopy / isotopy for paths / closed curves / graphs [Lazarus, Rivaud, 2012; Erickson, Whittlesey, 2013; CdV, de Mesmay, 2013; \dots].

Crossings

- ullet drawing a graph in the plane with $\leq k$ crossings [Kawarabayashi, Reed, 2007];
- making curves minimally crossing [Matoušek et al., 2013].

Flows, cuts, cycle bases, homology bases

- min cut and max flow [Chambers et al., 2012], ...;
- cycle and homology bases [Borradaile et al., 2016].

MANY other algorithms for graphs embeddable on a fixed surface.

Path tightening

Problem

Local optimization doesn't work!

Problem

Problem

Local optimization doesn't work!

Universal cover $\tilde{\mathscr{S}}$ of the torus (g=1 handle)

- \bullet Every path on ${\mathscr S}$ can be "lifted" to $\tilde{{\mathscr S}}.$
- Two paths are homotopic iff they admit lifts with the same endpoints.

Universal cover $ilde{\mathscr{S}}$ of the torus $(extbf{ extit{g}}=1$ handle)

- \bullet Every path on ${\mathscr S}$ can be "lifted" to $\tilde{{\mathscr S}}.$
- Two paths are homotopic iff they admit lifts with the same endpoints.

Universal cover $ilde{\mathscr{S}}$ of the torus $(extbf{ extit{g}}=1$ handle)

- \bullet Every path on ${\mathscr S}$ can be "lifted" to $\tilde{{\mathscr S}}.$
- Two paths are homotopic iff they admit lifts with the same endpoints.

It "suffices" to compute shortest paths in $\tilde{\mathscr{S}}$.

Properties of a shortest cut graph with one vertex

Lemma

If the initial cycles form a shortest one-vertex cut graph, then the "horizontals" and the "verticals" are shortest paths.

Corollary

The shortest path connecting a to b in $\tilde{\mathscr{S}}$ remains in the rectangle containing a and b.

Algorithm (g = 1 handle)

- Compute a shortest one-vertex cut graph;
- $\rightarrow O(n^2 \log n)$
- \rightarrow Actually, $O(n \log n)$.
 - count the algebraic number of crossings p with the "horizontal" cycle and q with the "vertical" cycle;
- ightarrow p,q=O(k) where k=complexity of the input path.
 - glue $p \times q$ copies of the square;
- $\to O(pqn) = O(k^2n)$
- ightarrow Actually, O(p+q) copies suffice: O(kn).
 - compute a shortest path between the corresponding points of the grid.
- $ightarrow \, O(k^2 n \log(k^2 n)) \; (\mathsf{Dijkstra}).$
- \rightarrow Actually, O(kn).

Total: $O(n^2 \log n + k^2 n \log kn)$.

Actually: $O(n \log n + kn)$ [CdV, Erickson, 2006]+[CdV, Jouhet, ∞].

Algorithm (g = 1 handle)

- Compute a shortest one-vertex cut graph; $\rightarrow O(n^2 \log n)$
- \rightarrow Actually, $O(n \log n)$.
 - count the algebraic number of crossings p with the "horizontal" cycle and q with the "vertical" cycle;
- $\rightarrow p, q = O(k)$ where k=complexity of the input path.
 - glue $p \times q$ copies of the square;
- $\to O(pqn) = O(k^2n).$
- \rightarrow Actually, O(p+q) copies suffice: O(kn).
 - compute a shortest path between the corresponding points of the grid.
- $\rightarrow O(k^2 n \log(k^2 n))$ (Dijkstra).
- \rightarrow Actually, O(kn).

Total: $O(n^2 \log n + k^2 n \log kn)$.

Actually: $O(n \log n + kn)$ [CdV, Erickson, 2006]+[CdV, Jouhet, ∞].

Algorithm (g = 1 handle)

- Compute a shortest one-vertex cut graph;
- $\rightarrow O(n^2 \log n)$
- \rightarrow Actually, $O(n \log n)$.
 - count the algebraic number of crossings p with the "horizontal" cycle and q with the "vertical" cycle;
- ightarrow
 ho, q = O(k) where k = complexity of the input path.
 - glue $p \times q$ copies of the square;
- $\to O(pqn) = O(k^2n).$
- \rightarrow Actually, O(p+q) copies suffice: O(kn).
 - compute a shortest path between the corresponding points of the grid.
- $\rightarrow O(k^2 n \log(k^2 n))$ (Dijkstra).
- \rightarrow Actually, O(kn).

