Graphs on surfaces: topological algorithms

Éric Colin de Verdière

École normale supérieure (Paris) and CNRS

ÉPIT 2016

More Results. . .
g : genus, k : size of output (number of edges of shortest non-trivial closed curve)

	non-directed	directed
ס	$\boldsymbol{O}\left(\boldsymbol{n}^{\mathbf{2}} \log \boldsymbol{n}\right)$ [Erickson-Har-Peled'04]	$O\left(n^{2} \log n\right)$ [Cabello-CdV-Lazarus'10] $\boldsymbol{O}\left(\boldsymbol{g}^{1 / 2} \boldsymbol{n}^{3 / 2} \log \boldsymbol{n}\right)$ [Cab-CdV-Laz] $2^{O(g)} n \log n$ non-sep [Erickson-Nayyeri'1 $\left.\begin{array}{ll}\boldsymbol{O}\left(\boldsymbol{g}^{2} \boldsymbol{n} \log \boldsymbol{n}\right) & \text { non-sep } \\ g^{O(g)} n \log n & \text { non-contr }\end{array}\right\}$ [Erickson'11] $\boldsymbol{O}\left(g^{3} n \log n\right)$ non-contr [Fox'13]
	$O\left(g^{3 / 2} n^{3 / 2} \log n\right)$ non-sep $\}[C a b$	
	$g^{(g(g)} n^{3 / 2} \quad$ non-contr $\}$	
	$g^{O(g)} n \log n[K$ utz'06]	
	$O\left(g^{3} n \log n\right)$ [Cabello-Chambers'07]	
	$\boldsymbol{O}\left(\boldsymbol{g}^{2} \boldsymbol{n} \log \boldsymbol{n}\right)$ [Cabello-Chambers-Erickson'12] $\boldsymbol{g}^{\boldsymbol{O}(\boldsymbol{g})} \boldsymbol{n} \log \log \boldsymbol{n}$ [Italiano et al.'11]	
	$O\left(n^{3}\right)$ [Thomassen'90]	$\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ [Cabello-CdV-Lazarus'10]
	$\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ [Cabello-CdV-Lazarus'10]	\boldsymbol{O} (gnk) [Cabello-CdV-Lazarus'16]
	O(gnk) [Cabello-CdV-Lazarus'10]	
	$O(g n)$ for 2-approx [Erickson-Har-Peled'04]	
	$\boldsymbol{O}(\boldsymbol{g n} / \varepsilon)$ for $(1+\varepsilon)$-approx [Cabello-CdV-Lazarus	

Other problems solved

Curves and decompositions

- shortest curves: shortest splitting cycle [Chambers et al., 2006], shortest essential cycle [Erickson, Worah, 2010], some non-separating cycle as short as possible in its homotopy class [Cabello et al., 2008];
- decompositions: canonical system of loops [Lazarus et al., 2001];
- bounds on their length [CdV, Hubard, de Mesmay, 2015].

Decision problems on deformations

Deciding homotopy / isotopy for paths / closed curves / graphs [Lazarus, Rivaud, 2012; Erickson, Whittlesey, 2013; CdV, de Mesmay, 2013; ...].

Crossings

- drawing a graph in the plane with $\leq k$ crossings [Kawarabayashi, Reed, 2007];
- making curves minimally crossing [Matoušek et al., 2013].

Flows, cuts, cycle bases, homology bases

- min cut and max flow [Chambers et al., 2012], ...;
- cycle and homology bases [Borradaile et al., 2016].

MANY other algorithms for graphs embeddable on a fixed surface.

Path tightening

Local optimization doesn't work!

Problem

Local optimization doesn't work!

Problem

Local optimization doesn't work!

Universal cover $\tilde{\mathscr{S}}$ of the torus ($g=1$ handle)

- Every path on \mathscr{S} can be "lifted" to $\tilde{\mathscr{S}}$.
- Two paths are homotopic iff they admit lifts with the same endpoints.

Universal cover $\tilde{\mathscr{S}}$ of the torus ($g=1$ handle)

- Every path on \mathscr{S} can be "lifted" to $\tilde{\mathscr{S}}$.
- Two paths are homotopic iff they admit lifts with the same endpoints.

Universal cover $\tilde{\mathscr{S}}$ of the torus ($g=1$ handle)

- Every path on \mathscr{S} can be "lifted" to $\tilde{\mathscr{S}}$.
- Two paths are homotopic iff they admit lifts with the same endpoints.

