
Algorithms for embedded graphs

Éric Colin de Verdière

October 25, 2021



ALGORITHMS FOR EMBEDDED GRAPHS Foreword and introduction

Foreword and introduction

Foreword

This document is the overlapping union of some course notes that the
author used in previous years for graduate courses. It is certainly not in
�nal shape, and comments by e-mail are welcome.

Each exercise is labeled with one to three stars, supposed to be an indica-
tion of its importance (in particular, depending on whether the result or
technique is used later), not of its di�culty.

Introduction

This is a partial introduction to the computational aspects of graphs drawn
without crossings in the plane or in more complicated surfaces. This topic
has been a subject of active research, especially over the last decade, and
is related to rather diverse �elds and communities:

� in graph algorithms: As we shall see, because planar graphs bear
important properties, many general graph problems become easier
when restricted to planar graphs (shortest path, �ow and cut, min-
imum spanning trees, vertex cover, graph isomorphism, etc.). The
same holds for graphs on surfaces, to some extent;

� in graph theory, the theory of graph minors founded by Robertson
and Seymour makes heavy use of graphs embeddable on a �xed sur-
face, as well as graphs excluding a �xed minor. Edge-width and face-

Date of this version: October 25, 2021. Latest version available at http://monge.
univ-mlv.fr/~colinde/cours/all-algo-embedded-graphs.pdf.

width are closely related to the notion of shortest non-contractible
closed curve;

� in topology, the classi�cation of surfaces, as discovered in the begin-
ning of the 20th century, is inherently algorithmic. Surfaces play
a prominent role in the deep theories of knots and three-manifolds;
there are also many algorithmic questions in these areas;

� in computational geometry, surfaces arise naturally in various ap-
plications. Operations in geometric spaces such as decomposition,
extraction of important features, and shortest path computation are
basic computational geometry tasks that are relevant in particular
for surfaces, usually embedded in R3, or even planar surfaces.

Many graphs encountered in practice are geometric, and either are planar
or have a few crossings (think of a road network with a few overpasses
and underpasses). Thus it makes sense to look for e�cient algorithms
dedicated to such graphs. In addition, in computer graphics, one needs
to e�ciently process surfaces represented by triangular meshes, e.g., to
cut them to make them planar; we shall introduce algorithms for such
purposes.

Outline

The �rst chapter introduces planar graphs from the topological and combi-
natorial point of view. The second chapter considers the problem of testing
whether a graph is planar, and, if so, of drawing it without crossings in
the plane. Then we move on with some general graph problems, for which
we give e�cient algorithms when the input graph is planar.

Then, we consider graphs on surfaces (planar graphs being an important
special case). In Chapter 4, we introduce surfaces from the topological
point of view; in Chapter 5, we present algorithms using the cut locus to
build short curves and decompositions of surfaces. In Chapter 6, we in-
troduce two important topological concepts, homotopy and the universal
cover. All these techniques are combined in Chapter 7 to provide algo-
rithms to shorten curves up to deformation.

2

http://monge.univ-mlv.fr/~colinde/cours/all-algo-embedded-graphs.pdf
http://monge.univ-mlv.fr/~colinde/cours/all-algo-embedded-graphs.pdf


ALGORITHMS FOR EMBEDDED GRAPHS 1. Basic properties of planar graphs

Some parts of these notes are not used in later sections, and can be safely
skipped by the reader not interested in them. Such optional parts are
Chapter 2, and Chapter 3 except Section 3.4 (which serves as a gentle
introduction to the concept of cross-metric surface).

Only a part of the material covered in this course appeared in textbooks.
For gentle introductions to topology, see Armstrong [3] and Stillwell [78].
Many planar graph algorithms are treated in the course notes by Klein and
Mozes [55]. For graphs on surfaces from a combinatorial point of view,
see Mohar and Thomassen [68]. A broader overview on computational
topology of graphs on surfaces is given in Colin de Verdière [17]. For a
wider perspective in general computational topology, see the recent course
notes by Erickson [31].

Acknowledgments

I would like to thank several people who suggested some corrections in
previous versions or provided valuable information: Sergio Cabello, Je�
Erickson, Éric Fusy, Francis Lazarus, Arnaud de Mesmay, Arthur Milchior,
and Vincent Pilaud.

Chapter 1

Basic properties of planar

graphs

1.1 Topology

1.1.1 Preliminaries on topology

We assume some familiarity with basic topology, but we recall some de�-
nitions nonetheless.

A topological space is a set X with a collection of subsets of X, called
open sets, satisfying the three following axioms:

� the empty set and X are open;

� any union of open sets is open;

� any �nite intersection of open sets is open.

There is, in particular, no notion of metric (or distance, angle, area) in a
topological space. The open sets give merely an information of neighbor-
hood : a neighborhood of x ∈ X is a set containing an open set contain-
ing x. This is already a lot of information, allowing to de�ne continuity,
homeomorphisms, connectivity, boundary, isolated points, dimension. . . .
Speci�cally, a map f : X → Y is continuous if the inverse image of any
open set by f is an open set. If X and Y are two topological spaces, a map
f : X → Y is a homeomorphism if it is continuous, bijective, and if its
inverse f−1 is also continuous. A point of detail, ruling out pathological
spaces: the topological spaces considered in these notes are assumed to be

3



ALGORITHMS FOR EMBEDDED GRAPHS 1. Basic properties of planar graphs

Figure 1.1. The stereographic projection.

Hausdor�, which means that two distinct points have disjoint neighbor-
hoods.

Example 1.1. Most of the topological spaces here are endowed with a
natural metric, which should be �forgotten�, but de�ne the topology:

� Rn (n ≥ 1);

� the n-dimensional sphere Sn, i.e., the set of unit vectors of Rn+1;

� the n-dimensional ball Bn, i.e., the set of vectors in Rn of norm at
most 1; in particular B1 = [−1, 1] and [0, 1] are homeomorphic;

� the set of lines in R2, or more generally the Grassmannian, the set
of k-dimensional vector spaces in Rn.

Exercise 1.2 (stereographic projection). 99 Prove that the plane is
homeomorphic to S2 with an arbitrary point removed. (Indication: see
Figure 1.1.)

A closed set in X is the complement of an open set. The closure of
a subset of X is the (unique) smallest closed set containing it. The in-

terior of a subset of X is the (unique) largest open set contained in it.
The boundary of a subset of X equals its closure minus its interior. A
topological space X is compact if any set of open sets whose union is X
admits a �nite subset whose union is still X.

