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Part 1, Monday 09/05/2016 - 11:45–12:30 (45’)

Complexity,

Graphs,

P vs. NP,

NP-Hardness,

Fixed-parameter tractability



O-notation

f(n) = O(g(n)) ⇐⇒ there exist constants N and C such that

∀n > N f(n) ≤ C · g(n).

I Examples:

2016 = O(1) = O(3): Constant

4 log4 n+ 5 log3 n = O(logn): Logarithmic

23 log5 n = O(log5 n) = logO(1) n: polylogarithmic

2016
√
n+ 3016 = O(

√
n): sublinear

2016n+ 3016 = O(n): linear

23n2 + 16n+ 4 = O(n2): quadratic

89n2 + 6n2 − 4n+ 45676 = O(n3): cubic

5nc = O(nc) = nO(1): polynomial

n34 · 3
√
n + n2016 = 2O(

√
n): subexponential

307n+3 = 2O(n): singly exponential
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Problems and algorithms

Definition of an problem:

A set of YES-instances Π ⊆ Σ∗ where Σ is an alphabet, typically Σ = {0, 1}

We look for a way to decide, given a x ∈ Σ∗, whether x ∈ Π.

Definition of an algorithm:

Muhammad ibn Musa al-Khwarizmi Alan Mathison Turing

Omitted! This journey is beautiful and long. We do not take it this week! /
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Graphs

We mostly work on algorithms on graphs:

V (G): vertices of G, E(G): edges of G, Gall: the set of all graphs

A problem on graphs:

Vertex Cover

Instance: A graph G and an integer k ≥ 0.

Question: ∃S ∈ V (G) : |S| ≤ k ∧ ∀e ∈ E(G) |e ∩ S| ≥ 1?

Here:

Input: x = 〈G, k〉, i.e., x encodes the graph G and the integer k

Problem: Πcv = {〈G, k〉 | G has a vertex cover of size ≤ k}

Algorithm for Vertex Cover: a ����procedure than receives as input x = 〈G, k〉 and

outputs whether x ∈ Πvc
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Data structures

Data structures for graphs: Adjacency list, Adjacency matrix

I Running time of a graph algorithm =

# of elementary operations on the data structure that represents its input.

Most graphs in this lectures are sparse: |E(G)| = O(|V (G)|) (By Euler’s formula)

For this reason we prefer the Adjacency list data structure.

We also assume that arithmetic operations take O(1) steps!

We measure the time complexity of a graph algorithm by as a function of n = |V (G)|
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Complexity classes

P: contains all problems that can be solved in nO(1) steps

NP: contains all problems that can be “certified” in nO(1) steps

Vertex Cover

Instance: A graph G and an integer k ≥ 0.

Question: ∃S ∈ V (G) : |S| ≤ k ∧ ∀e ∈ E(G) |e ∩ S| ≥ 1 ?

S is the certificate.

If we “guess” S then we can check whether it is a vertex cover of G in nO(1) steps.

Clearly: P ⊆ NP 106$-question: is it correct that P 6= NP?

A problem Π is NP-hard if it is “as hard as”

all problems in NP

A problem Π is NP-complete if it is NP-hard

and belongs in NP

Vertex Cover is an NP-complete problem
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Instance: A graph G and an integer k ≥ 0.

Question: ∃S ∈ V (G) : |S| ≤ k ∧ ∀e ∈ E(G) |e ∩ S| ≥ 1 ?

S is the certificate.

If we “guess” S then we can check whether it is a vertex cover of G in nO(1) steps.

Clearly: P ⊆ NP 106$-question: is it correct that P 6= NP?

A problem Π is NP-hard if it is “as hard as”

all problems in NP

A problem Π is NP-complete if it is NP-hard

and belongs in NP

Vertex Cover is an NP-complete problem



Parameterized Complexity

I Most of interesting problems are NP-hard!

I We care whether this situation can be “improved”, taking into account

structural characteristics of the input graph

(for instance: topological properties).

We have to define what “improved” might mean here!

Parameterized complexity was introduced by Mike Fellows and Rod Downey proposed

a way to refine the above landscape!
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Three NP-complete problems

Vertex Coloring

Instance: A graph G and an integer k ≥ 0.

Question: ∃σ : V (G)→ {1, . . . , k} : ∀{v, u} ∈ E(G) σ(v) 6= σ(u)?

It can be solved in O(n2 · kn) steps
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Three NP-complete problems

Independent Set

Instance: A graph G and an integer k ≥ 0.

Question: ∃S ∈ V (G) : |S| ≥ k ∧ ∀e ∈ E(G) |e ∩ S| ≤ 1?

It can be solved in O(nk+1) steps
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Vertex Cover

Instance: A graph G and an integer k ≥ 0.

Question: ∃S ∈ V (G) : |S| ≤ k ∧ ∀e ∈ E(G) |e ∩ S| ≥ 1?

It can easily be solved in O(2k · n) steps

It can be solved in O(1.2738k + k · n) steps [Chen, Kanj, Xia, 2010]
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Comparisons

Summary:

Vertex Coloring O(n2 · kn)

ugly

Independent Set O(nk+1)

bad

Vertex Cover O(2k · n)

good

Different Interleavings between the parameter k and the main part n of the input.
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Comparison between O(2k · n) and O(nk+1)

n = 50 n = 100 n = 150

k = 2 625 2.500 5.625

k = 3 15.625 125.000 421.875

k = 5 390.625 6.250.000 31.640.623

k = 10 1, 9× 1012 9, 8× 1014 3, 7× 1016

k = 20 1, 8× 1026 9, 5× 1031 2, 1× 1035

The ratio nk+1

2k·n for several values of n and k.



How the parameters appear?

VLIf design: In VLSI chip construction, the number of circuit layers is no more than

10. While the problem is, in general, NP-complete, when we fix the number of layers,

it becomes tractable.

Computational Biology: in general, many problems in DNA chain reconstruction are

intractable. In the majority of the cases, real instances have special properties (e.g.,

bounded treewidth or pathwidth – by 11) that facilitate the design of efficient

algortihms.
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How the parameters appear?

Robotics: The number of degrees of freedom in motion planning problems are not

more than 10. While these problems are NP-complete in general, the become

tractable taking into account this natural restriction.

Compilers: One of the main tasks of a compiler for the language ML is the

compatibility checking of type declarations of the program. It is known that the

general problem is EXP-complete. However, in real cases, the implementations work

well as there is an algorithm with complexity O(2k · n), where n is the size of the

program and k is the depth of its type declarations. As, normally, k ≤ 10, the problem

can be considered tractable.
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Parameterized problems

Given an alphabet Σ,

(1) A parameterization of Σ∗ is a recursive function κ : Σ∗ → N

(2) A parameterized problem (with respect to Σ) is a pair (Π, κ) where Π ⊆ Σ∗ and

κ is a parameterization of Σ∗.
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Examples

A parameterization of Independent Set can be defined as κ(G, k) = k.

We can do the same with all the problems that have some integer in their instances,

such as Vertex Coloring and Vertex Cover.

That way, we define the parameterized problems

p-Vertex Coloring and p-Vertex Cover.