It "suffices" to compute shortest paths in $\tilde{\mathscr{S}}$.

Properties of a shortest cut graph with one vertex

Lemma

If the initial cycles form a shortest one-vertex cut graph, then the "horizontals" and the "verticals" are shortest paths.

Corollary

The shortest path connecting a to b in $\tilde{\mathscr{S}}$ remains in the rectangle containing a and b.

Algorithm ($g=1$ handle)

- Compute a shortest one-vertex cut graph;

\rightarrow Actually, $O(n \log n)$.

- count the algebraic number of crossings p with the "horizontal" cycle and q with the "vertical" cycle;
- glue $p \times q$ copies of the square;
\rightarrow Actually, $O(p+q)$ copies suffice: $O(k n)$.
- compute a shortest path between the corresponding points of the grid.

Total: $O\left(n^{2} \log n+k^{2} n \log k n\right)$.

Algorithm ($g=1$ handle)

- Compute a shortest one-vertex cut graph;
$\rightarrow O\left(n^{2} \log n\right)$
\rightarrow Actually, $O(n \log n)$.
- count the algebraic number of crossings p with the "horizontal" cycle and q with the "vertical" cycle;
$\rightarrow p, q=O(k)$ where $k=$ complexity of the input path.
- glue $p \times q$ copies of the square;
$\rightarrow O(p q n)=O\left(k^{2} n\right)$.
\rightarrow Actually, $O(p+q)$ copies suffice: $O(k n)$.
- compute a shortest path between the corresponding points of the grid.
$\rightarrow O\left(k^{2} n \log \left(k^{2} n\right)\right)$ (Dijkstra).
\rightarrow Actually, $O(k n)$.
Total: $O\left(n^{2} \log n+k^{2} n \log k n\right)$.
Actually: $O(n \log n+k n)$ [CdV, Erickson, 2006]+[CdV, Jouhet, $\infty]$.

Algorithm ($g=1$ handle)

- Compute a shortest one-vertex cut graph;
$\rightarrow O\left(n^{2} \log n\right)$
\rightarrow Actually, $O(n \log n)$.
- count the algebraic number of crossings p with the "horizontal" cycle and q with the "vertical" cycle;
$\rightarrow p, q=O(k)$ where $k=$ complexity of the input path.
- glue $p \times q$ copies of the square;
$\rightarrow O(p q n)=O\left(k^{2} n\right)$.
\rightarrow Actually, $O(p+q)$ copies suffice: $O(k n)$.
- compute a shortest path between the corresponding points of the grid.
$\rightarrow O\left(k^{2} n \log \left(k^{2} n\right)\right)$ (Dijkstra).
\rightarrow Actually, $O(k n)$.
Total: $O\left(n^{2} \log n+k^{2} n \log k n\right)$.
Actually: $O(n \log n+k n)$ [CdV, Erickson, 2006]+[CdV, Jouhet, $\infty]$.

Okay, but what about $g \geq 2$ handles?

- The lifts of a shortest cut graph are not shortest paths.
- What is a good replacement for the shortest cut graph?
- What does the universal cover look like?

Okay, but what about $g \geq 2$ handles?

- The lifts of a shortest cut graph are not shortest paths.
- What is a good replacement for the shortest cut graph?
- What does the universal cover look like?

Okay, but what about $g \geq 2$ handles?

- The lifts of a shortest cut graph are not shortest paths.
- What is a good replacement for the shortest cut graph?
- What does the universal cover look like?

Okay, but what about $g \geq 2$ handles?

- The lifts of a shortest cut graph are not shortest paths.
- What is a good replacement for the shortest cut graph?
- What does the universal cover look like?

octagonal decomposition each path lifts to a shortest path

Technical Lemma and Convexity

Lemma

- Let γ be a tight cycle,
- let p be a path "wrapping around" γ.
- Then p is tight.

Technical Lemma and Convexity

Lemma

- Let γ be a tight cycle,
- let p be a path "wrapping around" γ.
- Then p is tight.

Convexity

- line: lift of a cycle
- half-plane: delimited by a line
- convex: intersection of half-planes
- the shortest point with endpoints in a convex set C stays in C.

Technical Lemma and Convexity

Lemma

- Let γ be a tight cycle,
- let p be a path "wrapping around" γ.
- Then p is tight.