A path in X is a continuous map p : [0, 1] → X; its endpoints are p(0)
and p(1). Its relative interior is the image by p of the open interval (0, 1).
A path is simple if it is one-to-one. A space X is connected1 if it is non-
empty and, for any points a and b in X, there exists a path in X whose
endpoints are a and b. The connected components of a topological
space X are the classes of the equivalence relation on X de�ned by: a
is equivalent to b if there exists a path between a and b. A topological
space X is disconnected (or separated) by Y ⊆ X if and only if X \ Y
is not connected; points in di�erent connected components of X \ Y are
separated by Y .

1.1.2 Graphs and embeddings

We will use standard terminology for graphs. Unless noted otherwise, all
graphs are undirected and �nite but may have loops and multiple edges.
A circuit in a graph G is a closed walk without repeated vertices.2

A graph yields naturally a topological space:

� for each edge e, let Xe be a topological space homeomorphic to [0, 1];
let X be the disjoint union of the Xe;

� for e, e′, identify (quotient topology), in X, endpoints of Xe and Xe′

if these endpoints correspond to the same vertex in G.

An embedding ofG in the plane R2 is a continuous one-to-one map fromG
(viewed as a topological space) to R2. Said di�erently, it is a �crossing-free
drawing� of G on R2, being the data of two maps:

� ΓV , which associates to each vertex of G a point of R2;

� ΓE , which associates to each edge e of G a path in R2 between the
images by ΓV of the endpoints of e,

in such a way that:

1In this course, the only type of connectivity considered is path connectivity.
2This is often called a cycle; however, in the context of these notes, this word is

also used to mean a homology cycle or a closed curve, so it seems preferable to avoid
overloading it again.

4



ALGORITHMS FOR EMBEDDED GRAPHS 1. Basic properties of planar graphs

� the map ΓV is one-to-one (two distinct vertices are sent to distinct
points of R2);

� for each edge e, the relative interior of ΓE(e) is one-to-one (the image
of an edge is a simple path, except possibly at its endpoints);

� for all distinct edges e and e′, the relative interiors of ΓE(e) and
ΓE(e′) are disjoint (two edges cannot cross);

� for each edge e and for each vertex v, the relative interior of ΓE(e)
does not meet ΓV (v) (no edge passes through a vertex).

We can actually replace R2 above with any topological space Y and talk
about an embedding of a graph in Y .

When we speak of embedded graphs, we sometimes implicitly identify the
graph, its embedding, and the image of its embedding.

1.1.3 Planar graphs and the Jordan curve theorem

In the remaining part of this chapter, we only consider embeddings of
graphs into the sphere S2 or the plane R2.

A graph is planar if it admits an embedding into the plane. By Ex-
ercise 1.2, this is equivalent to the existence of an embedding into the
sphere S2.
The faces of a graph embedding are the connected components of the
complement of the image of the vertices and edges of the graph.

Here are the most-often used results in the area.

Theorem 1.3 (Jordan curve theorem, reformulated; see [80]). Let G be

a graph embedded on S2 (or R2). Then G disconnects S2 if and only if it

contains a circuit.

Theorem 1.4 (Jordan�Schön�ies theorem; see [80]). Let f : S1 → S2 be

a one-to-one continuous map. Then S2 \ f(S1) is homeomorphic to two

disjoint copies of the open disk.

Exercise 1.5. 99 Sketch a proof of the Jordan curve theorem in the
case where G is embedded in the plane with polygonal edges.

These results are, perhaps surprisingly, di�cult to prove: the di�culty
comes from the generality of the hypotheses (only continuity is required).
For example, if in the Jordan curve theorem one assumes that G is em-
bedded in the plane with polygonal edges, the theorem is not hard to
prove.

A graph is cellularly embedded if its faces are (homeomorphic to) open
disks. Henceforth, we only consider cellular embeddings. It turns out that
a graph embedded on the sphere is cellularly embedded if and only if it is
connected.3

1.2 Combinatorics

So far, we have considered curves and graph embeddings in the plane that
are rather general.

1.2.1 Combinatorial maps for planar graph embeddings

We now focus on the combinatorial properties of cellular graph embeddings
in the sphere. Since we are not interested in the geometric properties,
it su�ces to specify how the faces are �glued together�, or alternatively
the cyclic order of the edges around a vertex. Embeddings of graphs on
the plane are treated similarly: just choose a distinguished face of the
embedding into S2, representing the �in�nite� face of the embedding in the
plane.

An algorithmically sound way of representing combinatorially a cellular
graph embedding in S2 is via combinatorial maps. The combinatorial
map associated to a cellular graph embedding G is the set of closed walks
in G, obtained from walking around the boundary of each face of G. (In
general, these walks may repeat edges and/or vertices). This information is
enough to �reconstruct� the sphere combinatorially, by taking the abstract

3Although this statement should be intuitively clear, it is not so obvious to prove. It
may help to use the results of Chapter 4, especially the fact that every face of a graph
embedding is a surface with boundary.

5



ALGORITHMS FOR EMBEDDED GRAPHS 1. Basic properties of planar graphs

�vi

ei

Figure 1.2. The �ags are represented as line segments parallel to the edges;
there are four �ags per edge. The involutions vi, ei, and � on the thick �ag are
also shown.

graph and attaching a disk to each facial walk. By extension, if G is
an embedding of a non-connected graph, the combinatorial map of G is
the disjoint union of the combinatorial maps associated to its connected
components (which are, independently, cellularly embedded).

However, in terms of data structures, these facial walks are not very easy
to manipulate, so we now present a more elaborated data structure that
contains the same information but is more convenient.

The basic notion is the �ag, which represents an incidence between a ver-
tex, an edge, and a face of the embedding. Three involutions allow to move
to a nearby �ag, and, by iterating, to visit the whole graph embedding;
see Figure 1.2:

� vi moves to the �ag with the same edge-face incidence, but with a
di�erent vertex incidence;

� ei moves to the �ag with the same vertex-face incidence, but with a
di�erent edge incidence;

� � moves to the �ag with the same vertex-edge incidence, but with a
di�erent face incidence.

Example 1.6. Figure 1.3, left, presents code to compute the degree of

int vertex_degree(Flag fl) {

int j=0;

Flag fl2=fl;

do {

++j;

fl2=fl2->ei()->fi();

} while (fl2!=fl);

return j;

}

int face_degree(Flag fl) {

int j=0;

Flag fl2=fl;

do {

++j;

fl2=fl2->ei()->vi();

} while (fl2!=fl);

return j;

}

Figure 1.3. C++ code for degree computation.

a vertex, i.e., the number of vertex-edge incidences of this vertex. The
function takes as input a �ag incident with that vertex. Note that a loop
incident with the vertex makes a contribution of two to the degree. Dually,
on the right, code to compute the degree of a face (the number of edge-face
incidences of this face) is shown.

Note that a �ag is not necessarily uniquely de�ned by its triple (vertex,
edge, and face), as shows the example of a graph with a single vertex and
a single (loop) edge.

