
Graphs on surfaces: topological algorithms

Éric Colin de Verdière

École normale supérieure (Paris) and CNRS

ÉPIT 2016



More Results. . .



Shortest non-trivial closed curves

g : genus, k : size of output (number of edges of shortest non-trivial
closed curve)

non-directed directed

w
ei
gh

te
d

O(n2 log n) [Erickson�Har-Peled'04]
O(g3/2n3/2 log n) non-sep
gO(g)n3/2 non-contr

}
[Cabello�Mohar'07]

gO(g)n log n [Kutz'06]
O(g3n log n) [Cabello�Chambers'07]
O(g2n log n) [Cabello�Chambers�Erickson'12]
gO(g)n log log n [Italiano et al.'11]

O(n2 log n) [Cabello�CdV�Lazarus'10]
O(g1/2n3/2 log n) [Cab�CdV�Laz]
2O(g)n log n non-sep [Erickson�Nayyeri'11]
O(g2n log n) non-sep
gO(g)n log n non-contr

}
[Erickson'11]

O(g3n log n) non-contr [Fox'13]

un
w
ei
gh

te
d

O(n3) [Thomassen'90]
O(n2) [Cabello�CdV�Lazarus'10]
O(gnk) [Cabello�CdV�Lazarus'10]
O(gn) for 2-approx [Erickson�Har-Peled'04]
O(gn/ε) for (1+ ε)-approx [Cabello�CdV�Lazarus'10]

O(n2) [Cabello�CdV�Lazarus'10]
O(gnk) [Cabello�CdV�Lazarus'16]



Other problems solved

Curves and decompositions

shortest curves: shortest splitting cycle [Chambers et al., 2006], shortest
essential cycle [Erickson, Worah, 2010], some non-separating cycle as short as
possible in its homotopy class [Cabello et al., 2008];

decompositions: canonical system of loops [Lazarus et al., 2001];

bounds on their length [CdV, Hubard, de Mesmay, 2015].

Decision problems on deformations

Deciding homotopy / isotopy for paths / closed curves / graphs [Lazarus, Rivaud,
2012; Erickson, Whittlesey, 2013; CdV, de Mesmay, 2013; . . . ].

Crossings

drawing a graph in the plane with ≤ k crossings [Kawarabayashi, Reed, 2007];

making curves minimally crossing [Matou²ek et al., 2013].

Flows, cuts, cycle bases, homology bases

min cut and max �ow [Chambers et al., 2012], . . . ;

cycle and homology bases [Borradaile et al., 2016].

MANY other algorithms for graphs embeddable on a �xed surface.



Path tightening



Problem

Local optimization doesn't work!



Problem

Local optimization doesn't work!



Problem

Local optimization doesn't work!



Universal cover S̃ of the torus (g = 1 handle)

Every path on S can be �lifted� to S̃ .

Two paths are homotopic i� they admit lifts with the same
endpoints.



Universal cover S̃ of the torus (g = 1 handle)

Every path on S can be �lifted� to S̃ .

Two paths are homotopic i� they admit lifts with the same
endpoints.



Universal cover S̃ of the torus (g = 1 handle)

Every path on S can be �lifted� to S̃ .

Two paths are homotopic i� they admit lifts with the same
endpoints.

It �su�ces� to compute shortest paths in S̃ .



Properties of a shortest cut graph with one vertex

a

b

a

b

Lemma

If the initial cycles form a shortest one-vertex cut graph, then the
�horizontals� and the �verticals� are shortest paths.

Corollary

The shortest path connecting a to b in S̃ remains in the rectangle
containing a and b.



Algorithm (g = 1 handle)

Compute a shortest one-vertex cut graph;
→ O(n2 log n)

→ Actually, O(n log n).

count the algebraic number of crossings p with the
�horizontal� cycle and q with the �vertical� cycle;

→ p, q = O(k) where k=complexity of the input path.

glue p × q copies of the square;
→ O(pqn) = O(k2n).

→ Actually, O(p + q) copies su�ce: O(kn).

compute a shortest path between the corresponding points of
the grid.

→ O(k2n log(k2n)) (Dijkstra).
→ Actually, O(kn).

Total: O(n2 log n + k2n log kn).
Actually: O(n log n + kn) [CdV, Erickson, 2006]+[CdV, Jouhet, ∞].



Algorithm (g = 1 handle)

Compute a shortest one-vertex cut graph;
→ O(n2 log n)

→ Actually, O(n log n).

count the algebraic number of crossings p with the
�horizontal� cycle and q with the �vertical� cycle;

→ p, q = O(k) where k=complexity of the input path.

glue p × q copies of the square;
→ O(pqn) = O(k2n).