Convexity

- line: lift of a cycle
- half-plane: delimited by a line
- convex: intersection of half-planes
- the shortest point with endpoints in a convex set C stays in C.

Building the convex region of \mathscr{S}

Building the convex region of $\tilde{\mathscr{S}}$

Building the convex region of $\tilde{\mathscr{S}}$, details

Incremental construction

- Start with a copy of the octagon containing the source of \tilde{p}.
- When \tilde{p} crosses a new line, augment the convex region.

Complexity

Size of the convex region: hyperbolicity
If \tilde{c} crosses m "lines", the convex region contains $O(m)$ octagons.

Proof

- Area $=\mathrm{O}$ (perimeter): Indeed, iteratively remove an octagon farthest from the "center". That octagon has ≥ 5 sides on the boundary, so each step decreases the perimeter;
- perimeter is $O(m)$, because:
- at most $2 m$ flat vertices on the boundary of the convex region
- at most 6 corner vertices between two consecutive flat vertices.

Building the octagonal decomposition: technical lemma

Arc: path with endpoints on the boundary of the surface

Lemma

On a surface, let

- α be a tight simple curve that is either an arc or a non-contractible cycle,
- β be a simple path or cycle disjoint from α.

Then β is tight on S iff it is tight on $S \backslash \alpha$.

Building the octagonal decomposition

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(3) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(9) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

Building the octagonal decomposition

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(1) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

Building the octagonal decomposition

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(1) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

Building the octagonal decomposition

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(9) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

Building the octagonal decomposition

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(1) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

Building the octagonal decomposition

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(1) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

Building the octagonal decomposition

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(9) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

Building the octagonal decomposition

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(1) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

Building the octagonal decomposition

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(1) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

Building the octagonal decomposition

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(1) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

Building the octagonal decomposition

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(1) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

Building the octagonal decomposition

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(1) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

Building the octagonal decomposition

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(9) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003],[Frederickson, 1987]

Building the octagonal decomposition

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(9) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

Building the octagonal decomposition

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(9) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

Building the octagonal decomposition

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(9) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

Building the octagonal decomposition

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(9) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

Building the octagonal decomposition

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(9) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

Building the octagonal decomposition

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(9) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(1) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

Building the octagonal decomposition

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(9) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(9) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(9) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(9) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(1) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(1) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(1) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(1) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(1) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(1) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(1) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(1) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(1) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(1) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(9) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)[C d V$, Lazarus, 2003],[Frederickson, 1987]

Building the octagonal decomposition

On a surface with complexity n, genus g, and b boundaries:
(1) computation of a shortest non-separating cycle: $O\left(n^{2} \log n\right)$
(2) computation of a shortest arc between two points of the boundary (or between two distinct boundaries): $O(n \log n)$ [Dijkstra]
(3) if $b \geq 1$, computation of a shortest non-separating arc: $O(n \log n)$ [Erickson, Har-Peled, 2002]
(9) if $g=0$ and $b \in\{2,3\}$, computation of a shortest cycle homotopic to a given boundary: $O(n \log n)$ [CdV, Lazarus, 2003], [Frederickson, 1987]

Complexity

Preprocessing step: Computing the octagonal decomposition $O(g n \log n)$ (improvement using [Cabello et al., 2008]).

Details: cross-metric surface

- Graph G cellularly embedded on \mathscr{S}
- Path p in G with k edges
- Octagonal decomposition in the cross-metric surface (in general position w.r.t. G^{*})
- Admitted: Each cycle of the octagonal decomposition enters $O(1)$ times every face of G^{*}.

Tightening algorithm

O (gnk), where k is the complexity of the input path, because

- p crosses the octagonal decomposition $O(g k)$ times,
- each octagon has complexity $O(n)$.

Minimum cut algorithm

The minimum cut problem
Given

- $G=(V, E)$: a weighted, undirected graph;
- s, t : two vertices of G, compute $W \subset V$ containing s but not t that minimizes the sum of the weights
 of the edges between W and $V \backslash W$.

Theorem [Chambers, Erickson, Nayyeri, 2009]
If G is embedded on a surface of genus g, this problem can be solved in $O\left(g^{O(g)} n \log n\right)$ time.

Best result known before

Algorithms for sparse graphs in $O\left(n^{2} \log n\right)$ [Sleator, Tarjan, 1983] and $O\left(n^{3 / 2} \log n \log C\right)$ [Goldberg, Rao, 1998].