Other parameterizations of the above problems can be defined as

κ(G, k) = ∆(G) or

κ(G, k) = genus(G)

κ(G, k) = ∆(G) + k
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Some parameterized problems

p-Dominating Set

Instance: A graph G and an integer k ≥ 0

Parameter: k,

Question:

∃S ∈ V (G) : |S| ≤ k ∧ ∀v ∈ V (G)− S ∃u ∈ S {v, u} ∈ E(G)?



Some parameterized problems

p-Path

Instance: A graph G and an integer k ≥ 0.

Parameter: k

Question: Does G contain a path of length k?



Some parameterized problems

p-Clique

Instance: A graph G and an integer k ≥ 0.

Parameter: k,

Question: ∃S ∈ V (G) : |S| ≤ k ∧ ∀v, u ∈ S {v, u} ∈ E(G)?



More parameterized problems

p-Steiner Tree

Instance: A graph G, S ⊆ V (G), k ∈ N.

Parameter: k

Question: ∃R ∈ V (G) : |R| ≤ k, R ∩ S = ∅, G[S ∪R] is connected?

Here κ(G,S, k) = k

p′-Steiner Tree

Instance: A graph G, S ⊆ V (G), k ∈ N.

Parameter: |S|

Question: ∃R ∈ V (G) : |R| ≤ k, R ∩ S = ∅, G[S ∪R] is connected?

Here κ(G,S, k) = |S|
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The class FPT

Given an alphabet Σ and a parameterization κ : Σ∗ → N,

(a) An algorithm A is a FPT-algorithm with respect to κ if there is a function

computable f : N→ N and a polynomial function p : N→ N such that for every

x ∈ Σ∗, the algorithm A requires

≤ f(κ(x)) · p(|x|) steps

(b) A parameterized problem (L, κ) is fixed parameter tractable if there exists an

FPT-algoritm with respect to κ that decides L.

I We then say that (L, κ) ∈ FPT or, more precisely, f -FPT

I The function f is called parameterized dependence of the running time of the

FPT-algoritm
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An algorithm for Vertex Cover:

We set up a search tree with depth depending only on the parameter k.

[Bounded Search Tree Method]

algvc(G, k)

1. If |E(G)| = 0, then return “YES”

2. If k = 0, then return “NO”

3. choose (arbitrarily) an edge e = {v, u} ∈ E(G) and

return algvc(G− v, k − 1)
∨

algvc(G− u, k − 1)

Recursive calls: 2, Depth of the recursion: k,

Time in the leaves of the recursion: O(n) steps

Total time: O(2k · n) steps.

Therefore, p-Vertex Cover∈ 2O(k)-FPT.
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Panorama of Parameterized complexity classes

W[SAT]

para-NP XP

W[P]

W[2]

W[1]

FPT

··
·

p-Vertex Cover: FPT

p-Path: FPT

p′-Steiner Tree: FPT

p-Clique: W[1]-complete

p-Independent Set: W[1]-complete

p-Dominating Set: W[2]-complete

p-Steiner Tree: W[2]-complete

p-Coloring: para-NP-complete
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Tree decompositions

Treewidth

Courcelle’s Theorem

Dynamic programming



Tree decompositions

A tree decomposition (ou décomposition arborescente) of a graph G is a pair

D = (T,X ) such that T is a tree and X = {Xt | t ∈ V (T )} is a collection of subsets

of G. such that:

1. Any vertex v ∈ V (G) and the end points of any edge e ∈ E(G) belong in some

node Xt of D

2. For any v ∈ V (G), the set {t ∈ V (T ) | v ∈ Xt} is a subtree of T .

• Xt ∈ X corresponds to a vertex t ∈ V (T ) – Xt is a node/bag of D

•The width of a tree decomposition (T,X ) is maxt∈V (T )|Xt| − 1

• The tree-width (ou largeur arborescente ou largeur d’arbre) of a graph G (tw(G)) is

the minimum width over all tree decompositions of G
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Another definition for Treewidth

I A vertex in G is k-simplicial if its neighborhood induces a k-clique.

I A graph G is a k-tree if one of the following holds

I G = Kk+1 or

I the removal of G of a k-simplicial vertex creates a k-tree.

I The treewidth of a graph G is defined as follows

tw(G) = min{k | G is a subgraph of some k-tree}
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Facts about treewidth

I Defined for the first time by Bertelé & Brioschi on 1972 under the name dimension

I Named treewidth by Roberson and Seymour in GM-II on 1986.

I There are more alternative definitions of treewidth (at least six!)

I Treewidth can be seen as a measure of the topological similarity of a graph to a tree

I Treewidth is important in algorithm design (not only there)

I Many NP-hard problems on graphs become polynomially solvable when their

instances are restricted to graphs with constant treewidth.
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I Defined for the first time by Bertelé & Brioschi on 1972 under the name dimension

I Named treewidth by Roberson and Seymour in GM-II on 1986.

I There are more alternative definitions of treewidth (at least six!)

I Treewidth can be seen as a measure of the topological similarity of a graph to a tree

I Treewidth is important in algorithm design (not only there)

I Many NP-hard problems on graphs become polynomially solvable when their

instances are restricted to graphs with constant treewidth.



Parameterizing treewidth

p-Treewidth

Instance: A graph G and an integer k ≥ 0.

Parameter: k

Question: tw(G) ≤ k?

p-Treewidth is in FPT by an 2O(k3) ·O(n) algorithm of Bodlaender

[SIAM J. Comp., 1996]
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Monadic Second Order Logic

I A property in graphs may be expressed in MSO Logic

Universe: the vertex set V of the graph G = (V,E)

An MSO formula can be build using:

Variables: vertices x, y, z, . . . and sets of vertices X,Y, Z, . . .

Atomic Formulae: x = y, x ∈ X, {x, y} ∈ E

(E(x, y))

Formulae: ¬x, x ∨ y, x ∧ y, x→ y, x↔ y, ∃xφ, ∀xφ, ∃Xφ, ∀Xφ,



Monadic Second Order Logic

I A property in graphs may be expressed in MSO Logic

Universe: the vertex set V of the graph G = (V,E)

An MSO formula can be build using:

Variables: vertices x, y, z, . . . and sets of vertices X,Y, Z, . . .

Atomic Formulae: x = y, x ∈ X, {x, y} ∈ E (E(x, y))

Formulae: ¬x, x ∨ y, x ∧ y, x→ y, x↔ y, ∃xφ, ∀xφ, ∃Xφ, ∀Xφ,



Examples of properties expressible in MSO

3-Colorability:

∃R ∃G ∃B [∀x [(x ∈ R ∨ x ∈ G ∨ x ∈ B)∧

¬(x ∈ R ∧ x ∈ G) ∧ ¬(x ∈ B ∧ x ∈ G) ∧ ¬(x ∈ R ∧ x ∈ B)]]

∧¬[∃x ∃y ({x, y} ∈ E ∧

((x ∈ R ∧ y ∈ R) ∨ (x ∈ G ∧ y ∈ G) ∨ (x ∈ B ∧ y ∈ B)))]



Examples of properties expressible in MSO

Having an clique of size ≥ k:

∃x1 ∃x2 · · · ∃xk
∧

1≤i<j≤k{xi, xj} ∈ E



Examples of properties expressible in MSO

Having an independent set of size k:

∃x1 ∃x2 · · · ∃xk
∧

1≤i<j≤k(¬{xi, xj} ∈ E) ∧ ¬(xi 6= xj)



Examples of properties expressible in MSO

Having a vertex cover of size k:

∃x1 ∃x2 · · · ∃xk (∀x ∀y {x, y} ∈ E → (
∨

1≤i≤k(x = xi ∨ y = xi)))



Examples of properties expressible in MSO

Having a dominating set of size k:

∃x1 ∃x2 · · · ∃xk ∀y
∨

1≤i≤k({xi, y} ∈ E ∨ y = xi)



Courcelle’s theorem

MSO: Monadic Second Order Logic

Theorem: [Courcelle], [Seese], & [Borie, Parker & Tovey] Every problem on graphs

that can be expressed by a MSO formula φ can be solved in f(tw(G), |φ|) · n steps.

