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More Results. . .



Shortest non-trivial closed curves

g : genus, k : size of output (number of edges of shortest non-trivial
closed curve)
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O(n2 log n) [Erickson�Har-Peled'04]
O(g3/2n3/2 log n) non-sep
gO(g)n3/2 non-contr

}
[Cabello�Mohar'07]

gO(g)n log n [Kutz'06]
O(g3n log n) [Cabello�Chambers'07]
O(g2n log n) [Cabello�Chambers�Erickson'12]
gO(g)n log log n [Italiano et al.'11]

O(n2 log n) [Cabello�CdV�Lazarus'10]
O(g1/2n3/2 log n) [Cab�CdV�Laz]
2O(g)n log n non-sep [Erickson�Nayyeri'11]
O(g2n log n) non-sep
gO(g)n log n non-contr

}
[Erickson'11]

O(g3n log n) non-contr [Fox'13]
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O(n3) [Thomassen'90]
O(n2) [Cabello�CdV�Lazarus'10]
O(gnk) [Cabello�CdV�Lazarus'10]
O(gn) for 2-approx [Erickson�Har-Peled'04]
O(gn/ε) for (1+ ε)-approx [Cabello�CdV�Lazarus'10]

O(n2) [Cabello�CdV�Lazarus'10]
O(gnk) [Cabello�CdV�Lazarus'16]



Other problems solved

Curves and decompositions

shortest curves: shortest splitting cycle [Chambers et al., 2006], shortest
essential cycle [Erickson, Worah, 2010], some non-separating cycle as short as
possible in its homotopy class [Cabello et al., 2008];

decompositions: canonical system of loops [Lazarus et al., 2001];

bounds on their length [CdV, Hubard, de Mesmay, 2015].

Decision problems on deformations

Deciding homotopy / isotopy for paths / closed curves / graphs [Lazarus, Rivaud,
2012; Erickson, Whittlesey, 2013; CdV, de Mesmay, 2013; . . . ].

Crossings

drawing a graph in the plane with ≤ k crossings [Kawarabayashi, Reed, 2007];

making curves minimally crossing [Matou²ek et al., 2013].

Flows, cuts, cycle bases, homology bases

min cut and max �ow [Chambers et al., 2012], . . . ;

cycle and homology bases [Borradaile et al., 2016].

MANY other algorithms for graphs embeddable on a �xed surface.
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Universal cover S̃ of the torus (g = 1 handle)

Every path on S can be �lifted� to S̃ .

Two paths are homotopic i� they admit lifts with the same
endpoints.

It �su�ces� to compute shortest paths in S̃ .



Properties of a shortest cut graph with one vertex

a

b

a

b

Lemma

If the initial cycles form a shortest one-vertex cut graph, then the
�horizontals� and the �verticals� are shortest paths.

Corollary

The shortest path connecting a to b in S̃ remains in the rectangle
containing a and b.



Algorithm (g = 1 handle)

Compute a shortest one-vertex cut graph;
→ O(n2 log n)

→ Actually, O(n log n).

count the algebraic number of crossings p with the
�horizontal� cycle and q with the �vertical� cycle;

→ p, q = O(k) where k=complexity of the input path.

glue p × q copies of the square;
→ O(pqn) = O(k2n).

→ Actually, O(p + q) copies su�ce: O(kn).

compute a shortest path between the corresponding points of
the grid.

→ O(k2n log(k2n)) (Dijkstra).
→ Actually, O(kn).

Total: O(n2 log n + k2n log kn).
Actually: O(n log n + kn) [CdV, Erickson, 2006]+[CdV, Jouhet, ∞].
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Building the convex region of S̃ , details

Incremental construction

Start with a copy of the octagon containing the source of p̃.

When p̃ crosses a new line, augment the convex region.

old convex region



Complexity

Size of the convex region: hyperbolicity

If c̃ crosses m �lines�, the convex region contains O(m) octagons.

Proof

Area=O(perimeter): Indeed, iteratively remove an octagon
farthest from the �center�. That octagon has ≥ 5 sides on the
boundary, so each step decreases the perimeter;
perimeter is O(m), because:

at most 2m �at vertices on the boundary of the convex region

at most 6 corner vertices between two consecutive �at vertices.



Building the octagonal decomposition: technical lemma

Arc: path with endpoints on the boundary of the surface

Lemma

On a surface, let

α be a tight simple curve that is either an arc or a
non-contractible cycle,

β be a simple path or cycle disjoint from α.

Then β is tight on S i� it is tight on S\\α.



Building the octagonal decomposition skip

On a surface with complexity n, genus g , and b boundaries:

1 computation of a shortest non-separating cycle: O(n2 log n)

2 computation of a shortest arc between two points of the
boundary (or between two distinct boundaries): O(n log n)
[Dijkstra]

3 if b ≥ 1, computation of a shortest non-separating arc:
O(n log n) [Erickson, Har-Peled, 2002]

4 if g = 0 and b ∈ {2, 3}, computation of a shortest cycle
homotopic to a given boundary: O(n log n) [CdV, Lazarus,

2003],[Frederickson, 1987]
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Complexity [CdV, Erickson, 2006]

Preprocessing step: Computing the octagonal decomposition

O(gn log n) (improvement using [Cabello et al., 2008]).