The minimum cut problem
Given

- $G=(V, E)$: a weighted, undirected graph;
- s, t : two vertices of G, compute $W \subset V$ containing s but not t that minimizes the sum of the weights
 of the edges between W and $V \backslash W$.

Theorem [Chambers, Erickson, Nayyeri, 2009]
If G is embedded on a surface of genus g, this problem can be solved in $O\left(g^{O(g)} n \log n\right)$ time.

Best result known before

Algorithms for sparse graphs in $O\left(n^{2} \log n\right)$ [Sleator, Tarjan, 1983] and $O\left(n^{3 / 2} \log n \log C\right)$ [Goldberg, Rao, 1998].

The minimum cut problem
Given

- $G=(V, E)$: a weighted, undirected graph;
- s, t : two vertices of G, compute $W \subset V$ containing s but not t that minimizes the sum of the weights
 of the edges between W and $V \backslash W$.

Theorem [Chambers, Erickson, Nayyeri, 2009]
If G is embedded on a surface of genus g, this problem can be solved in $O\left(g^{O(g)} n \log n\right)$ time.

Best result known before

Algorithms for sparse graphs in $O\left(n^{2} \log n\right)$ [Sleator, Tarjan, 1983] and $O\left(n^{3 / 2} \log n \log C\right)$ [Goldberg, Rao, 1998].

- Minimum cut in $G \leftrightarrow$ cycle γ separating s from t, of minimum length in G^{*},
- or equivalently in the cross-metric surface defined by G.
- γ can be computed in $O(n \log n)$ time [Reif 1983; Frederickson 1987; Henzinger et al. 1997].

- Minimum cut in $G \leftrightarrow$ cycle γ separating s from t, of minimum length in G^{*},
- or equivalently in the cross-metric surface defined by G.
- γ can be computed in $O(n \log n)$ time [Reif 1983; Frederickson 1987; Henzinger et al. 1997].

Preliminaries: case of the plane (=of the sphere)

- Minimum cut in $G \leftrightarrow$ cycle γ separating s from t, of minimum length in G^{*},
- or equivalently in the cross-metric surface defined by G.
- γ can be computed in $O(n \log n)$ time [Reif 1983; Frederickson 1987; Henzinger et al. 1997].

Preliminaries: case of the plane (=of the sphere)

- Minimum cut in $G \leftrightarrow$ cycle γ separating s from t, of minimum length in G^{*},
- or equivalently in the cross-metric surface defined by G.
- γ can be computed in $O(n \log n)$ time [Reif 1983; Frederickson 1987; Henzinger et al. 1997].

Preliminaries: case of the plane (=of the sphere)

- Minimum cut in $G \leftrightarrow$ cycle γ separating s from t, of minimum length in G^{*},
- or equivalently in the cross-metric surface defined by G.
- γ can be computed in $O(n \log n)$ time [Reif 1983; Frederickson 1987; Henzinger et al. 1997].

Preliminaries: case of the plane (=of the sphere)

- Minimum cut in $G \leftrightarrow$ cycle γ separating s from t, of minimum length in G^{*},
- or equivalently in the cross-metric surface defined by G.
- γ can be computed in $O(n \log n)$ time [Reif 1983; Frederickson 1987; Henzinger et al. 1997].

Case of surfaces

- Cut in $G \rightarrow$ family Γ of disjoint cycles in the cross-metric surface defined by G.
- Compute a cut graph based at s, obtaining loops $\ell_{1}, \ldots, \ell_{2 g}$.
- Let p be a shortest path from s to t.
- Γ is a cut iff it crosses every ℓ_{i} an even r umber of times and p an odd number of times.

Case of surfaces

- Cut in $G \rightarrow$ family Γ of disjoint cycles in the cross-metric surface defined by G.
- Compute a cut graph based at s, obtaining loops $\ell_{1}, \ldots, \ell_{2 g}$.
- Let p be a shortest path from s to t.
- Γ is a cut iff it crosses every ℓ_{i} an even r umber of times and p an odd number of times.

Case of surfaces

- Cut in $G \rightarrow$ family Γ of disjoint cycles in the cross-metric surface defined by G.
- Compute a cut graph based at s, obtaining loops $\ell_{1}, \ldots, \ell_{2 g}$.
- Let p be a shortest path from s to t.
- Γ is a cut iff it crosses every ℓ_{i} an even number of times and p an odd number of times.