In other words:

If Π ⊆ Gall is a MSO-expressible set, then (Π, tw) ∈ FPT

or

Every MSO-expressible problem of graphs is fixed parameter tractable when

parameterized by the treewidth of its input graph
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Inputs of small treewidth can be seen as tree-string: inputs of a tree-automaton

generated by the MSO formula expressing G.
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Theorem: Every problem on graphs that can be expressed by a MSO formula φ can

be solved in f(tw(G), |φ|) · n steps.

I Courcelle proved a stronger version where quantification on sets of edges is also

allowed.

Advantage of Courcelle’s Theorem: It constructs the algorithm

Drawback of Courcelle’s Theorem: the contribution of the formula and the treewidth

in the running time is immense.
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In topological terms: treewidth helps us treat the input graph a mono-dimensional

entity!

Treewidth is a measure of the possibility of recursively cutting the graph in smaller

pieces and process them separately:

In an algorithmic terms: Divide and Conquer!

Which in our case is: Dynamic Programming
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Nice tree decompositions

A tree decomposition D = (T,X ) is nice if T is rooted to some leaf r and

I for any leaf l of T where l 6= r, Xl = ∅

(we call Xl leaf node of D except from Xr that we call root node)

I any non-leaf t ∈ V (T ) (including the root) has one or two children.

I if t has two children t1 and t2 then, Xt = Xt1 = Xt2

(we call Xt join node)

I if t has one child t′ then

I either Xt = Xt′ ∪ {v}

(we call Xt insert node and v is the insert vertex)

I or Xt′ = Xt ∪ {v}

(we call Xt forget node and v is the forget vertex)
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If (T,X ) is a nice tree decomposition rooted on r, then

for any t ∈ V (T ), Gt = G[
⋃
t′ is t or a descendant of t in T Xt′ ]

Lemma: There exists an O(n)-step algorithm that transforms any tree decomposition

with n nodes to a nice tree decomposition of ≤ 4n nodes of the same width.



If (T,X ) is a nice tree decomposition rooted on r, then

for any t ∈ V (T ), Gt = G[
⋃
t′ is t or a descendant of t in T Xt′ ]

Lemma: There exists an O(n)-step algorithm that transforms any tree decomposition
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A graph G, a tree decomposition, and a nice tree decomposition



How to do dynamic programming for graphs of small treewidth

1. Define, for each t ∈ V (T ), a table that encodes the information of a partial

solution for Gt. The values of this table for the root node should provide a

global answer.

2. Define the values of this table for the leaf nodes.

3. Provide the way to compute the table of an insert node, given the table of its

child.

4. Provide the way to compute the table of a forget node, given the table its child.

5. Provide a way to compute the table of a join node, given the tables of its

children.
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Parameterizing 3-Coloring by treewidth

tw-3-Vertex Coloring

Instance: A graph G.

Parameter: k = tw(G)

Question: ∃χ : V (G)→ {1, 2, 3} : ∀{v, u} ∈ E(G) χ(v) 6= χ(u)?



For any χ : S → I and R ⊆ S, we define χ[R] = {(v, χ(v)) ∈ χ | v ∈ R}

1st step: Definition of the tables:

For any t ∈ V (T ) and any 3-coloring φ : Xt → {1, 2, 3}, we define

Bt(φ) = [∃χ : V (Gt)→ {1, 2, 3} such that χ[Xt] = φ]

(the table of t contains an array of 3|Xt| bits)

G = Gr is 3-colourable iff Br(∅) = 1
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2nd step: tables for leaf nodes:

Let Xl be an leaf node

we have

Bl(∅) = 1



3rd step: tables for insert nodes:

Let Xt be an insert node

let t′ be the child of t and v be the insert vertex.

For any φ : Xt → {1, 2, 3}, we have

Bt(φ) = Bt′ (φ− (v, φ(v)))
∧

u∈NGt
(v)

[φ(v) 6= φ(u)]



4nd step: tables for forget nodes:

Let Xt be a forget node

let t′ be the child of t and v be the forget vertex.

For any φ : Xt → {1, 2, 3}, we have

Bt(φ) =
∨

i∈{1,2,3}
Bt′ (φ ∪ {v, i})



5th step: tables for join nodes:

Let Xt be an join node

let t1, t2 be the children of t

For any φ : Xt → {1, 2, 3}, we have

Bt(φ) = Bt1 (φ) ∧Bt2 (φ)



Conclusion:

Given a tree decomposition of G,

the following tw-3-Vertex-Coloring problem is in 2O(k)-FTP:

(we gave an O(3k · k · n) dynamic programming algorithm)



Parameterizing Hamiltonian Cycle by treewidth:

tw-Hamiltonian Cycle

Instance: A graph G.

Parameter: k = tw(G)

Question: does G contain a spanning cycle?



A pairing of vertices in Xt

Xt

A pairing of Xt is a graph H (with loops) s.t.

V (G) = Xi and ∀x ∈ Xi degH(x) ≤ 2

I The restriction of a cycle to Gt is a collection P of internally disjoint paths in Gt

with ends in Xi.

I Each P corresponds to some pairing HP of Xt

I For any set S, let pairs(S) be the set of all pairings of S



A pairing of vertices in Xt

Xt

A pairing of Xt is a graph H (with loops) s.t.

V (G) = Xi and ∀x ∈ Xi degH(x) ≤ 2

I The restriction of a cycle to Gt is a collection P of internally disjoint paths in Gt

with ends in Xi.

I Each P corresponds to some pairing HP of Xt

I For any set S, let pairs(S) be the set of all pairings of S



A pairing of vertices in Xt

Xt

A pairing of Xt is a graph H (with loops) s.t.

V (G) = Xi and ∀x ∈ Xi degH(x) ≤ 2

I The restriction of a cycle to Gt is a collection P of internally disjoint paths in Gt

with ends in Xi.

I Each P corresponds to some pairing HP of Xt

I For any set S, let pairs(S) be the set of all pairings of S



A pairing of vertices in Xt

Xt

A pairing of Xt is a graph H (with loops) s.t.

V (G) = Xi and ∀x ∈ Xi degH(x) ≤ 2

I The restriction of a cycle to Gt is a collection P of internally disjoint paths in Gt

with ends in Xi.