Total: $O(n^2 \log n + k^2 n \log kn)$.

Actually: $O(n \log n + kn)$ [CdV, Erickson, 2006]+[CdV, Jouhet, ∞].

- The lifts of a shortest cut graph are not shortest paths.
- What is a good replacement for the shortest cut graph?
- What does the universal cover look like?

- The lifts of a shortest cut graph are not shortest paths.
- What is a good replacement for the shortest cut graph?
- What does the universal cover look like?

- The lifts of a shortest cut graph are not shortest paths.
- What is a good replacement for the shortest cut graph?
- What does the universal cover look like?

- The lifts of a shortest cut graph are not shortest paths.
- What is a good replacement for the shortest cut graph?
- What does the universal cover look like?

octagonal decomposition each path lifts to a shortest path (3) (2) (2)

Technical Lemma and Convexity

Lemma

- ullet Let γ be a tight cycle,
- let p be a path "wrapping around" γ .
- Then p is tight.

Technical Lemma and Convexity

Lemma

- ullet Let γ be a tight cycle,
- let p be a path "wrapping around" γ .
- Then p is tight.

Convexity

- line: lift of a cycle
- half-plane: delimited by a line
- convex: intersection of half-planes
- the shortest point with endpoints in a convex set C stays in C.

Technical Lemma and Convexity

Lemma

- ullet Let γ be a tight cycle,
- let p be a path "wrapping around" γ .
- Then p is tight.

Convexity

- line: lift of a cycle
- half-plane: delimited by a line
- convex: intersection of half-planes
- the shortest point with endpoints in a convex set C stays in C.

Building the convex region of $\mathscr{ ilde{I}}$

Building the convex region of $\mathscr{ ilde{I}}$

Building the convex region of $\mathscr{ ilde{I}}$

Building the convex region of \mathscr{S} , details

Incremental construction

- Start with a copy of the octagon containing the source of \tilde{p} .
- ullet When $ilde{p}$ crosses a new line, augment the convex region.

Complexity

Size of the convex region: hyperbolicity

If \tilde{c} crosses m "lines", the convex region contains O(m) octagons.

Proof

- Area=O(perimeter): Indeed, iteratively remove an octagon farthest from the "center". That octagon has ≥ 5 sides on the boundary, so each step decreases the perimeter;
- perimeter is O(m), because:
 - at most 2m flat vertices on the boundary of the convex region
 - at most 6 corner vertices between two consecutive flat vertices.

Building the octagonal decomposition: technical lemma

Arc: path with endpoints on the boundary of the surface

Lemma

On a surface, let

- \bullet α be a tight simple curve that is either an arc or a non-contractible cycle,
- ullet be a simple path or cycle disjoint from lpha.

Then β is tight on S iff it is tight on $S \setminus \alpha$.

Building the octagonal decomposition •skip

On a surface with complexity n, genus g, and b boundaries:

- computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- ③ if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g=0 and $b\in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n\log n)$ [CdV, Lazarus, 2003],[Frederickson, 1987]

Building the octagonal decomposition ••skip

On a surface with complexity n, genus g, and b boundaries:

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- 0 if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g=0 and $b\in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n\log n)$ [CdV, Lazarus, 2003],[Frederickson, 1987]

Building the octagonal decomposition ••skip

On a surface with complexity n, genus g, and b boundaries:

- computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g=0 and $b\in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n\log n)$ [CdV, Lazarus, 2003],[Frederickson, 1987]

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- o if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g = 0 and $b \in \{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- \bullet if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g = 0 and $b \in \{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

- computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- o if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g = 0 and $b \in \{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- o if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g = 0 and $b \in \{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g = 0 and $b \in \{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- o if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g = 0 and $b \in \{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g = 0 and $b \in \{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- o if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g = 0 and $b \in \{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g = 0 and $b \in \{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- o if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g = 0 and $b \in \{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g = 0 and $b \in \{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g = 0 and $b \in \{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- (a) if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g = 0 and $b \in \{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- o if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g = 0 and $b \in \{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- (a) if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g = 0 and $b \in \{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g = 0 and $b \in \{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g = 0 and $b \in \{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- o if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g = 0 and $b \in \{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- o if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g = 0 and $b \in \{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g = 0 and $b \in \{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g = 0 and $b \in \{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g = 0 and $b \in \{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g = 0 and $b \in \{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- o if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g = 0 and $b \in \{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- (a) if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g = 0 and $b \in \{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g = 0 and $b \in \{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- o if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g = 0 and $b \in \{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g = 0 and $b \in \{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- (a) if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g = 0 and $b \in \{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g = 0 and $b \in \{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g = 0 and $b \in \{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g = 0 and $b \in \{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