→ Actually, O(p + q) copies su�ce: O(kn).

compute a shortest path between the corresponding points of
the grid.

→ O(k2n log(k2n)) (Dijkstra).
→ Actually, O(kn).

Total: O(n2 log n + k2n log kn).
Actually: O(n log n + kn) [CdV, Erickson, 2006]+[CdV, Jouhet, ∞].



Algorithm (g = 1 handle)

Compute a shortest one-vertex cut graph;
→ O(n2 log n)

→ Actually, O(n log n).

count the algebraic number of crossings p with the
�horizontal� cycle and q with the �vertical� cycle;

→ p, q = O(k) where k=complexity of the input path.

glue p × q copies of the square;
→ O(pqn) = O(k2n).

→ Actually, O(p + q) copies su�ce: O(kn).

compute a shortest path between the corresponding points of
the grid.

→ O(k2n log(k2n)) (Dijkstra).
→ Actually, O(kn).

Total: O(n2 log n + k2n log kn).
Actually: O(n log n + kn) [CdV, Erickson, 2006]+[CdV, Jouhet, ∞].



Okay, but what about g ≥ 2 handles?

The lifts of a shortest cut graph are
not shortest paths.

What is a good replacement for the
shortest cut graph?

What does the universal cover look
like?



Okay, but what about g ≥ 2 handles?

The lifts of a shortest cut graph are
not shortest paths.

What is a good replacement for the
shortest cut graph?

What does the universal cover look
like?



Okay, but what about g ≥ 2 handles?

The lifts of a shortest cut graph are
not shortest paths.

What is a good replacement for the
shortest cut graph?

What does the universal cover look
like?

octagonal decomposition
each path lifts to a shortest path



Okay, but what about g ≥ 2 handles?

The lifts of a shortest cut graph are
not shortest paths.

What is a good replacement for the
shortest cut graph?

What does the universal cover look
like?

octagonal decomposition
each path lifts to a shortest path



Technical Lemma and Convexity

Lemma

Let γ be a tight cycle,

let p be a path �wrapping
around� γ.

Then p is tight.



Technical Lemma and Convexity

Lemma

Let γ be a tight cycle,

let p be a path �wrapping
around� γ.

Then p is tight.

Convexity

line: lift of a cycle

half-plane: delimited by a
line

convex: intersection of
half-planes

the shortest point with
endpoints in a convex
set C stays in C .



Technical Lemma and Convexity

Lemma

Let γ be a tight cycle,

let p be a path �wrapping
around� γ.

Then p is tight.

Convexity

line: lift of a cycle

half-plane: delimited by a
line

convex: intersection of
half-planes

the shortest point with
endpoints in a convex
set C stays in C .



Building the convex region of S̃



Building the convex region of S̃



Building the convex region of S̃



Building the convex region of S̃



Building the convex region of S̃



Building the convex region of S̃



Building the convex region of S̃



Building the convex region of S̃



Building the convex region of S̃ , details

Incremental construction

Start with a copy of the octagon containing the source of p̃.

When p̃ crosses a new line, augment the convex region.

old convex region



Complexity

Size of the convex region: hyperbolicity

If c̃ crosses m �lines�, the convex region contains O(m) octagons.

Proof

Area=O(perimeter): Indeed, iteratively remove an octagon
farthest from the �center�. That octagon has ≥ 5 sides on the
boundary, so each step decreases the perimeter;
perimeter is O(m), because:

at most 2m �at vertices on the boundary of the convex region

at most 6 corner vertices between two consecutive �at vertices.



Building the octagonal decomposition: technical lemma

Arc: path with endpoints on the boundary of the surface

Lemma

On a surface, let

α be a tight simple curve that is either an arc or a
non-contractible cycle,

β be a simple path or cycle disjoint from α.

Then β is tight on S i� it is tight on S\\α.



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus, 2003],
[Frederickson, 1987]



Complexity [CdV, Erickson, 2006]

Preprocessing step: Computing the octagonal decomposition

O(gn log n) (improvement using [Cabello et al., 2008]).

Details: cross-metric surface

Graph G cellularly embedded on S

Path p in G with k edges

Octagonal decomposition in the cross-metric surface (in
general position w.r.t. G ∗)

Admitted: Each cycle of the octagonal decomposition enters
O(1) times every face of G ∗.

Tightening algorithm

O(gnk), where k is the complexity of the input path, because

p crosses the octagonal decomposition O(gk) times,

each octagon has complexity O(n).