I Each P corresponds to some pairing HP of Xt

I For any set S, let pairs(S) be the set of all pairings of S



A pairing of vertices in Xt

Xt

A pairing of Xt is a graph H (with loops) s.t.

V (G) = Xi and ∀x ∈ Xi degH(x) ≤ 2

I The restriction of a cycle to Gt is a collection P of internally disjoint paths in Gt

with ends in Xi.

I Each P corresponds to some pairing HP of Xt

I For any set S, let pairs(S) be the set of all pairings of S



Let (T,X ) be a tree decomposition of G where Xr = {w}

let Hw be just the vertex w looped.

1st Step: For each t ∈ V (T ) we define:

∀H ∈ pairs(Xi),

Bt(H) = [H is the pairing of some t-path collection P]

G = Gr has a Hamiltonian cycle iff Br(Hw) = 1
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1st Step: For each t ∈ V (T ) we define:
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Bt(H) = [H is the pairing of some t-path collection P]

G = Gr has a Hamiltonian cycle iff Br(Hw) = 1



2nd step: tables for leaf nodes:

Let Xl be an leaf node (assume that Xl = {y})

Notice that pairs(t) = {H0, H1}

where H0(H1) is the vertex y looped (unlooped)

∀H ∈ pairs(t) Bl(H) = [|E(H)| = 0]



3rd step: tables for insert nodes:

Let Xt be an insert node

let t′ be the child of t and v be the insert vertex.

For any ∀H ∈ pairs(t) we have

Bt(H) = [Bt′ (H − v)] ∧ [NH(v) ⊆ NGt (v)]



4st step: tables for forget nodes:

Let Xt be an forget node

let t′ be the child of t and v be the insert vertex.

For any ∀H ∈ pairs(t) we have

Bt(H) =
∨

H′∈pairs(t′)
H is a contraction of H′

Bt′ (H
′)



5th step: tables for join nodes:

Let Xt be an join node

let t1, t2 be the children of t

For any ∀H ∈ pairs(t) we have

Bt(H) =
∨

H1 ∈ pairs(t1)
H2 ∈ pairs(t2)
H = H1 ∪H2

Bt1 (H1) ∧Bt2 (H2)



There are 2O(k log k) pairings for each bug Xt of k + 1 vertices.

Conclusion:

tw-Hamiltonian Cycle admits a 2O(k log k) · n-step algorithm

Therefore, it belongs in 2O(k log k)-FPT

Our next step is to show that tw-Planar Hamiltonian Cycle ∈ 2O(k)-FPT



There are 2O(k log k) pairings for each bug Xt of k + 1 vertices.

Conclusion:

tw-Hamiltonian Cycle admits a 2O(k log k) · n-step algorithm

Therefore, it belongs in 2O(k log k)-FPT

Our next step is to show that tw-Planar Hamiltonian Cycle ∈ 2O(k)-FPT



There are 2O(k log k) pairings for each bug Xt of k + 1 vertices.

Conclusion:

tw-Hamiltonian Cycle admits a 2O(k log k) · n-step algorithm

Therefore, it belongs in 2O(k log k)-FPT

Our next step is to show that tw-Planar Hamiltonian Cycle ∈ 2O(k)-FPT



Part 3, Tuesday 10/05/2016 - 16:00–17:00 (60’)

Branch decompositions

Sphere cut decompositions

Dynamic programming on planar graphs



Branch decompositions

Branchwidth is a (topological) tree-likeness measure, alternative to treewidth,

appeared in GM-X (1991).

A branch decomposition is a pair (T, τ)

where

1. T is a ternary tree and

2. τ is a bijection mapping the edges of G to the leaves of T .

if T1 is one of the connected components of T − e then we set

Ee = τ−1(leaves of T1) and mid(e) = ∂Ee.
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A graph G and a branch decomposition of it.
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The width of a branch decomposition (T, τ) is max{|mid(e)| | e ∈ E(T )}

The branchwidth, bw(G), of a graph G is then minimum width a branch

decomposition of G may have.
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Combinatorics of branchwidth

Theorem: [Robertson and Seymour, GM-10] If G is not acyclic, then

bw(G) ≤ tw(G) + 1 ≤ 3
2
bw(G)

If T is a tree, then 0 ≤ bw(G) ≤ 2.

tw( ) = bw( ) = 6

bw(K6) = 4 < tw(K6) = 5
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Dynamic programming for graphs

of small branchwidth



Given a branch decomposition (T, τ), (of small width)

1. Root T to some vertex r without preimage

{a, e, c}
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For each e ∈ E(T ), we denote as Ge the graph induced by the edges mapped bellow e.
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For each e ∈ E(T ), we denote as Ge the graph induced by the edges mapped bellow e.



2. Define, for each e ∈ E(T ), a table encoding the information of a partial solution

for Ge as restricted to mid(e). The values of this table for the root node

should provide a global answer.

mid(e)

Ge



3. Define the values of this table for the leaf nodes

4. Provide the way to compute the table of an edge using the tables of its children

edge.

mid(e)

Ge1
Ge2

mid(e1) mid(e2)



3. Define the values of this table for the leaf nodes

4. Provide the way to compute the table of an edge using the tables of its children
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mid(e)
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An example: Vertex Cover



Let G be a graph and X,X′ ⊆ V (G) where X ∩X′ = ∅.

We say that vc(G,X,X′) ≤ k if G contains a vertex cover S where |S| ≤ k and

X ⊆ S ⊆ V (G) \X′.

Ge

mid(e)

X

vertex cover S
of size at most k

Let Re = {(X, k) | X ⊆mid(e) ∧ vc(Ge, X,mid(e) \X) ≤ k}

observe that vc(G) ≤ k iff (∅, k) ∈ Rer .
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Compute Re by using the following dynamic programming formula:

Re =


{(X, k) | X ⊆ e ∧X 6= ∅ ∧ k ≥ |X|} if e ∈ L(T )

{(X, k) | X ⊆mid(e) ∧ ∃(X1, k1) ∈ Re1 ,∃(X2, k2) ∈ Re2 :

(X1 ∪X2) ∩mid(e) = X ∧ k1 + k2 − |X1 ∩X2| ≤ k} if e 6∈ L(T )

mid(e)

Ge1
Ge2

mid(e1) mid(e2)

I ∀e ∈ E(T ), |Re| ≤ 2|mid(e)| · `.

I we can check whether vc(G) ≤ ` in O(4bw(G) · `2 · |V (T )|) steps.
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Sphere-Cut Decompositions

Suppose that G is a planar graph embedded on the sphere S0

A sphere-cut decomposition of G is a branch decomposition (T, τ) where for any

e ∈ E(T ), the vertices in mid(e) are the vertices in a Jordan courve of S0 – called

noose – that meets no edges of G.
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Theorem: [Roberston & Seymour GM-X] If G is planar and has a branch

decomposition with width ≤ k then G has a sphere-cut decomposition of G with

width ≤ k that cane be constructed in O(n3) steps.

For doing dynamic programming on a sphere cut decomposition (T, τ) again we

define, for any e ∈ E(T ) the set pairs(mid(e)) be the set of all pairings of mid(e)

The “usual” bound for mid(e) is 2O(k·log k)

(recall that |mid(e)| = Ω( k
2

!))