The complexity of a graph G = (V,E) is |V | + |E|. The complexity of a
cellular graph embedding is the total number of �ags involved, which is
linear in the number of edges (every edge bears four �ags), and also in the
number of vertices, edges, and faces. Therefore the complexity of a graph
cellularly embedded in the plane and of one of its embeddings are linearly
related.

The data structure indicated above allows to �navigate� throughout the
data structure, but does not store vertices, edges, and faces explicitly. In
many cases, however, it is necessary to have one data structure (�object�)
per vertex, edge, or face. For example:

� if one has to be able to check in constant time whether an edge is
a loop (incident twice to the same vertex), the data structure given
above is not su�cient. On the other hand, if every �ag has a pointer
to the incident vertex, then testing whether an edge is a loop can be
done by testing the equality of two pointers in constant time;

6



ALGORITHMS FOR EMBEDDED GRAPHS 1. Basic properties of planar graphs

� in coloring problems, one need to store colors on the vertices of the
graph. Such information can be stored in the data structure used for
each vertex.

For such purposes, each �ag can have a pointer to the underlying vertex,
edge, and face (called respectively vu, eu, fu). Each such vertex, edge,
or face contains no information on the incident elements, only informa-
tion needed in the algorithms. If needed, one may similarly put some in-
formation in the vertex-edge, edge-face, vertex-face, and vertex-edge-face
incidences. Maintaining such informations, however, comes with a cost,
which is not always desirable. For example, assume we want to be able
to remove one edge incident to two di�erent faces in constant time. If we
keep the information fu, this must take time proportional to the smaller
degree of the two faces (since the two faces are merged, the fu pointer has
to be updated at least on one side of the edge). If we only keep vu, say,
then such an update is not needed, and this edge removal can be done in
constant time.

1.2.2 Duality and Euler's formula

A dual graph of a cellular graph embedding G = (V,E) on S2 is a graph
embedding G∗ de�ned as follows: put one vertex f∗ of G∗ in the interior
of each face f of G; for each edge e of G, create an edge e∗ in G∗ crossing e
and no other edge of G (if e separates faces f1 and f2, then e∗ connects
f∗1 and f∗2 ). See Figure 1.4.

A dual graph embedding is also cellular. The combinatorial map of the
dual graph is unique. Actually, with the map representation, dualizing is
easy: simply replace � with vi and vice-versa. This in particular proves
that duality is an involution: G∗∗ = G.

Exercise 1.7 (easy). 999 Every tree (acyclic connected graph) with
v vertices and e edges satis�es v − e = 1.

Lemma 1.8. Let G = (V,E) be a cellular graph embedding in S2, and let

G∗ = (F ∗, E∗) be its dual graph. Furthermore, let E′ ⊆ E.
Then (V,E′) is acyclic if and only if (F ∗, (E \ E′)∗) is connected. In

Figure 1.4. Duality.

particular, (V,E′) is a spanning tree if and only if (F ∗, (E \ E′)∗) is a

spanning tree.

Proof. (V,E′) is acyclic if and only if S2 \ E′ is connected, by the Jordan
curve theorem 1.3. Furthermore, S2\E′ is connected if and only if (F ∗, (E\
E′)∗) is connected: Two points x and x′ in faces f and f ′ of G can be
connected by a path avoiding E′ and not entering any face other than f
and f ′ if and only if f and f ′ are adjacent by some edge not in E′, i.e. if
and only if f∗ and f ′∗ are adjacent in (F ∗, (E \ E′)∗).

Corollary 1.9 (Euler's formula for cellular graph embeddings in S2). For
every cellular graph embedding in S2 with v vertices, e edges, and f faces,

we have v − e+ f = 2.

Hence this formula also holds for every embedding of a connected graph
in the plane.

Proof. Let T be the edge set of a spanning tree of G. The dual edges of its
complement, (E \ T )∗, is also a spanning tree. The number of edges of G
is e = |T |+ |(E \T )∗|, which, by Exercise 1.7, equals (v− 1) + (f − 1).

7



ALGORITHMS FOR EMBEDDED GRAPHS 1. Basic properties of planar graphs

Figure 1.5. The barycentric subdivision of the part of the graph shown in
Figure 1.4.

Exercise 1.10 (easy direction of Kuratowski's theorem). 999 Show
that the complete graph with 5 vertices, K5, is not planar. Indication:
Use Euler's formula and double-counting on the number of vertex-edge
and edge-face incidences. Also show that the bipartite graph K3,3 (with
6 vertices v1, v2, v3, w1, w2, w3 and 9 edges, connecting every possible pair
{vi, wj}) is not planar.

Exercise 1.11 (number of edges in a planar graph). 999 Let G be a
graph cellularly embedded in S2. Assume that each face of G has degree
at least three. Show that the number of edges of G is linear in its number
of vertices.

1.3 Notes

For more information on basic topology, see for example Armstrong [3] or Henle [46];
see also Stillwell [78]. For more informations on planar graphs, see (the next two

chapters and) Mohar and Thomassen [68, Chapter 2].

There are many essentially equivalent ways of representing planar graph em-
beddings [28, 54]; the computational geometry library CGAL implements one
of them4. We will see later that (most of) these data structures generalize to
graphs embedded on surfaces. There are further generalizations to higher dimen-
sions [6, 61,62]; this is important especially in geometric modelling.

Eppstein provides many proofs of Euler's formula5.

Exercise 1.10 shows that K5 and K3,3 are not planar. There is a converse state-
ment: Kuratowski's theorem asserts that a graph G is planar if and only if it does
not contain K5 or K3,3 as a subdivision; in other words, if and only if one cannot
obtain K5 or K3,3 from G by removing edges and isolated vertices and replacing
every degree-two vertex and its two incident edges with a single edge [56,64,79].

Let G be a cellular embedding of a graph on S2. By overlaying G with its dual
graph G∗, we obtain a quadrangulation: a cellular embedding of a graph G+

where each face has degree four. See Figure 1.4. Every face of G+ is incident
with four vertices: one vertex vG of G, one vertex vG∗ of G∗, and two vertices
that are the intersection of an edge of G and an edge of G∗. If, within each
face, we connect vG with vG∗ , we obtain a triangulation, called the barycentric
subdivision of G (Figure 1.5). Each triangle in the barycentric subdivision
corresponds to a �ag; its three neighbors are the �ags reachable via the operations
vi, ei, and �.

4http://www.cgal.org/Manual/3.4/doc_html/cgal_manual/HalfedgeDS/

Chapter_main.html.
5http://www.ics.uci.edu/~eppstein/junkyard/euler/.