- **1** computation of a shortest non-separating cycle: $O(n^2 \log n)$
- ② computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
- o if $b \ge 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
- if g=0 and $b\in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n\log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

Complexity [CdV, Erickson, 2006]

Preprocessing step: Computing the octagonal decomposition

 $O(gn \log n)$ (improvement using [Cabello et al., 2008]).

Details: cross-metric surface

- ullet Graph G cellularly embedded on ${\mathscr S}$
- \bullet Path p in G with k edges
- Octagonal decomposition in the cross-metric surface (in general position w.r.t. G^*)
- Admitted: Each cycle of the octagonal decomposition enters O(1) times every face of G^* .

Tightening algorithm

O(gnk), where k is the complexity of the input path, because

- ullet p crosses the octagonal decomposition O(gk) times,
- each octagon has complexity O(n).

Minimum cut algorithm

Problem

The minimum cut problem

Given

- G = (V, E): a weighted, undirected graph;
- s, t: two vertices of G,

compute $W \subset V$ containing s but not t that minimizes the sum of the weights of the edges between W and $V \setminus W$.

Theorem [Chambers, Erickson, Nayyeri, 2009]

If G is embedded on a surface of genus g, this problem can be solved in $O(g^{O(g)}n\log n)$ time.

Best result known before

Algorithms for sparse graphs in $O(n^2 \log n)$ [Sleator, Tarjan, 1983] and $O(n^{3/2} \log n \log C)$ [Goldberg, Rao, 1998].

Problem

The minimum cut problem

Given

- G = (V, E): a weighted, undirected graph;
- s, t: two vertices of G,

compute $W \subset V$ containing s but not t that minimizes the sum of the weights of the edges between W and $V \setminus W$.

Theorem [Chambers, Erickson, Nayyeri, 2009]

If G is embedded on a surface of genus g, this problem can be solved in $O(g^{O(g)}n\log n)$ time.

Best result known before

Algorithms for sparse graphs in $O(n^2 \log n)$ [Sleator, Tarjan, 1983] and $O(n^{3/2} \log n \log C)$ [Goldberg, Rao, 1998].

Problem

The minimum cut problem

Given

- G = (V, E): a weighted, undirected graph;
- s, t: two vertices of G,

compute $W \subset V$ containing s but not t that minimizes the sum of the weights of the edges between W and $V \setminus W$.

Theorem [Chambers, Erickson, Nayyeri, 2009]

If G is embedded on a surface of genus g, this problem can be solved in $O(g^{O(g)}n\log n)$ time.

Best result known before

Algorithms for sparse graphs in $O(n^2 \log n)$ [Sleator, Tarjan, 1983] and $O(n^{3/2} \log n \log C)$ [Goldberg, Rao, 1998].

- Minimum cut in $G \leftrightarrow \text{cycle } \gamma \text{ separating } s \text{ from } t, \text{ of minimum length in } G^*,$
- ullet or equivalently in the cross-metric surface defined by G.
- γ can be computed in $O(n \log n)$ time [Reif 1983; Frederickson 1987; Henzinger et al. 1997].

- Minimum cut in $G \leftrightarrow \text{cycle } \gamma \text{ separating } s \text{ from } t, \text{ of minimum length in } G^*,$
- ullet or equivalently in the cross-metric surface defined by G.
- γ can be computed in $O(n \log n)$ time [Reif 1983; Frederickson 1987; Henzinger et al. 1997].

- Minimum cut in $G \leftrightarrow \operatorname{cycle} \gamma$ separating s from t, of minimum length in G^* ,
- ullet or equivalently in the cross-metric surface defined by G.
- γ can be computed in $O(n \log n)$ time [Reif 1983; Frederickson 1987; Henzinger et al. 1997].

- Minimum cut in $G \leftrightarrow$ cycle γ separating s from t, of minimum length in G^* ,
- ullet or equivalently in the cross-metric surface defined by G.
- γ can be computed in $O(n \log n)$ time [Reif 1983; Frederickson 1987; Henzinger et al. 1997].