However, we now have that

1: the vertices of mid(e) lay on the boundary of a disk and

2: the pairings cannot be crossing because of planarity.
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Non crossing pairings
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In case of Hamiltonial Cycle, each non-crossing pair on OP is the union of two

non-crossing pairs on OL and OR.
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Catalan Structures

It follows that pairs(mid(e)) = O(C(|mid(e)|)) = O(C(k))

Where C(k) is the k-th Catalan Number.

It is known that C(k) ∼ 4k

k3/2
√

Π
= 2O(k)

Therefore: dynamic programming for Hamiltonian Cycle of a planar graph G on a

sphere cut decompositions of G with width ≤ k takes 2O(k) ·O(n) steps.
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I The same holds for several other problems where an analogue of pairs(mid(e))

can be defined for controlling the size of the tables in dynamic programming.

In general: These are pairs where the tables encode pairings.

I Like that one can design 2O(tw(G)) · nO(1) step algorithms for the planar versions

of Cycle Cover, Path Cover, Longest Path, Longest Cycle, Hamiltonian

Cycle, and Graph Metric TSP and others.
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For more complicated problems planarization becomes very hard to handle as here

tables encode packings instead of pairings.

For this, single exponential dynamic programming has been done by

1. Moving from sphere cut decompositions to surface cut decompositions

2. Counting non intersecting packings on surfaces with boundary.

[Sau, Rué, Thilikos, TALG 2014]

Extensions/alternatives:

I For H-minor free graphs: [Sau, Rué, Thilikos, COCOON 2012]

I Surface split decompositions: [Bonsma, STACS 2012]

I Brick Decompositions: [Cohen-Addad & de Mesmay, ESA 2015]
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set of graphs contains two graphs comparable under the minor relation.

Equivalently: Graphs are Well Quasi Ordered w.r.t. the minor relation
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Let G be a minor-closed graph class.

I obs(G) is the set of minor-minimal elements not in G.

I If G is minor-closed, then G ∈ G ⇐⇒ ∀H ∈ obs(G) H � G

Consequence of R&S theorem: |obs(G)| < ℵ0

Theorem: [Robertson & Seymour – main algorithmic consequence of GM] For

every H, checking whether H ≤ G can be done in O(n3) steps.

I Meta-Algorithmic Consequence: For every minor-closed graph class G, the problem

asking whether G ∈ G belongs in PTIME,

i.e., can be solved in O(n3) steps!
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Graph optimization parameters

Graph parameter: a function p : Gall → N

We consider minimization/maximization parameters p defined as follows

p(G) = min{k | ∃S ⊆ V (G) : |S| ≤ k ∧ φ(G,S)=true} }

p(G) = max{k | ∃S ⊆ V (G) : |S| ≥ k ∧ φ(G,S)=true} }

In any case, we call a set S where |S| = p(G) solution certificate for p(G)

We call such parameters graph optimization parameters.

Three examples:

I Vertex Cover, vc(G): min, φ(G,S)= ∀e ∈ E(G) e ∩ S 6= ∅

I Dominating Set, dc(G): min, φ(G,S)= V (G) = NG(S)

I Longest Path, pl(G): max, φ(G,S)= G[S] is a path}

I Scattered Set, sc(G): max, φ(G,S)= ∀x ∈ V (G) |N [x] ∩ S| ≤ 1
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We say that p is minor closed if H ≤m G⇒ p(H) ≤ p(G).

I Examples of minor-closed graph parameters:

vc: minimum vertex cover of G

fvs: minimum feedback vertex set of G

fc: minimum face cover of a planar G

lp: maximum k for which G contain a k-path

vp : vertex planarizer number of G (= min{|S| | G \ S is planar})

tw: the tree-width of G

bw: the branch-width of G

eg: the Euler genus of G

r-twm: (= min{|S| | tw(G \ S}) ≤ r)
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We say that p is contraction closed if H ≤c G⇒ p(H) ≤ p(G).

I Examples of contraction-closed (but not minor-closed) graph parameters:

ds: minimum dominating set of G

cd: minimum cycle domination set of G

vc: minimum connected vertex cover of G

ctw: minimum connected treewidth of G i.e., all bags induce connected subgraphs

icp: maximum induced cycle packing

sc: maximum k for which G contains a scattered set of k vertices.

[S is a scattered: no two distinct vertices of S have a common neighbor.]
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Let p be a minor- (contraction-) closed graph parameter.

We define the parameterized problem p-Checking Value of p = (Gall,p)

In other words p-Checking Value of p corresponds to the following

Meta-problem:

p-Checking Value of p

Instance: A graph G and an integer k ≥ 0.

Parameter: k

Question: is it correct that p(G) ≶ k?

Here “≶”=“≤”/“≶”=“≥” if p is a minimization/maximization parameter

For simplicity: Πp = p-Checking Value of p

We call such a problem Πp subset optimization problem

For every k ∈ N, we define the k-th layer of (Gall,p) as the class

Gpk = {G | p(G) ≤ k}

These are YES-instances for minimization problems and

NO-instances for maximization problems
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I Observe: for every k, Gpk is minor- (contraction-) closed.

I obs(Gpk ) is the set of minor-minimal elements not in G.

I If p is minor-closed, then so is Gpk and thus G ∈ Gpk ⇐⇒ ∀H ∈ obs(Gpk ) H � G

Consequence of R&S theorem: ∀k∈N |obs(Gpk )| < ℵ0

Recall:

Theorem: [Robertson & Seymour – main algorithmic consequence of GM]

For every H, checking whether H ≤ G can be done in f(|V (H)|) · n3 steps.

I Meta-Algorithmic Consequence: If p is minor-closed, then

p-Checking Value of p ∈ FPT.

In other words:

There exists an algorithm that solves p-Checking Value of p in f(k) · n3 steps.
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Corollary: If p is a minor-closed graph parameter, then

Πp = p-Checking Value of p can be solved in f(k) · n3 steps

I We have a (non-constructive) proof that an algorithm exists!

I Is an encouraging theory (if you know that something exists...)

I This does not mean that we have constructed such an algorithm

I But... We are encouraged to do so!

“Half of science is asking the right questions.” Roger Bacon

Questions:

I What is the best (constructive) f we can have and when?

I Can the (many) ideas from Graph Minors be used for this?

I Can we derive results for problems closed under other relations?
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“P versus NP – a gift to mathematics from computer science.” Steve Smale, 1998
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General requirements

We need the following two facts (for suitable functions f and G):

1. [Combinatorial] p(G) ≤ k ⇒ tw(G) ≤ f(k)

i.e., YES/NO-instances of Πp have treewidth ≤ f(k)

2. [Algorithmic] One can check whether p(G) ≤ k in 2
g(tw(G))

· nO(1) steps

Typically this is done by Dynamic Programming.

1+2 → Πp has a 2
g(f(k))

· nO(1) step algorithm

Proof:

This algorithm first checks whether tw(G) ≤ f(k).

If the answer is negative, then outputs a negative/positive answer (by 1).