Case of surfaces

- Cut in $G \rightarrow$ family Γ of disjoint cycles in the cross-metric surface defined by G.
- Compute a cut graph based at s, obtaining loops $\ell_{1}, \ldots, \ell_{2 g}$.
- Let p be a shortest path from s to t.
- Γ is a cut iff it crosses every ℓ_{i} an even number of times and p an odd number of times.

Case of surfaces

- Cut in $G \rightarrow$ family Γ of disjoint cycles in the cross-metric surface defined by G.
- Compute a cut graph based at s, obtaining loops $\ell_{1}, \ldots, \ell_{2 g}$.
- Let p be a shortest path from s to t.
- Γ is a cut iff it crosses every ℓ_{i} an even number of times and p an odd number of times.

Case of surfaces

- Cut in $G \rightarrow$ family Γ of disjoint cycles in the cross-metric surface defined by G.
- Compute a cut graph based at s, obtaining loops $\ell_{1}, \ldots, \ell_{2 g}$.
- Let p be a shortest path from s to t.
- Γ is a cut iff it crosses every ℓ_{i} an even number of times and p an odd number of times.

Case of surfaces

- Cut in $G \rightarrow$ family Γ of disjoint cycles in the cross-metric surface defined by G.
- Compute a cut graph based at s, obtaining loops $\ell_{1}, \ldots, \ell_{2 g}$.
- Let p be a shortest path from s to t.
- Γ is a cut iff it crosses every ℓ_{i} an even number of times and p an odd number of times.

Algorithm

- Lemma. If Γ corresponds to a minimum cut, then it crosses $O(g)$ times p and each ℓ_{i}.
- Enumerate all possible patterns that form disjoint cycles. There are $g^{O(g)}$ possibilities.
- For each pattern, and each cycle appearing in this pattern, compute the shortest cycle that crosses p and the ℓ_{i} in the same order. This boils down to the planar case! Complexity $O\left(g^{2} n \log n\right)$.
- Total running time: $O\left(g^{O(g)} n \log n\right)$.

Algorithm

- Lemma. If Γ corresponds to a minimum cut, then it crosses $O(g)$ times p and each ℓ_{i}.
- Enumerate all possible patterns that form disjoint cycles. There are $g^{O(g)}$ possibilities.
- For each pattern, and each cycle appearing in this pattern, compute the shortest cycle that crosses p and the ℓ_{i} in the same order. This boils down to the planar case! Complexity $O\left(g^{2} n \log n\right)$.

Algorithm

- Lemma. If Γ corresponds to a minimum cut, then it crosses $O(g)$ times p and each ℓ_{i}.
- Enumerate all possible patterns that form disjoint cycles. There are $g^{O(g)}$ possibilities.
- For each pattern, and each cycle appearing in this pattern, compute the shortest cycle that crosses p and the ℓ_{i} in the same order. This boils down to the planar case! Complexity $O\left(g^{2} n \log n\right)$.

Algorithm

- Lemma. If 「 corresponds to a minimum cut, then it crosses $O(g)$ times p and each ℓ_{i}.
- Enumerate all possible patterns that form disjoint cycles. There are $g^{O(g)}$ possibilities.
- For each pattern, and each cycle appearing in this pattern, compute the shortest cycle that crosses p and the ℓ_{i} in the same order. This boils down to the planar case! Complexity $O\left(g^{2} n \log n\right)$.

Algorithm

- Lemma. If Γ corresponds to a minimum cut, then it crosses $O(g)$ times p and each ℓ_{i}.
- Enumerate all possible patterns that form disjoint cycles. There are $g^{O(g)}$ possibilities.
- For each pattern, and each cycle appearing in this pattern, compute the shortest cycle that crosses p and the ℓ_{i} in the same order. This boils down to the planar case! Complexity $O\left(g^{2} n \log n\right)$.

Algorithm

- Lemma. If Γ corresponds to a minimum cut, then it crosses $O(g)$ times p and each ℓ_{i}.
- Enumerate all possible patterns that form disjoint cycles. There are $g^{O(g)}$ possibilities.
- For each pattern, and each cycle appearing in this pattern, compute the shortest cycle that crosses p and the ℓ_{i} in the same order. This boils down to the planar case! Complexity $O\left(g^{2} n \log n\right)$.