8

http://www.cgal.org/Manual/3.4/doc_html/cgal_manual/HalfedgeDS/Chapter_main.html
http://www.cgal.org/Manual/3.4/doc_html/cgal_manual/HalfedgeDS/Chapter_main.html
http://www.ics.uci.edu/~eppstein/junkyard/euler/


ALGORITHMS FOR EMBEDDED GRAPHS 2. Planarity testing and graph drawing

Chapter 2

Planarity testing and graph

drawing

Given a graph G in a �usual� form, e.g., where each vertex has a linked
list of pointers to its incident edges, and each edge has two pointers to its
incident vertices, how can we determine whether G is planar? Section 2.1
answers this question. Then we move on by considering algorithms to draw
a planar graph in the plane or in R3.

2.1 Planarity testing

Given a graph G, how hard is it to determine whether G is planar?

Theorem 2.1. Given a graph G, one can, in (optimal) linear time, deter-

mine whether G is planar, and if so, compute a combinatorial map of G
in the plane.

We shall here prove this theorem with a weaker, cubic complexity. With
much care, re�ning these ideas indeed leads to a linear-time algorithm [50].

A graph G is biconnected if it has at least three vertices, and removing
zero or one vertex (together with their incident edges) from G does not
disconnect G. A cutvertex of G is a vertex whose removal increases the
number of connected components of G. A block of G is an inclusionwise
maximal subgraph of G that has no cutvertex.

Lemma 2.2. G is planar if and only if all its blocks are planar.

Proof. Let C be the set of cutvertices of G, and B be the set of blocks of G.
Let H be the block graph of G, whose vertex set is the disjoint union of B
and C, and such that a block b and a cutvertex c are adjacent if and only if
c ∈ b. This is a bipartite graph which is easily seen to be a forest; it gives
a �coarse� description of G. For each tree of this forest (corresponding to
a connected component of G), one can traverse the tree, embedding each
block in turn without interfering with the other blocks.

Lemma 2.3. Given a graph G, we can determine all its blocks in linear

time.

Proof. We can obviously assume that G is connected, because we could
apply the algorithm to each connected component of G in turn. We �rst
focus on computing the cutvertices. For this purpose, run a depth-�rst
search on the graph G, starting from an arbitrary root vertex. Recall that
this partitions the edges of G into link edges, which belong to the rooted
search tree T , and back edges, which connect a vertex v with an ascendent
of v in T . Clearly, the root of T is a cutvertex if and only if it has degree at
least two in T ; this property is trivial to test. It should be also clear that
a non-root vertex v is a cutvertex if and only if some subtree of T rooted
at some child of v is incident to no (back) edge whose other endpoint is an
ascendent of v. To test the latter property e�ciently, during the depth-�rst
search, we maintain the following information:

� the depth of each vertex in the depth-�rst-search tree (once it gets
visited), and

� for each vertex v, the lowpoint of v, namely, the smallest depth of
an endpoint of a back edge incident to a descendent of v (possibly v
itself), or ∞ if no such back edge exists.

The above characterization indicates that (a non-root vertex) v is a cutver-
tex if and only if the lowpoint of some child w of v is at least the depth
of v. Thus, we can compute the cutvertices in linear time, provided we
can compute the depths and the lowpoints in linear time. The depth is
standard to maintain during a depth-�rst search. The lowpoint of v can
be computed after visiting all descendents of v (i.e., just before v gets
popped o� the depth-�rst-search stack), since if we know the lowpoint of
the children of v, we can compute it for v in time linear in its degree.

9



ALGORITHMS FOR EMBEDDED GRAPHS 2. Planarity testing and graph drawing

1

3

2
4

C

Figure 2.1. A graph G with a circuit C (on the outside of the �gure) and the
four pieces with respect to C numbered from 1 to 4. All pairs of pieces con�ict
except (1, 3) and (3, 4).

There remains to explain how to compute the blocks. Notice that, when
processing v after visiting all descendents of v, every child w of v with
lowpoint at least the depth of v belongs to a newly discovered block. For
each such w, we declare that v, together with the connected component of
G − v containing w, forms a block, and then we erase that component of
G − v from the graph (to avoid that block to be considered to be part of
a new block later).

Lemmas 2.2 and 2.3 imply that, for the proof of Theorem 2.1, we can
without loss of generality assume that the input graph G is biconnected.

Let C be a circuit of G. We partition the edges of G − C into pieces as
follows (see Figure 2.1): Two edges are in the same class if there is a path
in G between them that does not contain any vertex of C. The vertices of
a piece P that are in C are called its attachments. Since G is biconnected,
each piece has at least two attachments.

Lemma 2.4. In linear time, we can either compute a circuit of G that has

at least two pieces, or certify that G is planar.

Proof. First compute any circuit C, using, e.g., depth-�rst search. Deter-

mine the pieces of C. If C has no piece, then G = C, thus G is planar. If C
has two or more pieces, then C satis�es the conclusion, so we are done. So
assume that C has a single piece P . Let v1, . . . , vk be the attachments of P
on C, in cyclic order around C. Let p be a path in P between v1 and v2.
Now, let C ′ be the circuit obtained by concatenating p with the subpath
of C with endpoints v1 and v2 that also contains v3, . . . , vk (pick either of
the two subpaths if k = 2). One piece of C ′ is the other subpath of C, and
another piece of C ′ is P \ p, unless P = p, in which case G = C ∪ {p} is
planar.

All of this takes linear time.

If G is planar then, in a planar drawing of G, each piece of a circuit C
must be entirely inside or outside C. We say that two pieces P and Q
of G are non-con�icting with respect to C if, intuitively, in any planar
drawing of G (if it exists), exactly one of P and Q must be drawn inside C.
More formally, P and Q are non-con�icting if there are two (possibly
identical) vertices u and v of C, splitting C into two subpaths C1 and C2

with endpoints u and v, such that all attachments of P are in C1 and all
attachments of Q are in C2. Otherwise, P and Q are in con�ict. The
con�ict graph of G with respect to C is a graph with vertex set the pieces
of C; two pieces are connected if and only if they con�ict.

Lemma 2.5. Let C be a circuit of G. The graph G is planar if and only

if the following conditions are satis�ed:

i. The con�ict graph of G with respect to C is bipartite;

ii. for every piece P of G with respect to C, the graph obtained by

adding P to C is planar.

Proof. Assume �rst that G is planar. In a planar embedding, each piece is
drawn either entirely inside or outside C. Furthermore, two pieces P andQ
drawn on the same side of C must be non-con�icting because, in the cyclic
order around C, edges of P and of Q cannot be interlaced. (Otherwise,
we would essentially have, after removal, contractions, and expansions of
edges if needed, four vertices v1, v2, v3, v4 in this order on circuit C, with
v1 connected to v3 and v2 connected to v4 by edges inside C; adding a new
vertex outside C and connecting it to all four vertices, we would get K5,

10



ALGORITHMS FOR EMBEDDED GRAPHS 2. Planarity testing and graph drawing

C C

v1

v2

v3
(b)(a)

v1

v2

v3

P

Figure 2.2. (a) The circuit C (outside), and some pieces embedded inside C.
(b) After pushing the pieces of type i inside the regions bounded by Ci and Ui,
one can embed the new piece P inside the disk formed by the paths Ui. (These
paths Ui are not shown in the �gure).

which is nonplanar.) This implies that the con�ict graph is bipartite. The
second property is trivial.