If the answer is positive, then runs DP algorithm (by 2).
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1+2 → Πp has a 2
g(f(k))

· nO(1) step algorithm

I g(·) is linear: Πp is singly exponentially solvable w.r.t. treewidth

[Liming Cai and David Juedes, 2003]:

For several problems, assuming ETH, the best running time we can expect is

2O(k) · nO(1), in general

2O(
√
k) · nO(1) for their planar restrictions −→ when can we match this?

I Here we care about such questions!

Exponential Time Hypothesis (ETH):

There is no 2o(n)-step algorithm that solves 3-SAT
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We care about combinatorial condition:

1. [Combinatorial] YES/NO-instances of Πp have tw = O(k) (or o(k) in planar

graphs)

Idea: For minor-closed problems, the existence of a (k × k)-grid as a minor of the

input graph may serve as a YES/NO certificate

Fact: “Big” treewidth implies the the existence of a (k × k)-grid as a minor

The (k × k)-grid

This fact was first proved in GM-V by Robertson and Seymour.
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Theorem: [Robertson & Seymour – GM-V]

There is a δ : N→ N such that ∀α tw(G) > δ(α)⇒ G ≥m �α.

Upper bound for δ: remained exponential for a long time...

Untill: Julia Chuzhoy proved: δ(k) = O(k20)

I The best known lower bound is δ(k) = Ω(k2 · log k)
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Definition: p−1(k) = min{α | p(�α) > k)}

Observe the following:

Lemma: If p is minor-closed, then

1. [Combinatorial ] p(G) ≤ k ⇒ tw(G) ≤ δ(p−1(k))

Proof: Let α = p−1(k). Then k < p(�α) (1).

Assume δ(α) < tw(G) (2).

[By grid exclusion]: (2) ⇒�α ≤m G. (1)

[By minor-closedness]: if �α ≤m G, then p(�α) ≤ p(G). (3)

(1) and (3) ⇒ k < p(G).
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vc−1(k) = O(
√
k)

lp−1(k) = O(
√
k)

The same holds for the following

minor-closed parameters:

I Feedback Vertex Set,

I Longest Cycle,

I Cycle Packing,

I Face Cover

I Max Series-Parallel Subgraph

Definition:

We call a problem Πp minor-bidimensional

if p is minor-closed and p−1(k) =
√
k

I Not all minor-closed problems are bidimensional!

such as Treewidth, Pathwidth, Branchwidth, Tree-depth, and Genus
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For minor-bidimensional parameters:

1. [Combinatorial ] p(G) ≤ k ⇒ tw(G) ≤ δ(
√
k)

Recall that δ(k) = Ω(k2 · log k)

Best of all senarios: 2O(k log k) · nO(1) step algorithms /
“Best of all senarios” means that

I δ(k) = O(k2 · log k) (which is conjectured but not sure!) and

I Πp is singly exponentially solvable w.r.t. treewidth

(which is the case for many problems)
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I Conclusion:

1. To design (optimal) 2O(k) · nO(1) step algorithms for general graphs one needs a

problem-specific analysis.

2. proving that δ(k) = O(k2 · log k) will have interesting algorithmic consequences.

3. If we want 2O(k) · nO(1) step algorithms we must restrict G to special graph

classes.

In particular: topological graph classes (where δ is better bounded)

4. For even better (e.g. subexponential) parameterized dependency we must restrict

our attention to special graph classes.



I Conclusion:

1. To design (optimal) 2O(k) · nO(1) step algorithms for general graphs one needs a

problem-specific analysis.

2. proving that δ(k) = O(k2 · log k) will have interesting algorithmic consequences.

3. If we want 2O(k) · nO(1) step algorithms we must restrict G to special graph

classes.

In particular: topological graph classes (where δ is better bounded)

4. For even better (e.g. subexponential) parameterized dependency we must restrict

our attention to special graph classes.



I Conclusion:

1. To design (optimal) 2O(k) · nO(1) step algorithms for general graphs one needs a

problem-specific analysis.

2. proving that δ(k) = O(k2 · log k) will have interesting algorithmic consequences.

3. If we want 2O(k) · nO(1) step algorithms we must restrict G to special graph

classes.

In particular: topological graph classes (where δ is better bounded)

4. For even better (e.g. subexponential) parameterized dependency we must restrict

our attention to special graph classes.



I Conclusion:

1. To design (optimal) 2O(k) · nO(1) step algorithms for general graphs one needs a

problem-specific analysis.

2. proving that δ(k) = O(k2 · log k) will have interesting algorithmic consequences.

3. If we want 2O(k) · nO(1) step algorithms we must restrict G to special graph

classes.

In particular: topological graph classes (where δ is better bounded)

4. For even better (e.g. subexponential) parameterized dependency we must restrict

our attention to special graph classes.



I Conclusion:

1. To design (optimal) 2O(k) · nO(1) step algorithms for general graphs one needs a

problem-specific analysis.

2. proving that δ(k) = O(k2 · log k) will have interesting algorithmic consequences.

3. If we want 2O(k) · nO(1) step algorithms we must restrict G to special graph

classes.

In particular: topological graph classes (where δ is better bounded)

4. For even better (e.g. subexponential) parameterized dependency we must restrict

our attention to special graph classes.



Subexponential parameterized algorithms

Definition: A graph class G has the subquadratic grid minor property (SQGM) if there

exist 1 ≤ c < 2 such that ∀k �k 6≤ G⇒ tw(G) = O(kc)

Then: YES/NO-instances of a bidimensional problem Πp have

tw = (p−1(k))c = O((
√
k)c) = o(k)

I if Π is singly exponentially solvable w.r.t. treewidth, then

Π can be solved in 2o(k) · nO(1) steps.

Planar graphs have the SQGM property for c = 1

As tw(G) = O(bw(G))), the above follows from the following:

Theorem: [Robertson, Seymour, & Thomas 1994] If G is planar and bw(G) ≥ 4k,

then k ≤m G.

I We sketch the Idea of the proof of the above theorem:
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“Suppose” that we constructed a partial branch decomposition of the part of the

graphs that is inside a disk.
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If there is a path from north-south or east-west, partition the disk: one more step

further with the construction of a branch decomposition of width ≤ 4k.



k
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k

Such a path must exist,

otherwise, from Menger’s theorem, the graph contains k as a minor.



Bidimensionality race:

SQGM: ∀k �k 6≤ G⇒ tw(G) = O(kc) for some c < 2.

When SQGM property holds?

Planar: [Robertson and Seymour, JCSTB 1986]

Bounded Genus: [Demaine, Fomin, Hajiaghayi, Thilikos, JACM 2005]

Apex-minor free graphs: [Demaine, Fomin, Hajiaghayi, Thilikos, SIDMA 2004]

H-minor free graphs: [Demaine, Hajiaghayi, Combinatorica 2008]

Bounded degree unit disk graphs [Fomin, Lokshtanov, Saurabh, SODA 2012]

Families of 2D-geometric graphs [Grigoriev, Koutsonas, Thilikos, SOFSEM 2014]

I In all above cases we have topologically refined graph classes and c = 1.