- Minimum cut in $G \leftrightarrow \operatorname{cycle} \gamma$ separating s from t, of minimum length in G^* ,
- ullet or equivalently in the cross-metric surface defined by G.
- γ can be computed in $O(n \log n)$ time [Reif 1983; Frederickson 1987; Henzinger et al. 1997].

- Minimum cut in $G \leftrightarrow \operatorname{cycle} \gamma$ separating s from t, of minimum length in G^* ,
- ullet or equivalently in the cross-metric surface defined by G.
- γ can be computed in $O(n \log n)$ time [Reif 1983; Frederickson 1987; Henzinger et al. 1997].

- Cut in $G \to \text{family } \Gamma$ of disjoint cycles in the cross-metric surface defined by G.
- ullet Compute a cut graph based at s, obtaining loops $\ell_1,\ldots,\ell_{2g}.$
- Let p be a shortest path from s to t.
- Γ is a cut iff it crosses every ℓ_i an even number of times and p an odd number of times.

- Cut in $G \to \text{family } \Gamma$ of disjoint cycles in the cross-metric surface defined by G.
- ullet Compute a cut graph based at s, obtaining loops $\ell_1,\ldots,\ell_{2g}.$
- Let p be a shortest path from s to t.
- Γ is a cut iff it crosses every ℓ_i an even number of times and p an odd number of times.

- Cut in $G \to \text{family } \Gamma$ of disjoint cycles in the cross-metric surface defined by G.
- ullet Compute a cut graph based at s, obtaining loops $\ell_1,\ldots,\ell_{2g}.$
- Let *p* be a shortest path from *s* to *t*.
- Γ is a cut iff it crosses every ℓ_i an even number of times and p an odd number of times.

- Cut in $G \to \text{family } \Gamma$ of disjoint cycles in the cross-metric surface defined by G.
- ullet Compute a cut graph based at s, obtaining loops $\ell_1,\ldots,\ell_{2g}.$
- Let p be a shortest path from s to t.
- Γ is a cut iff it crosses every ℓ_i an even number of times and p an odd number of times.

- Cut in $G \to \text{family } \Gamma$ of disjoint cycles in the cross-metric surface defined by G.
- ullet Compute a cut graph based at s, obtaining loops $\ell_1,\ldots,\ell_{2g}.$
- Let p be a shortest path from s to t.
- Γ is a cut iff it crosses every ℓ_i an even number of times and p an odd number of times.

- Cut in $G \to \text{family } \Gamma$ of disjoint cycles in the cross-metric surface defined by G.
- ullet Compute a cut graph based at s, obtaining loops $\ell_1,\ldots,\ell_{2g}.$
- Let p be a shortest path from s to t.
- Γ is a cut iff it crosses every ℓ_i an even number of times and p an odd number of times.

- Cut in $G \to \text{family } \Gamma$ of disjoint cycles in the cross-metric surface defined by G.
- ullet Compute a cut graph based at s, obtaining loops $\ell_1,\ldots,\ell_{2g}.$
- Let p be a shortest path from s to t.
- Γ is a cut iff it crosses every ℓ_i an even number of times and p an odd number of times.

- Lemma. If Γ corresponds to a minimum cut, then it crosses O(g) times p and each ℓ_i .
- Enumerate all possible patterns that form disjoint cycles. There are $g^{O(g)}$ possibilities.
- For each pattern, and each cycle appearing in this pattern, compute the shortest cycle that crosses p and the ℓ_i in the same order. This boils down to the planar case! Complexity $O(g^2 n \log n)$.
- Total running time: $O(g^{O(g)}n\log n)$.

- Lemma. If Γ corresponds to a minimum cut, then it crosses O(g) times p and each ℓ_i .
- Enumerate all possible patterns that form disjoint cycles. There are $g^{O(g)}$ possibilities.
- For each pattern, and each cycle appearing in this pattern, compute the shortest cycle that crosses p and the ℓ_i in the same order. This boils down to the planar case! Complexity $O(g^2 n \log n)$.
- Total running time: $O(g^{O(g)}n\log n)$.

- Lemma. If Γ corresponds to a minimum cut, then it crosses O(g) times p and each ℓ_i .
- Enumerate all possible patterns that form disjoint cycles. There are $g^{O(g)}$ possibilities.
- For each pattern, and each cycle appearing in this pattern, compute the shortest cycle that crosses p and the ℓ_i in the same order. This boils down to the planar case! Complexity $O(g^2 n \log n)$.
- Total running time: $O(g^{O(g)}n\log n)$.