For the opposite direction, by (i), we consider a bipartition P ∪ Q of the
con�ict graph. We next describe how to embed all pieces of P inside C;
this concludes, since using a similar method we can embed all pieces of Q
outside C. We embed each piece of P iteratively. Assume that we have
already embedded some pieces of P. Let a new piece P have attach-
ments v1, . . . , vk in clockwise order along C; see Figure 2.2. For each i,
i = 1, . . . , k, let Ci be the subpath of C that goes clockwise and connects
vi to vi+1 (indices are taken modulo k). Each piece of P already embedded
has its attachments on a subpath of C between vi and vi+1 (in clockwise
order), because it does not con�ict with P . In this case we say that the
piece has type i. Let Ui be a path just inside C with the same endpoints
as Ci. Obviously we can choose the Uis to be disjoint. Using a suitable
homeomorphism of the disk bounded by C, we can push all the pieces
of P with type i into the disk bounded by Ci and Ui while still having an
embedding. By (ii), piece P can be embedded inside C; since its attach-
ments are v1, . . . , vk, we can push it inside the disk bounded by U1, . . . , Uk.
In this way, all pieces are embedded and disjoint, except possibly at the

attachments vi. This shows that piece P can be embedded inside C, as
desired. (Note that pushing the existing pieces is not strictly needed, but
it makes the proof a bit simpler.)

At a high level, the algorithm �rst applies Lemma 2.4 to compute a cir-
cuit C with at least two pieces (unless G is planar, which concludes). Then
it uses the characterization of Lemma 2.5: If the con�ict graph of G with
respect to C is non-bipartite, it returns that G is non-planar; otherwise, it
recursively checks that C ∪P is planar, for each piece P of G (such graphs
are clearly biconnected). The correctness is clear.

To get an e�cient algorithm, however, we need to be slightly more speci�c.
The algorithm takes as input a biconnected graph G, and a circuit C of G
with at least two pieces.

1. Compute the pieces of G with respect to C.

2. Compute the con�ict graph of the pieces. If the con�ict graph is not
bipartite, return �non-planar�.

3. For each piece P of G that is not a path:

(a) let G′ be the graph obtained by adding P to C;

(b) let C ′ be the circuit of G′ obtained from C by replacing the
portion of C between two consecutive attachments with a path
of P between them, as in Lemma 2.4;

(c) apply the algorithm recursively to graph G′ and circuit C ′. If
G′ is non-planar, return �non-planar�.

4. Return �planar�.

The correctness follows from the proof of Lemma 2.4 and from the fact
that each graph considered is biconnected.

Now, we study the complexity of Step 2:

Lemma 2.6. Given a circuit C, we can determine the con�ict graph of G
with respect to C in quadratic time.

Proof. Let P be a piece of C, with attachments v1, . . . , vk in cyclic order
around C. Then another piece Q does not con�ict with P if and only if
all its attachments are in some interval [vi, vi+1], in cyclic order around C

11



ALGORITHMS FOR EMBEDDED GRAPHS 2. Planarity testing and graph drawing

(indices are taken modulo k). This suggests the following approach: Mark
each vertex of C according to which interval(s) [vi, vi+1] it belongs to;
for each piece Q 6= P , determine if all its attachments belong to a single
interval using this marking. This takes linear time plus a time linear in
the number of attachment points of all the pieces, which is also linear.
Iterating for every piece P , we obtain the con�ict graph of G in quadratic
time.

Since testing whether a graph is bipartite can be done in linear time, this
shows that each recursive invocation of the algorithm takes quadratic time.
Furthermore:

Lemma 2.7. The number of recursive invocations is linear in the com-

plexity of the input graph.

Proof. We associate a di�erent edge of G to each invocation of the recursive
algorithm. Namely, for a given invocation on graph G and circuit C, we
select a witness edge e of C that does not belong to the circuit of the
parent invocation. That edge e does not appear in the siblings' graphs, so
it will not show up as a witness edge in any sibling invocation nor in any
descendent of a sibling. There remains to prove that e does not appear as
the witness edge of a descendent invocation. Walk in the recursion tree
towards that descendent. While e belongs to the circuit of the invocation,
it cannot be chosen as the witness, since it belongs to the circuit of its
father. When e ceases to belong to the circuit of the invocation, then by
choice of the new circuit C ′, e now belongs to a piece of C ′ that is a path,
and therefore is absent from any descendent invocation.

This proves Theorem 2.1 with a weaker, cubic-time complexity. . . well,
actually not quite: We only determined whether the input graph is planar
or not; in the former case, a little bit more work is needed to actually
compute a combinatorial map:

Exercise 2.8. 9 Convince yourself that one can, also in cubic time,
compute an embedding if the input graph G is indeed planar.

2.2 Graph drawing on a grid

Now we consider the following problem: Given a planar graph G, given in
the form of a combinatorial map (for example, obtained by the algorithm
in the previous section), how can we build an actual embedding of G in
the plane?

To be more speci�c, we need some de�nitions. A simple graph is a graph
without loops or multiple edges. A planar graph is triangulated if every
face of G, including the outer face, has degree three. A graph embedding
in the plane is straight-line if every edge is a straight-line segment (such an
embedding is thus uniquely determined by the coordinates of its vertices).
We shall prove:

Theorem 2.9. Let G be a simple planar graph, given in the form of a com-

binatorial map. In O(n) time, we can compute a straight-line embedding

of G where the vertices are on a regular O(n)×O(n)-grid.

The restriction of having a simple graph is legitimate, because non-simple
graphs do not have a straight-line embedding. Furthermore, we can remove
all loops and multiple edges in a graph in linear time if desired:

Lemma 2.10. Let G be a graph (not necessarily planar) of complexity n.
In O(n) time, we can determine all loop edges and multiple edges of G.

Proof. Let v be a vertex of G. Mark each neighbor w of v with the list
of edges with endpoints v and w, by visiting each edge incident with v
in turn. Any list containing more than one edge corresponds to multiple
edges; if the list of v is non-empty, it corresponds to one or several loops.
Finally, we erase the marks on the neighbors of v. This operation takes a
time linear in the degree of v. We can iterate the process over all vertices v
in turn.

Reusing the technique, we also obtain:

Lemma 2.11. Let G be a simple planar graph, given by its combinatorial

map. In linear time, we can add edges to G to obtain a simple, triangulated,

planar graph, also given by its combinatorial map.