Details: cross-metric surface

Graph G cellularly embedded on S

Path p in G with k edges

Octagonal decomposition in the cross-metric surface (in
general position w.r.t. G ∗)

Admitted: Each cycle of the octagonal decomposition enters
O(1) times every face of G ∗.

Tightening algorithm

O(gnk), where k is the complexity of the input path, because

p crosses the octagonal decomposition O(gk) times,

each octagon has complexity O(n).

Extension: closed curves (allowing the basepoint to move).



Minimum cut algorithm



Problem

The minimum cut problem

Given

G = (V ,E ): a weighted,
undirected graph;

s, t: two vertices of G ,

compute W ⊂ V containing s but not t
that minimizes the sum of the weights
of the edges between W and V \W .

Theorem [Chambers, Erickson, Nayyeri, 2009]

If G is embedded on a surface of genus g , this problem can be
solved in O(gO(g)n log n) time.

Best result known before

Algorithms for sparse graphs in O(n2 log n) [Sleator, Tarjan, 1983] and
O(n3/2 log n logC ) [Goldberg, Rao, 1998].
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Preliminaries: case of the plane (=of the sphere)

Minimum cut in G ↔ cycle γ separating s from t, of minimum
length in G ∗,

or equivalently in the cross-metric surface de�ned by G .

γ can be computed in O(n log n) time [Reif 1983; Frederickson 1987;

Henzinger et al. 1997].
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Case of surfaces

t

s

Cut in G → family Γ of disjoint cycles in the cross-metric
surface de�ned by G .

Compute a cut graph based at s, obtaining loops `1, . . . , `2g .

Let p be a shortest path from s to t.

Γ is a cut i� it crosses every `i an even number of times and p
an odd number of times.
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Lemma. If Γ corresponds to a minimum cut, then it crosses
O(g) times p and each `i .

Enumerate all possible patterns that form disjoint cycles.
There are gO(g) possibilities.

For each pattern, and each cycle appearing in this pattern,
compute the shortest cycle that crosses p and the `i in the
same order. This boils down to the planar case! Complexity
O(g2n log n).

Total running time: O(gO(g)n log n).
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Γ has O(g) crossings with p and with each of the `i .

t∗

s∗

Let us shrink the shortest path to a single vertex v :
Γ becomes a family of non-crossing loops based at v , such that no
face of this graph is a disk bounded by one or two loops.



Proof of the lemma

Lemma

Γ has O(g) crossings with p and with each of the `i .

t∗

s∗

Let us shrink the shortest path to a single vertex v :
Γ becomes a family of non-crossing loops based at v , such that no
face of this graph is a disk bounded by one or two loops.



Proof of the lemma

Lemma

Γ has O(g) crossings with p and with each of the `i .

t∗

s∗

Let us shrink the shortest path to a single vertex v :
Γ becomes a family of non-crossing loops based at v , such that no
face of this graph is a disk bounded by one or two loops.



Proof of the lemma

Lemma

Γ has O(g) crossings with p and with each of the `i .

t∗

s∗

Let us shrink the shortest path to a single vertex v :
Γ becomes a family of non-crossing loops based at v , such that no
face of this graph is a disk bounded by one or two loops.



Proof of the lemma

Lemma

Γ has O(g) crossings with p and with each of the `i .

t∗

s∗

Let us shrink the shortest path to a single vertex v :
Γ becomes a family of non-crossing loops based at v , such that no
face of this graph is a disk bounded by one or two loops.



Proof of the lemma

Lemma

Γ has O(g) crossings with p and with each of the `i .

t∗

s∗

Let us shrink the shortest path to a single vertex v :
Γ becomes a family of non-crossing loops based at v , such that no
face of this graph is a disk bounded by one or two loops.



Proof of the lemma

Lemma

Γ has O(g) crossings with p and with each of the `i .

t∗

s∗

Let us shrink the shortest path to a single vertex v :
Γ becomes a family of non-crossing loops based at v , such that no
face of this graph is a disk bounded by one or two loops.



Proof of the lemma

Lemma

Γ has O(g) crossings with p and with each of the `i .

t∗

s∗

Let us shrink the shortest path to a single vertex v :
Γ becomes a family of non-crossing loops based at v , such that no
face of this graph is a disk bounded by one or two loops.



Proof of the lemma

Lemma

Γ has O(g) crossings with p and with each of the `i .

t∗

s∗

Let us shrink the shortest path to a single vertex v :
Γ becomes a family of non-crossing loops based at v , such that no
face of this graph is a disk bounded by one or two loops.



Proof of the lemma

Lemma

Γ has O(g) crossings with p and with each of the `i .

t∗

s∗

Let us shrink the shortest path to a single vertex v :
Γ becomes a family of non-crossing loops based at v , such that no
face of this graph is a disk bounded by one or two loops.



Thanks!



Table of contents

1 More Results. . .

2 Path tightening

3 Minimum cut algorithm

4 Thanks!


	More Results…
	Path tightening
	Minimum cut algorithm
	Thanks!