I are there more general graph classes where 1 < c < 2?
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[such as Πds]

�k is replaced by the uniformly triangulated grid Γk:

Let p̃−1(k) = min{α | p(Γα) > k)}

Definition:

We call a problem Πp contraction-bidimensional

if p is contraction-closed and p̃−1(k) =
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Definition: A class G has the subquadratic grid contraction property (SQGC) if there

exist 1 ≤ c < 2 such that ∀k Γk 6≤c G⇒ tw(G) = O(kc)
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Subquadratic grid contraction property (SQGC) holds for planar graphs because of:

Theorem: [Robertson, Seymour, & Thomas 1994] If G is planar and bw(G) ≥ 4k,

then k ≤m G.

Proof: if we do not apply edge removals while obtaining k from G we end up to

a partially triangulated grid that can be further be contracted to the uniformly
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Therefore Γk 6≤c G⇒ tw(G) = O(kc), thus SQGC holds for c = 1.
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Bidimensionality and subexponential algorithms.

Theorem: Let Πp be a subset optimization parameterized problem that

i. is minor/contraction-bidimensional

ii. is singly exponentially solvable w.r.t. treewidth

iii. is restricted to some SQGM/ SQGC-graph class

Then Π can be solved in 2o(k) · nO(1) steps
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Some bidimensional problems

(Connected) Vertex Cover, (Connected) Dominating Set, (Connected)

Feedback Vertex Set, Induced Matching, Longest Cycle, (Connected)

(Induced) Cycle Packing, (Connected) Cycle Domination, d-Scattered

Set, Longest Path, (Induced) Path Packing, (Connected) r-Center,

(Connectd) Diamond Hitting Set, Minimum Maximal Matching, Face

Cover, Unweighted TSP Tour, Max Bounded Degree Connected Subgraph



IThe previous theorem can become an algorithmic meta-theorem as

ii. is singly exponentially solvable w.r.t. treewidth

is implied by expressibility in Existential Counting Modal Logic

because of [Micha l Pilipczuk, MFCS 2011]

I Some powerful techniques for ii.

[Dorn, Penninkx, Bodlaender, Fomin, Algorithmica 2010] ?

[Rué, Sau, Thilikos, TALG 2014] ?

[Cygan, Nederlof, Pilipczuk, Pilipczuk, van Rooij, Wojtaszczyk, FOCS 2011] ??

[Bodlaender, Cygan, Kratsch, Nederlof, ICALP 2013] ??

[Fomin, Lokshtanov, Saurabh, SODA 2014] ??
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Bidimensionality and Kernelization



Kernelization

Let (Π, κ) be a parameterized problem.

Recall: that Π ⊆ Σ∗ and κ : Σ∗ → N.

I A polynomial algorithm A is a kernelization algorithm for (Π, κ) if there exist some

computable function g : N→ N such that, for every x ∈ Σ∗, the output x′ = A(x)

satisfies the folllowing:

1. x ∈ Π ⇔ x′ ∈ Π (x and x′ are equivalent)

2. |x′| ≤ g(k) (new instance has size bounded by a function of the parameter).

I If G is a polynomial (linear): polynomial (linear) kernel.

I a kernelization is a polynomial time many-one reduction of a problem to itself with

the additional property that the image is bounded in terms of the parameter k = κ(x).

I Kernelization can be seen as a paradigm for preprocessing
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p-Vertex Cover has kernelization algorithm that produces a kernel of ≤ 2k vertices.

Alternatively, we say that p-Vertex Cover has a kernel of size 2k.
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I A parameterized problem has a kernel iff it is in FPT

I p-Dominating Set is W[2]-complete, this it is not expected to have a kernel.

I Not all problems in FPT are expected to have polynomial kernels (p-Path)

[Bodlaender, Downey, Fellows, Hermelin, JCSS 2009]

I p-Feedback Vertex Set has a kernel of O(k2) edges.

[Thomassé, TALG 2010]

I Not all FPT-problems are expected to have linear kernel (p-FeedbackVertexSet)

[Dell, van Melkebeek, STOC 2010]

I p-Planar Dominating Set kernel of 67k vertices.

[Chen, Fernau, Kanj, Xia, SICOMB 2007]

I p-Planar Feedback Vertex Set has a kernel of 13k vertices.

[Bonamy, Kowalik, IPEC 2014]

p-Path, p-Dominating Set, and p-Feedback Vertex Set are bidimensional.
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Protrusion decompositions

An (α, β)-protrusion decomposition of G

is a partition P = {R0, R1, . . . , Rρ} of V (G)

such that

I max{ρ, |R0|} ≤ α,

I each

NG[Ri], i ∈ {1, . . . , ρ}, is a β-protrusion of G, and

I for every i ∈ {1, . . . , ρ}, NG(Ri) ⊆ R0.

Remark: actually, this last condition is

not necessary! But makes things more visualizable!
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Protrusion replacement

f -protrusion replacement family for Πp :

a collection A = {Ai | i ≥ 0} of algorithms,

such that algorithm Ai receives an instance (G, k) of Πp and an i-protrusion X of

G with at least f(i) vertices and outputs an equivalent instance (G′, k′) of Πp

where |V (G′)| < |V (G)| and k′ ≤ k.
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Conditions for the existence of linear kernels

1. [Combinatorial ] If p(G) ≤ k, then G has an (O(k), O(1))-protrusion

decomposition.

2. [Algorithmic] Πp has a protrusion replacement family.

I 1. + 2 → a linear kernel for Πp .

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos, FOCS 2008]

To achieve Conditions 1 and 2. we need some more definitions!
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CMSO-expressibility

Let p be a graph optimization parameter and

let Πp be the corresponding graph optimization problem.

Recall that:

p(G) = min{k | ∃S ⊆ V (G) : |S| ≶ k ∧ φ(G,S)=true} }

I If φ is expressible in Monadic Second Order Logic, then we say that

Πp is CMSO-expressibile
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Linear Separability

Let p be an graph optimization parameter and G be a graph

The subset optimization problem Πp is linearly separable if, for any graph G and

L ⊆ V (G) such that |C| = |∂G(L)| ≤ t, it holds that

|S ∩ L| − c · t ≤ p(G[L]) ≤ |S ∩ L|+ c · t
where S is a solution certificate for p

I More generally: c · t→ f(t) defines separable Πp

p-Path is not separable while

p-Dominating Set, and p-Feedback Vertex Set are linearly separable.
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We comment the proof of the first fact:

I SQGM/SQGC + Linear separability + bidimensionality
A+B−−−−→ 1.

Definition: S is a a treewidth η-modulator of G if tw(G \ S) ≤ η

i.e., a certificate for η-twm(G) ≤ k

Lemma A: Assume that:

1. G is a graph class with the SQGM/SQGC property

2. Πp is minor/contraction-bidimensional and linear-separable

Then there exists an integer η ≥ 0 such that the following holds:

p(G) ≤ k ⇒ G has a treewidth η-modulator S where |S| ≤ 2 · k.

Remark: the bidimensionality condition: p−1(k) =
√
k is necessary here!

Lemma B: Assume that:

1. G is a graph class with the SQGM/SQGC property.

2. G has a treewidth η-modulator S for some positive integer η

Then there exists an integer r such that G has (2 · |S|, r)-protrusion decomposition.
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Remark: the bidimensionality condition: p−1(k) =
√
k is necessary here!