12



ALGORITHMS FOR EMBEDDED GRAPHS 2. Planarity testing and graph drawing

Proof. We �rst make G connected. Let G1, . . . , Gk be the connected com-
ponents of G; for each i, 1 ≤ i ≤ k − 1, we add an edge ei connecting an
arbitrary vertex vi of Gi with an arbitrary vertex vi+1 of Gi+1, inserted ar-
bitrarily in the cyclic orders of the edges around vi and vi+1. The resulting
graph G′ can be embedded in the plane (or sphere), and cellularly because
G′ is connected. In such an embedding, each face of G′ is homeomorphic
to an open disk, and has degree at least three because there is no loop or
multiple edge.

We now add edges to G′ in order to make it triangulated. For this purpose,
for each face f of degree d ≥ 4, we choose an arbitrary vertex v incident
to f and triangulate f by adding d− 2 edges in f with v as one endpoint,
and thus replacing f with d − 2 triangles. This involves modifying O(d)
�ags for face f , so takes linear time in total. The only problem is that
this operation might have created loops and multiple edges (for example,
if v appeared at least twice on the boundary of f , this operation creates
a loop based at v). Our algorithm will remove loops and multiple edges
by iteratively �ipping some loop and multiple edges that were not in the
original graph G; �ipping edge e means removing it, transforming the two
incident triangles with a single quadrangle of which e was a diagonal, and
adding the edge that is the other diagonal of the quadrangle. Flipping an
edge takes constant time.

Let us �rst eliminate the loops based at a vertex v. A half-edge is an
incidence between such a loop edge and v; thus, every loop edge based at v
corresponds to two half-edges. Consider the cyclic order of the half-edges
around v (we emphasize that, in this cyclic order, we ignore the non-loop
edges). There must be a loop edge whose two half-edges are consecutive
around v. (Proof: consider an edge e whose half-edges are closest in this
cyclic order. These two half-edges separates the cyclic sequence of half-
edges into two linear sequences. If the shortest of these sequences is not
empty, it contains the half-edge of some edge e′. The other half-edge
of e′ must also be in this sequence, by the Jordan curve theorem. This
contradicts the choice of e.) The edge e′′ obtained by �ipping e is not a
loop; indeed (Figure 2.3, left), the relative interior of e′′ crosses e exactly
once, so by the Jordan curve theorem, the endpoints of e′′ must be distinct,
except if they are both equal to v; but at least one of the endpoints of e′′ is

v v

Figure 2.3. Left: Flipping a loop with no loop inside it gives a non-loop. Right:
If a triangulated planar graph has no loop, then �ipping a multiple edge does not
create a loop or a multiple edge.

di�erent from v, by our choice of e. Thus, our algorithm iteratively �nds
a loop edge based at v whose two half-edges are consecutive in the cyclic
order of the loop edges around v and �ips it. (No such edge belongs to the
original graph G.) To do this in total time proportional to the degree of v,
we initially compute the list of all loop edges based at v whose half-edges
are consecutive, and update this list as we �ip edges. Building this list
takes time linear in the degree of v, and updating it takes constant time
per update (by maintaining the cyclic order), whence the complexity.

Iterating the above procedure to each vertex v, we can assume that the
graph has no loop. Let us now explain how to eliminate the multiple edges
incident to a given vertex v. For each neighbor u of v, consider the set of
edges Euv with both u and v as endpoints. We can compute Euv using
the technique of the previous lemma. Assume |Euv| ≥ 2. The original
graph G has at most one edge in Euv; if G contains one edge of Euv, we
let e be that edge, otherwise we let e be an arbitrary edge of Euv. Now
�ip all edges in Euv \ {e}. No �ipped edge can be a loop or a multiple
edge, by planarity of the triangulated graph and because there is no loop
before the �ip (Figure 2.3, right). Iterating this process for each vertex v
in turn, we obtain the desired linear-time algorithm.

The previous lemma implies that, to prove Theorem 2.9, we can assume
thatG is triangulated. Another key ingredient for the proof of this theorem
is the following inductive decomposition of a planar, simple, triangulated
graph, depicted in Figure 2.4.

13



ALGORITHMS FOR EMBEDDED GRAPHS 2. Planarity testing and graph drawing

1 2

3

4

6

7

5

Figure 2.4. Illustration of Proposition 2.12. The directed tree is used later in
the proof of Theorem 2.9.

Proposition 2.12. Let G be a planar, simple, triangulated graph. Let v1
and v2 be two vertices on its outer circuit. In linear time, we can order

the vertices of G as v1, . . . , vn such that, for each k ≥ 3, the subgraph Gk

of G induced by v1, . . . , vk satis�es:

� Gk is connected;

� the boundary of Gk is a circuit;

� each inner face of Gk has degree three;

� vk+1 is in the outer face of Gk.

The algorithm computes vn, . . . , v3 in this order. It rests on the following
lemma.

Lemma 2.13. Let G be a planar, simple graph; assume that the boundary

of the outer face forms a circuit (without repeated vertices) C. Let v1v2 be

an edge on C. There exists a vertex v on C, di�erent from v1 and v2, that
has exactly two neighbors on C.

Proof. If every vertex of C has exactly two neighbors on C, we are done.
Let the vertices of C be v1 = w1, . . . , wm = v2, in this order. Consider

v1 v2

wi

wjwi+1

Figure 2.5. Illustration of the proof of Lemma 2.13.

an edge (a �shortest chord�) connecting wi to wj where j − i is minimal
but at least two. Then the only neighbors of wi+1 in C are wi and wi+2

(Figure 2.5): None of wi+3, . . . , wj can be a neighbor of wi+1 by minimality
of j − i, and none of the other vertices on C either, by planarity.

Proof of Proposition 2.12. We choose vn, . . . , v3 in this order by repeated
applications of Lemma 2.13; the conditions are obviously satis�ed.

To do this in linear total time, we maintain the following information on
each vertex v of the current graph: Whether v belongs to the outer circuit
and, if so, its number of neighbors on the outer circuit. We maintain a
list of (pointers to) vertices on the outer circuit that have exactly two
neighbors on the outer circuit; by Lemma 2.13, this list is never empty.
The algorithm iteratively picks a vertex in the list, updates the data, and
iterates until exactly three vertices are left.

This takes linear time, since each edge is considered only if one of its
endpoints enters or leaves the circuit.

Proof of Theorem 2.9. The algorithm iteratively embeds the subgraph Gk

of G induced by v1, . . . , vk, where k goes from 3 to n. Actually, instead of
computing x- and y-coordinates of the vertices, we compute y-coordinates
of the vertices and x-spans of the edges, namely, the di�erence between
the x-coordinates of their endpoints; trivially, this information is enough
to recover the embedding.