Extension: closed curves (allowing the basepoint to move).



Minimum cut algorithm



Problem

The minimum cut problem

Given

G = (V ,E ): a weighted,
undirected graph;

s, t: two vertices of G ,

compute W ⊂ V containing s but not t
that minimizes the sum of the weights
of the edges between W and V \W .

Theorem [Chambers, Erickson, Nayyeri, 2009]

If G is embedded on a surface of genus g , this problem can be
solved in O(gO(g)n log n) time.

Best result known before

Algorithms for sparse graphs in O(n2 log n) [Sleator, Tarjan, 1983] and
O(n3/2 log n logC ) [Goldberg, Rao, 1998].



Problem

The minimum cut problem

Given

G = (V ,E ): a weighted,
undirected graph;

s, t: two vertices of G ,

compute W ⊂ V containing s but not t
that minimizes the sum of the weights
of the edges between W and V \W .

Theorem [Chambers, Erickson, Nayyeri, 2009]

If G is embedded on a surface of genus g , this problem can be
solved in O(gO(g)n log n) time.

Best result known before

Algorithms for sparse graphs in O(n2 log n) [Sleator, Tarjan, 1983] and
O(n3/2 log n logC ) [Goldberg, Rao, 1998].



Problem

The minimum cut problem

Given

G = (V ,E ): a weighted,
undirected graph;

s, t: two vertices of G ,

compute W ⊂ V containing s but not t
that minimizes the sum of the weights
of the edges between W and V \W .

Theorem [Chambers, Erickson, Nayyeri, 2009]

If G is embedded on a surface of genus g , this problem can be
solved in O(gO(g)n log n) time.

Best result known before

Algorithms for sparse graphs in O(n2 log n) [Sleator, Tarjan, 1983] and
O(n3/2 log n logC ) [Goldberg, Rao, 1998].



Preliminaries: case of the plane (=of the sphere)

Minimum cut in G ↔ cycle γ separating s from t, of minimum
length in G ∗,

or equivalently in the cross-metric surface de�ned by G .

γ can be computed in O(n log n) time [Reif 1983; Frederickson 1987;

Henzinger et al. 1997].



Preliminaries: case of the plane (=of the sphere)

Minimum cut in G ↔ cycle γ separating s from t, of minimum
length in G ∗,

or equivalently in the cross-metric surface de�ned by G .

γ can be computed in O(n log n) time [Reif 1983; Frederickson 1987;

Henzinger et al. 1997].



Preliminaries: case of the plane (=of the sphere)

Minimum cut in G ↔ cycle γ separating s from t, of minimum
length in G ∗,

or equivalently in the cross-metric surface de�ned by G .

γ can be computed in O(n log n) time [Reif 1983; Frederickson 1987;

Henzinger et al. 1997].



Preliminaries: case of the plane (=of the sphere)

Minimum cut in G ↔ cycle γ separating s from t, of minimum
length in G ∗,

or equivalently in the cross-metric surface de�ned by G .

γ can be computed in O(n log n) time [Reif 1983; Frederickson 1987;

Henzinger et al. 1997].



Preliminaries: case of the plane (=of the sphere)

Minimum cut in G ↔ cycle γ separating s from t, of minimum
length in G ∗,

or equivalently in the cross-metric surface de�ned by G .

γ can be computed in O(n log n) time [Reif 1983; Frederickson 1987;

Henzinger et al. 1997].



Preliminaries: case of the plane (=of the sphere)

Minimum cut in G ↔ cycle γ separating s from t, of minimum
length in G ∗,

or equivalently in the cross-metric surface de�ned by G .

γ can be computed in O(n log n) time [Reif 1983; Frederickson 1987;

Henzinger et al. 1997].



Case of surfaces

t

s

Cut in G → family Γ of disjoint cycles in the cross-metric
surface de�ned by G .

Compute a cut graph based at s, obtaining loops `1, . . . , `2g .

Let p be a shortest path from s to t.

Γ is a cut i� it crosses every `i an even number of times and p
an odd number of times.



Case of surfaces

t

s

Cut in G → family Γ of disjoint cycles in the cross-metric
surface de�ned by G .

Compute a cut graph based at s, obtaining loops `1, . . . , `2g .

Let p be a shortest path from s to t.

Γ is a cut i� it crosses every `i an even number of times and p
an odd number of times.



Case of surfaces

`1

`2

t

s

Cut in G → family Γ of disjoint cycles in the cross-metric
surface de�ned by G .

Compute a cut graph based at s, obtaining loops `1, . . . , `2g .