- Lemma. If Γ corresponds to a minimum cut, then it crosses O(g) times p and each ℓ_i .
- Enumerate all possible patterns that form disjoint cycles. There are $g^{O(g)}$ possibilities.
- For each pattern, and each cycle appearing in this pattern, compute the shortest cycle that crosses p and the ℓ_i in the same order. This boils down to the planar case! Complexity $O(g^2 n \log n)$.
- Total running time: $O(g^{O(g)}n\log n)$

- Lemma. If Γ corresponds to a minimum cut, then it crosses O(g) times p and each ℓ_i .
- Enumerate all possible patterns that form disjoint cycles. There are $g^{O(g)}$ possibilities.
- For each pattern, and each cycle appearing in this pattern, compute the shortest cycle that crosses p and the ℓ_i in the same order. This boils down to the planar case! Complexity $O(g^2 n \log n)$.
- Total running time: $O(g^{O(g)}n\log n)$.

- Lemma. If Γ corresponds to a minimum cut, then it crosses O(g) times p and each ℓ_i .
- Enumerate all possible patterns that form disjoint cycles. There are $g^{O(g)}$ possibilities.
- For each pattern, and each cycle appearing in this pattern, compute the shortest cycle that crosses p and the ℓ_i in the same order. This boils down to the planar case! Complexity $O(g^2 n \log n)$.
- Total running time: $O(g^{O(g)}n\log n)$

- Lemma. If Γ corresponds to a minimum cut, then it crosses O(g) times p and each ℓ_i .
- Enumerate all possible patterns that form disjoint cycles. There are $g^{O(g)}$ possibilities.
- For each pattern, and each cycle appearing in this pattern, compute the shortest cycle that crosses p and the ℓ_i in the same order. This boils down to the planar case! Complexity $O(g^2 n \log n)$.
- Total running time: $O(g^{O(g)}n\log n)$

- Lemma. If Γ corresponds to a minimum cut, then it crosses O(g) times p and each ℓ_i .
- Enumerate all possible patterns that form disjoint cycles. There are $g^{O(g)}$ possibilities.
- For each pattern, and each cycle appearing in this pattern, compute the shortest cycle that crosses p and the ℓ_i in the same order. This boils down to the planar case! Complexity $O(g^2 n \log n)$.
- Total running time: $O(g^{O(g)}n\log n)$

- Lemma. If Γ corresponds to a minimum cut, then it crosses O(g) times p and each ℓ_i .
- Enumerate all possible patterns that form disjoint cycles. There are $g^{O(g)}$ possibilities.
- For each pattern, and each cycle appearing in this pattern, compute the shortest cycle that crosses p and the ℓ_i in the same order. This boils down to the planar case! Complexity $O(g^2 n \log n)$.
- Total running time: $O(g^{O(g)}n\log n)$

- Lemma. If Γ corresponds to a minimum cut, then it crosses O(g) times p and each ℓ_i .
- Enumerate all possible patterns that form disjoint cycles. There are $g^{O(g)}$ possibilities.
- For each pattern, and each cycle appearing in this pattern, compute the shortest cycle that crosses p and the ℓ_i in the same order. This boils down to the planar case! Complexity $O(g^2 n \log n)$.
- Total running time: $O(g^{O(g)}n\log n)$.

Lemma

 Γ has O(g) crossings with p and with each of the ℓ_i .

Lemma

 Γ has O(g) crossings with p and with each of the ℓ_i .

Lemma

 Γ has O(g) crossings with p and with each of the ℓ_i .

Lemma

 Γ has O(g) crossings with p and with each of the ℓ_i .

Lemma

 Γ has O(g) crossings with p and with each of the ℓ_i .

Lemma

 Γ has O(g) crossings with p and with each of the ℓ_i .

Lemma

 Γ has O(g) crossings with p and with each of the ℓ_i .

Lemma

 Γ has O(g) crossings with p and with each of the ℓ_i .

Lemma

 Γ has O(g) crossings with p and with each of the ℓ_i .

Lemma

 Γ has O(g) crossings with p and with each of the ℓ_i .

Thanks!

Table of contents

More Results...

- 2 Path tightening
- 3 Minimum cut algorithm
- 4 Thanks!