14



ALGORITHMS FOR EMBEDDED GRAPHS 2. Planarity testing and graph drawing

wp

v1 = w1 wm = v2

wq

v1 = w1

wq−1

wm = v2

P (wp, wq)

P (wp, wq)

wp

wp+1

wq

wp+1 wq−1

Figure 2.6. Illustration of the proof of Lemma 2.13.

Assume inductively that we already embedded Gk (k ≥ 3) on the grid in
such a way that (Figure 2.6):

1. The y-coordinates of v1 and v2 are zero;

2. If v1 = w1, . . . , w2, . . . , wm = v2 are the vertices on the outer face
of Gk, in cyclic order, then the x-spans of each edge wiwi+1 is posi-
tive;

3. each edge wiwi+1, 1 ≤ i ≤ m, has slope +1 or −1.

Vertex vk+1 is incident, in Gk+1, to a contiguous set of vertices wp, . . . , wq

on the boundary of the outer face of Gk. Let P (wp, wq) be the inter-
section point of the line of slope +1 passing through wp with the line of
slope −1 passing through wq; Condition (3) implies that P (wp, wq) has
integer coordinates. (Hint: rotate the �gure by 45◦.) Putting vk+1 at
position P (wp, wq) almost yields a planar drawing of Gk+1, except that
it may fail to see, e.g., wp. To avoid this problem (Figure 2.6), we shift
vertices w1, . . . , wp by one unit to the left, so that the slope of wpwp+1 be-
comes now smaller than +1; and similarly we shift wq, . . . , wm by one unit

to the right. In our choice of representation of points with x-spans and
y-coordinates, this takes constant time: Simply increase by one the x-span
of wpwp+1 and of wq−1wq. The only problem is that the resulting drawing
is inconsistent, so we need an adjustment phase to increase the x-spans of
some internal edges. We �rst explain how to do this adjustment of the
x-spans of internal edges at each step from Gk to Gk+1. However, for the
purposes of an e�cient algorithm, it will be useful to do these adjustments
at once.

We maintain a spanning tree T ∗ of the dual of Gk, rooted at the outer
face and oriented away from the root, as follows (Figure 2.4). Initially
(say k = 3), there is one edge from the root outer face to the inner face,
crossing edge v1v2. When we add vertex vk+1, for each newly created
internal face of the drawing, we create an edge of T ∗ arriving to that face
by crossing the unique edge incident to that face that belongs to Gk.

When adding edges in Gk to build Gk+1, the adjustment phase consists
in increasing by one the x-span of the set Ep of edges crossed by the
subpath of T ∗ from the root to the �rst vertex incident to (wpwp+1)

∗,
and similarly of the edges Eq−1 crossed by the subpath to the �rst vertex
incident to (wq−1wq)

∗. (Edges crossed by both subpaths have thus their
x-span increased by two.) Combined with the initial shift of the boundary
edges, this results in a shift of a �left� part of the graph to the left and of
a �right� part of the graph to the right.

Why does this result in a valid embedding? It su�ces to prove the following
stronger result by induction on k: If the outer face of Gk is w1w2 . . . wm,
then for any choice of non-negative integers δ1, . . . , δm−1, if for each i we
increase the x-span of the edges in Ei ∪{wiwi+1} by δi, then we obtain an
embedding of Gk. This is easy to prove for k = 3; proving it for k amounts
to proving it for k− 1 (for well-chosen di�erent values of the integers) and
to checking that the new edges in Gk do not cross any other part of the
drawing (by construction). It is clear that, at the end, the vertices are on
an O(n)×O(n)-grid.

To implement this idea in linear time, we �rst compute the x-spans and y-
coordinates in G3, . . . , Gn without doing the adjustment phases; this takes
O(n) time. Omitting this adjustment phase does not harm because, at

15



ALGORITHMS FOR EMBEDDED GRAPHS 2. Planarity testing and graph drawing

each step, we only need to know that the x-spans and y-coordinates of the
vertices on the outer face are correct. Afterwards, we need to increase the
x-span of each edge e by the cumulated increase it would have received
during all adjustment phase. This amounts to determining how many
times e is crossed by the paths of T ∗ considered during the adjustment
phase. For this purpose, during the incremental construction, we record,
for each vertex of T ∗ other from the root, the number of times it appears
as an endpoint of such a path. At the end of the incremental construction,
we can by a simple search in T ∗ compute, for each edge of T ∗, the number
of times it is contained in a path. This takes linear time.

2.3 Tutte's barycentric embedding theorem

We give another method to build straight-line embeddings in the plane,
which has other desirable properties: In particular, assuming 3-connectivity
of the input graph (de�ned below), in the planar output embedding, all
faces are convex. This leads to an interesting result regarding 3-dimensional
polytopes, described in the next section.

A graph is 3-connected if it is connected and if it is still connected after
removing zero, one, or two vertices and their incident edges.

Theorem 2.14. Let G = (V,E) be a 3-connected graph without loops or

multiple edges. Assume G is embedded on R2. Let v1, . . . , vk be the vertices

of the outer face. Assign unique positions f(v) in R2 for each vertex v,
such that

� the f(vi), i = 1, . . . , k are mapped to the vertices of a convex polygon

(respecting the order of the vertices);

� the image of every vertex v di�erent from the vi's is a barycenter

with strictly positive coe�cients of the images of its neighbors in G.

Then drawing straight-line edges between the image points gives an embed-

ding of G.

Given such a 3-connected graph, it is always possible to achieve the con-
ditions of the theorem. For example, choose the barycentric coe�cients

Figure 2.7. Illustration of the statement of Tutte's theorem.

to be all equal to one. The barycentric condition yields an a�ne system,
which is solvable by an argument of �dominant diagonal�. Equivalently,
one may view the edges as �springs� with the same rigidity, and the inte-
rior vertices as being free to move. The equilibrium of this physical system
is met when the �energy� is minimized [74, p. 124].

We refer to the vertices v1, . . . , vk as exterior vertices, and to the other
ones as interior vertices. Let v be an interior vertex of G. Let h : R2 →
R be an a�ne function vanishing on f(v). If all the neighbors of v lie on
h−1(0), we say v is h-inactive . Otherwise, v is h-active . In this case,
v has neighbors in both h−1((0,∞)) and h−1((−∞, 0)). In particular one
can �nd a rising path from v to an exterior vertex: a path whose value
of h strictly increases. Similarly one can �nd a falling path .

Proposition 2.15. The image of every interior vertex of G is in the in-

terior of the convex polygon f(v1) . . . f(vk).