Let p be a shortest path from s to t.

Γ is a cut i� it crosses every `i an even number of times and p
an odd number of times.



Case of surfaces

`1

p
`2

t

s

Cut in G → family Γ of disjoint cycles in the cross-metric
surface de�ned by G .

Compute a cut graph based at s, obtaining loops `1, . . . , `2g .

Let p be a shortest path from s to t.

Γ is a cut i� it crosses every `i an even number of times and p
an odd number of times.



Case of surfaces

`1

p
`2

t

s

Cut in G → family Γ of disjoint cycles in the cross-metric
surface de�ned by G .

Compute a cut graph based at s, obtaining loops `1, . . . , `2g .

Let p be a shortest path from s to t.

Γ is a cut i� it crosses every `i an even number of times and p
an odd number of times.



Case of surfaces

`1

p
`2

t

s

`1
`2

`1

`2

p

p

Cut in G → family Γ of disjoint cycles in the cross-metric
surface de�ned by G .

Compute a cut graph based at s, obtaining loops `1, . . . , `2g .

Let p be a shortest path from s to t.

Γ is a cut i� it crosses every `i an even number of times and p
an odd number of times.



Case of surfaces

`1

p
`2

t

s

`1
`2

`1

`2

p

p

Cut in G → family Γ of disjoint cycles in the cross-metric
surface de�ned by G .

Compute a cut graph based at s, obtaining loops `1, . . . , `2g .

Let p be a shortest path from s to t.

Γ is a cut i� it crosses every `i an even number of times and p
an odd number of times.



Algorithm
`1

`2

`1

`2

p

p

Lemma. If Γ corresponds to a minimum cut, then it crosses
O(g) times p and each `i .

Enumerate all possible patterns that form disjoint cycles.
There are gO(g) possibilities.

For each pattern, and each cycle appearing in this pattern,
compute the shortest cycle that crosses p and the `i in the
same order. This boils down to the planar case! Complexity
O(g2n log n).

Total running time: O(gO(g)n log n).



Algorithm
`1

`2

`1

`2

p

p

Lemma. If Γ corresponds to a minimum cut, then it crosses
O(g) times p and each `i .

Enumerate all possible patterns that form disjoint cycles.
There are gO(g) possibilities.

For each pattern, and each cycle appearing in this pattern,
compute the shortest cycle that crosses p and the `i in the
same order. This boils down to the planar case! Complexity
O(g2n log n).

Total running time: O(gO(g)n log n).



Algorithm
`1

`2

`1

`2

p

p

Lemma. If Γ corresponds to a minimum cut, then it crosses
O(g) times p and each `i .

Enumerate all possible patterns that form disjoint cycles.
There are gO(g) possibilities.

For each pattern, and each cycle appearing in this pattern,
compute the shortest cycle that crosses p and the `i in the
same order. This boils down to the planar case! Complexity
O(g2n log n).

Total running time: O(gO(g)n log n).



Algorithm
`1

`2

`1

`2

p

p

Lemma. If Γ corresponds to a minimum cut, then it crosses
O(g) times p and each `i .

Enumerate all possible patterns that form disjoint cycles.
There are gO(g) possibilities.

For each pattern, and each cycle appearing in this pattern,
compute the shortest cycle that crosses p and the `i in the
same order. This boils down to the planar case! Complexity
O(g2n log n).

Total running time: O(gO(g)n log n).



Algorithm
`1

`2

`1

`2

p

p

Lemma. If Γ corresponds to a minimum cut, then it crosses
O(g) times p and each `i .

Enumerate all possible patterns that form disjoint cycles.
There are gO(g) possibilities.

For each pattern, and each cycle appearing in this pattern,
compute the shortest cycle that crosses p and the `i in the
same order. This boils down to the planar case! Complexity
O(g2n log n).

Total running time: O(gO(g)n log n).



Algorithm
`1

`2

`1

`2

p

p

Lemma. If Γ corresponds to a minimum cut, then it crosses
O(g) times p and each `i .

Enumerate all possible patterns that form disjoint cycles.
There are gO(g) possibilities.

For each pattern, and each cycle appearing in this pattern,
compute the shortest cycle that crosses p and the `i in the
same order. This boils down to the planar case! Complexity
O(g2n log n).

Total running time: O(gO(g)n log n).



Algorithm
`1

`2

`1

`2

p

p

`1

`1

Lemma. If Γ corresponds to a minimum cut, then it crosses
O(g) times p and each `i .

Enumerate all possible patterns that form disjoint cycles.
There are gO(g) possibilities.