Lemma B: Assume that:

1. G is a graph class with the SQGM/SQGC property.

2. G has a treewidth η-modulator S for some positive integer η

Then there exists an integer r such that G has (2 · |S|, r)-protrusion decomposition.
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Bidimensionality and kernels.

Theorem: Let Πp be a subset optimization parameterized problem that

i. is CMSO-expressible

ii. is minor- (resp. contraction-) bidimensional,

iii. is linearly separable,

iv. is restricted to some SQGM/SQGC-graph class

Then Πp admits a linear kernel.
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Bidimensionality and approximation.

I Just for the history we also mention the following:

Theorem: Let Πp be a subset optimization parameterized problem that

i. is ≈ CMSO-expressible

ii. is minor- (resp. contraction-) bidimensional,

iii. is linearly separable,

iv. is restricted to some SQGM/SQGC-graph class

Then Πp admits an EPTAS

EPTAS = (Efficient Polynomial-Time Approximation Scheme)

[Demaine, Hajiaghay, SODA 2005]

[Fomin, Lokshtanov, Raman, Saurabh, SODA 2011]
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Irrelevant vertex technique



General algorithmic strategy (so far):

We need the following two facts (for suitable functions f and G):

1. [Combinatorial] p(G) ≤ k ⇒ tw(G) ≤ f(k)

i.e., YES/NO-instances of Πp have treewidth ≤ f(k)

2. [Algorithmic] One can check whether p(G) ≤ k in g(tw(G)) · nO(1) steps

I Then we have an FPT-algorithm running in g(f(k)) · nO(1) steps because:

• If tw(G) > f(k) then we we declare VICTORY! (enemy surrenters!)

• if tw(G) ≤ f(k) then the CAVALRY comes! (DP algorthims or just Courcelle’s th.)

I What about when YES/NO-instances of Πp do not have bounded treewidth?

• In this case we have to FIGHT!!!!! (untl the CAVALRY comes or enemy surrenters)

I For many problems, instances of big enough treewidth may contain part whose

removal does not change the answer to the original question.
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Consider the following problem:

p-Odd Cycle Packing

Instance: A graph G and an integer k ≥ 0.

Parameter: k,

Question: Does G contains k mutually vertex-disjoint odd cycles?

Without the “odd” demand, the problem is minor-bidimensional and we are not afraid!

How to deal with “oddness” demand (at least) for planar instances?

Suppose we have an instance G of big enough treewidth!

Then G contains a big grid as a minor

This means that G contains a subgraph that is a subdivision of a “big enough” wall!
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Actually we can assume we have the subdivision of a quite big wall!

We locate k subwalls, each of heigh 2 · (k + 1).



Actually we can assume we have the subdivision of a quite big wall!

Let G1, . . . , Gk be the graphs inside the perimetries of these subwalls



Actually we can assume we have the subdivision of a quite big wall!

If all of them are non-bipartite then we answer YES and we are done!
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If not, then consider the one that is bipartite.



If not, then consider the one that is bipartite.

All Cycles entirely inside the perimetry of this subwall are even!

We claim that (given that the height is 2 · (k + 1)) the middle vertex is irrelevant

We have to prove that (G, k) is a YES-instance ⇐⇒ (G \ x, k) is a YES-instance

The ⇐= direction is trivial: if G \ x has k odd disjoint cycles, so does G.

For the “=⇒” assume that G \ x has ≥ k odd cycles.

We will prove that G \ x has k odd disjoint cycles avoiding x.
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We detect, using the layers of the wall, k + 1, homocentric cycles around x

If G has k + 1 disjoint odd cycles we are done (x meets only one of them)

Therefore G has at exactly k disjoint odd cycles.

x



Assume # chords of the k disjoint cycles “cropped” by the homocentric cycles

is minimized. For example C crosses Ω 4 times and C crosses perimetry P 5 times.

We argue that none of these k cycles can cross the inner cycle Ω, thus x is irrelevant!

x
Ω

C

P



Suppose, to the contrary, that some cycle C crosses the inner cycle Ω.

Consider an “extremal” chord X: one of the two paths of Ω does not contain any

other endpoint of a chord.

x
Ω

C

P



Suppose, to the contrary, that some cycle C crosses the inner cycle Ω.

Consider an “extremal” chord! This defines a (same parity) segment R of Ω

By minimality R should be met by some

R

Ω

C

P

x



Suppose, to the contrary, that some cycle C crosses the inner cycle Ω.

Consider an “extremal” chord! This defines a (same parity) segment R of Ω

By minimality R should be met by some other cycle C′ 6= C.

C ′

Ω

C

P

x

R



By repetitively applying this argument we find in G has as many disjoint

odd cycles as its homocentric cycles that are k + 1, a contradiction.

Therefore none of the k disjoint odd cycles crosses Ω. Thus x is irrelevant.

C ′

Ω

C

P

x

R



To find the irrelevant vertex x can be done in polynomial time!



General scheme

1. If G has treewidth O(k3/2) then CAVALRY comes: DP takes 2O(tw(G)) · n steps.

2: Otherwise check whether we have VICTORY (all k subwalls are non-bipartite)!

3: Otherwise FIGHT: find an irrelevant vertex x, set G← G \ x and go to 1.

The above proves that p-Planar Odd Cycle Packing∈ 2O(k3/2)-FPT

I All the above arguments extend for graphs of bounded genus! (and futher!)

The general p-Odd Cycle Packing problem is in FPT

[Kawarabayashi, Reed, STOC 2010]

I The same ideas prove: p-Planar Odd Induced Cycle Packing∈ 2O(k3/2)-FPT

while general p-Odd Induced Cycle Packing problem is para-NP-hard.

[Golovach, Kamiński, Paulusma, Thilikos, TCS 2012]



General scheme

1. If G has treewidth O(k3/2) then CAVALRY comes: DP takes 2O(tw(G)) · n steps.

2: Otherwise check whether we have VICTORY (all k subwalls are non-bipartite)!

3: Otherwise FIGHT: find an irrelevant vertex x, set G← G \ x and go to 1.

The above proves that p-Planar Odd Cycle Packing∈ 2O(k3/2)-FPT

I All the above arguments extend for graphs of bounded genus! (and futher!)

The general p-Odd Cycle Packing problem is in FPT

[Kawarabayashi, Reed, STOC 2010]

I The same ideas prove: p-Planar Odd Induced Cycle Packing∈ 2O(k3/2)-FPT

while general p-Odd Induced Cycle Packing problem is para-NP-hard.
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Irrelevant vertex technique

Introduced by [Robertson & Seymour GM-XIII] for proving that the following belong

in FPT.

p-Minor Containment

Instance: two graphs G and H.

Parameter: k = |V (H)|

Question: H ≤ G?

p-Disjoint Paths

Instance: A graph G and a sequence of pairs of terminals (s1, t1), . . . , (sk, tk).

Parameter: k.

Question: Are there k pairwise vertex disjoint paths P1, . . . , Pk in G such that

for every i ∈ {1, . . . , k}, Pi has endpoints si and ti?

Challenge: go further than planar graphs.

I Further than embedded graphs: a bigger story. Need another school to explain!
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Merci beaucoup!

La grand traverse...
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