Algorithm

- Lemma. If Γ corresponds to a minimum cut, then it crosses $O(g)$ times p and each ℓ_{i}.
- Enumerate all possible patterns that form disjoint cycles. There are $g^{O(g)}$ possibilities.
- For each pattern, and each cycle appearing in this pattern, compute the shortest cycle that crosses p and the ℓ_{i} in the same order. This boils down to the planar case! Complexity $O\left(g^{2} n \log n\right)$.

Algorithm

- Lemma. If Γ corresponds to a minimum cut, then it crosses $O(g)$ times p and each ℓ_{i}.
- Enumerate all possible patterns that form disjoint cycles. There are $g^{O(g)}$ possibilities.
- For each pattern, and each cycle appearing in this pattern, compute the shortest cycle that crosses p and the ℓ_{i} in the same order. This boils down to the planar case! Complexity $O\left(g^{2} n \log n\right)$.

Algorithm

- Lemma. If Γ corresponds to a minimum cut, then it crosses $O(g)$ times p and each ℓ_{i}.
- Enumerate all possible patterns that form disjoint cycles. There are $g^{O(g)}$ possibilities.
- For each pattern, and each cycle appearing in this pattern, compute the shortest cycle that crosses p and the ℓ_{i} in the same order. This boils down to the planar case! Complexity $O\left(g^{2} n \log n\right)$.

Algorithm

- Lemma. If Γ corresponds to a minimum cut, then it crosses $O(g)$ times p and each ℓ_{i}.
- Enumerate all possible patterns that form disjoint cycles. There are $g^{O(g)}$ possibilities.
- For each pattern, and each cycle appearing in this pattern, compute the shortest cycle that crosses p and the ℓ_{i} in the same order. This boils down to the planar case! Complexity $O\left(g^{2} n \log n\right)$.
- Total running time: $O\left(g^{O(g)} n \log n\right)$.

Lemma

Γ has $O(g)$ crossings with p and with each of the ℓ_{i}.

> Let us shrink the shortest path to a single vertex v :
> Γ becomes a family of non-crossing loops based at v, such that no face of this graph is a disk bounded by one or two loops.

Lemma

Γ has $O(g)$ crossings with p and with each of the ℓ_{i}.

> Let us shrink the shortest path to a single vertex v :
> Γ becomes a family of non-crossing loops based at v, such that no face of this graph is a disk bounded by one or two loops.

Lemma

Γ has $O(g)$ crossings with p and with each of the ℓ_{i}.

> Let us shrink the shortest path to a single vertex v :
> Γ becomes a family of non-crossing loops based at v, such that no face of this graph is a disk bounded by one or two loops.

Lemma

Γ has $O(g)$ crossings with p and with each of the ℓ_{i}.

> Let us shrink the shortest path to a single vertex v :
> Γ becomes a family of non-crossing loops based at v, such that no face of this graph is a disk bounded by one or two loops.

Lemma

Γ has $O(g)$ crossings with p and with each of the ℓ_{i}.

> Let us shrink the shortest path to a single vertex v :
> Γ becomes a family of non-crossing loops based at v, such that no face of this graph is a disk bounded by one or two loops.

Lemma

Γ has $O(g)$ crossings with p and with each of the ℓ_{i}.

Let us shrink the shortest path to a single vertex v :

Γ becomes a family of non-crossing loops based at v, such that no face of this graph is a disk bounded by one or two loops.

Lemma

Γ has $O(g)$ crossings with p and with each of the ℓ_{i}.

Let us shrink the shortest path to a single vertex v :
Γ becomes a family of non-crossing loops based at v, such that no face of this graph is a disk bounded by one or two loops.

Lemma

Γ has $O(g)$ crossings with p and with each of the ℓ_{i}.

Let us shrink the shortest path to a single vertex v :
Γ becomes a family of non-crossing loops based at v, such that no face of this graph is a disk bounded by one or two loops.

Lemma

Γ has $O(g)$ crossings with p and with each of the ℓ_{i}.

Let us shrink the shortest path to a single vertex v :
Γ becomes a family of non-crossing loops based at v, such that no face of this graph is a disk bounded by one or two loops.

Lemma

「 has $O(g)$ crossings with p and with each of the ℓ_{i}.

Let us shrink the shortest path to a single vertex v :
Γ becomes a family of non-crossing loops based at v, such that no face of this graph is a disk bounded by one or two loops.

Thanks!
(1) More Results. .
(2) Path tightening
(3) Minimum cut algorithm
(4) Thanks!