For each pattern, and each cycle appearing in this pattern,
compute the shortest cycle that crosses p and the `i in the
same order. This boils down to the planar case! Complexity
O(g2n log n).

Total running time: O(gO(g)n log n).



Algorithm
`1

`2

`1

`2

p

p

`1

`1

`1

Lemma. If Γ corresponds to a minimum cut, then it crosses
O(g) times p and each `i .

Enumerate all possible patterns that form disjoint cycles.
There are gO(g) possibilities.

For each pattern, and each cycle appearing in this pattern,
compute the shortest cycle that crosses p and the `i in the
same order. This boils down to the planar case! Complexity
O(g2n log n).

Total running time: O(gO(g)n log n).



Algorithm
`1

`2

`1

`2

p

p

`1

`2

`1

`1

Lemma. If Γ corresponds to a minimum cut, then it crosses
O(g) times p and each `i .

Enumerate all possible patterns that form disjoint cycles.
There are gO(g) possibilities.

For each pattern, and each cycle appearing in this pattern,
compute the shortest cycle that crosses p and the `i in the
same order. This boils down to the planar case! Complexity
O(g2n log n).

Total running time: O(gO(g)n log n).



Algorithm
`1

`2

`1

`2

p

p

`1

`2

`1

`1

Lemma. If Γ corresponds to a minimum cut, then it crosses
O(g) times p and each `i .

Enumerate all possible patterns that form disjoint cycles.
There are gO(g) possibilities.

For each pattern, and each cycle appearing in this pattern,
compute the shortest cycle that crosses p and the `i in the
same order. This boils down to the planar case! Complexity
O(g2n log n).

Total running time: O(gO(g)n log n).



Proof of the lemma

Lemma

Γ has O(g) crossings with p and with each of the `i .

t∗

s∗

Let us shrink the shortest path to a single vertex v :
Γ becomes a family of non-crossing loops based at v , such that no
face of this graph is a disk bounded by one or two loops.



Proof of the lemma

Lemma

Γ has O(g) crossings with p and with each of the `i .

t∗

s∗

Let us shrink the shortest path to a single vertex v :
Γ becomes a family of non-crossing loops based at v , such that no
face of this graph is a disk bounded by one or two loops.



Proof of the lemma

Lemma

Γ has O(g) crossings with p and with each of the `i .

t∗

s∗

Let us shrink the shortest path to a single vertex v :
Γ becomes a family of non-crossing loops based at v , such that no
face of this graph is a disk bounded by one or two loops.



Proof of the lemma

Lemma

Γ has O(g) crossings with p and with each of the `i .

t∗

s∗

Let us shrink the shortest path to a single vertex v :
Γ becomes a family of non-crossing loops based at v , such that no
face of this graph is a disk bounded by one or two loops.



Proof of the lemma

Lemma

Γ has O(g) crossings with p and with each of the `i .

t∗

s∗

Let us shrink the shortest path to a single vertex v :
Γ becomes a family of non-crossing loops based at v , such that no
face of this graph is a disk bounded by one or two loops.



Proof of the lemma

Lemma

Γ has O(g) crossings with p and with each of the `i .

t∗

s∗

Let us shrink the shortest path to a single vertex v :
Γ becomes a family of non-crossing loops based at v , such that no
face of this graph is a disk bounded by one or two loops.



Proof of the lemma

Lemma

Γ has O(g) crossings with p and with each of the `i .

t∗

s∗

Let us shrink the shortest path to a single vertex v :
Γ becomes a family of non-crossing loops based at v , such that no
face of this graph is a disk bounded by one or two loops.



Proof of the lemma

Lemma

Γ has O(g) crossings with p and with each of the `i .

t∗

s∗

Let us shrink the shortest path to a single vertex v :
Γ becomes a family of non-crossing loops based at v , such that no
face of this graph is a disk bounded by one or two loops.



Proof of the lemma

Lemma

Γ has O(g) crossings with p and with each of the `i .

t∗

s∗

Let us shrink the shortest path to a single vertex v :
Γ becomes a family of non-crossing loops based at v , such that no
face of this graph is a disk bounded by one or two loops.



Proof of the lemma

Lemma

Γ has O(g) crossings with p and with each of the `i .

t∗

s∗

Let us shrink the shortest path to a single vertex v :
Γ becomes a family of non-crossing loops based at v , such that no
face of this graph is a disk bounded by one or two loops.



Thanks!



Table of contents

1 More Results. . .

2 Path tightening

3 Minimum cut algorithm

4 Thanks!


	More Results…
	Path tightening
	Minimum cut algorithm
	Thanks!