Proof. Let h be an a�ne form such that the polygon f(v1) . . . f(vk) lies in
h−1((0,∞)). If there is a vertex (whose image is) in h−1((−∞, 0)), then
consider the one that has minimum value of h. Since it is a barycenter
with positive coe�cients of its neighbors, all its neighbors must have the
same value of h. By induction and connectivity of G, some exterior vertex
must have that value of h, which is not possible. Therefore, each interior
vertex lies in the interior or on the boundary of the polygon f(v1) . . . f(vk).

Let v be an interior vertex; assume v lies on an edge of the outer polygon,
whose supporting line is h−1(0). Then all the neighbors of v are h-inactive.
Thus, all interior vertices that can be reached from v by a path using

16



ALGORITHMS FOR EMBEDDED GRAPHS 2. Planarity testing and graph drawing

w1

w2

w3

v

w1

w2

w3

v′

Figure 2.8. The situation in the Y�lemma.

only interior vertices lie on h−1(0). This contradicts the 3-connectivity
of G, because removing the two exterior vertices on h−1(0) destroys the
connectivity of G.

Proposition 2.16. For any a�ne form h, there is no h-inactive vertex.

See Figure 2.8 for an illustration of the next lemma.

Lemma 2.17 (Y�lemma). Let w1, w2, w3 and v be pairwise distinct ver-

tices of a graph H. Assume, for i = 1, 2, 3, that there is a path Pi from

wi to v which avoids the wj's (for j 6= i). Then there exist three paths P ′i ,
from wi to a common vertex v′, which are pairwise disjoint (except at v′).

Proof. First, using P1 and P2, we easily get a (simple) path R from w1

to w2, so that R and P1 have the same �rst edge w1z. Then we consider
the path P3. If this path P3 intersects R, let v′ be the �rst vertex of
intersection on P3. v′ splits R in two parts, which we call P ′1 (from w1 to
v′) and P ′2 (from w2 to v′); P ′3 is the part of P3 going from w3 to v′, with
loops removed (if any). The P ′i 's satisfy the property stated in the lemma.
If P3 does not intersect R, we call v′ the last vertex on P1 (when going
from w1 to v) which is also on R. Such a vertex exists and is di�erent from
w1 because w1z is the �rst edge of R and P1. Let P ′3 be the path de�ned
by P3 followed by the part of the path P1 which goes from v to v′, with
loops removed (if any). v′ splits R in two parts, which we call P ′1 and P ′2.
The paths P ′i 's satisfy the desired property.

v′ v′

Figure 2.9. A summary of the proof of Proposition 2.16.

Proof of Proposition 2.16. For the sake of a contradiction, assume v is an
h-inactive vertex. We prove the existence of a subdivision of K3,3 in G:
a subgraph of G such that, after contracting edges, we get K3,3. Thus G
cannot be planar. See Figure 2.9.

Let G(h) be the subgraph of G induced by the vertices on h−1(0). Since G
is 3-connected, there are, in G(h), three distinct h-active vertices w1, w2,
and w3 and three paths Pi connecting v with wi, such that, for any i, the
path Pi contains no vertex wj for j 6= i. Indeed, let w be a vertex of G so
that h(f(w)) 6= 0. By connectivity of G, take a path from v to w and call
w1 the �rst h-active vertex on this path. Do the same in G − {w1}, and
choose w2, by 2-connectivity. Similarly, use 3-connectivity to select w3 in
G− {w1, w2}.
Applying then the Y�lemma in G(h), we get the existence of a vertex v′

in G(h), together with three distinct paths (except at v′) Pi from wi to v′

in G(h). We can build rising paths Qi from each of the wi to a vertex x
maximizing the value of h. Then, the Y�lemma allows us to assume, by
changing x and the Qi's if necessary, that these three paths are disjoint
(except at x). Similarly, we can build falling pathsRi from each of the wi to
a vertex y and apply the Y�lemma. Using the paths Pi, Qi and Ri, which
are all pairwise disjoint except at their endpoints, and the vertices x, v′, y
and w1, w2, w3, we get a subdivision of the graph K3,3. This contradicts
the planarity of G.

By Proposition 2.16, the convex hull of the neighbors of an interior vertex v
is a non-degenerate polygon, and v lies in its interior. We now triangulate

17



ALGORITHMS FOR EMBEDDED GRAPHS 2. Planarity testing and graph drawing

Figure 2.10. Two cases for the proof of Lemma 2.19. Vertices u and v, together
with falling paths, are highlighted.

the faces of G, except the outer face: faces are added to split the faces
of G into triangles, without adding vertices (this is done in a purely com-
binatorial way). It still holds that v is in the interior of the convex hull
of its neighbors, which readily implies that v is a barycenter with positive
coe�cients of them. To summarize, the hypotheses of the theorem are
satis�ed, but we can now even assume that every face of G, except maybe
the outer face, is a triangle.

Proposition 2.18. Let uvy and uvz be two triangles of G sharing the

edge uv. Let h be an a�ne form vanishing on f(u) and f(v). Then

h(f(y))h(f(z)) < 0.

The proof relies on the following lemma.

Lemma 2.19. If h(f(y)) > 0, then h(f(z)) < 0.

Proof. By assumption u, v, and y are h-active. Find strictly falling paths
going from u and v to an exterior vertex. The falling paths may share
a vertex. In any case, we get a simple circuit C in G using uv whose
set of vertices are on the strictly negative side of h, except u and v. See
Figure 2.10. (We may need some exterior vertices if the falling paths do
not share a vertex.)

On the original (not necessarily straight-line) embedding of G, the cir-
cuit C bounds a disk. Let S be the set of vertices in the interior of this

disk; S contains no exterior vertices, so every vertex in S is a barycenter
with positive coe�cients of its neighbors. Under f , all the vertices of C
are mapped to the half-space h ≤ 0 except u and v, which are mapped
to h = 0; therefore, as in the proof of Proposition 2.15, all the vertices
in S belong to the open half-space h < 0. Since h(f(y)) > 0, the vertex y
cannot belong to C or S.

In the original embedding of G, the circuit C uses edge uv, and y is
outside C. Therefore z must be inside C (i.e., in S) or on C. In the former
case, as seen above, we get h(f(z)) < 0. In the latter, since u and v are
the only vertices of C on the line h = 0, we also get h(f(z)) < 0.

Proof of Proposition 2.18. Lemma 2.19 shows that, whenever one triangle
is non-degenerate, then its incident triangles are non-degenerate. Neces-
sarily, any triangle having one exterior edge is non-degenerate (Proposi-
tion 2.15). So every triangle is non-degenerate. The result follows.

We can now conclude the proof of Tutte's theorem.

Proof of Theorem 2.14. As we discussed earlier, a consequence of Propo-
sition 2.16 is that we may assume that G is triangulated (except possibly
for the outer face). Since the triangles are non-degenerate by Proposi-
tion 2.18, it su�ces to prove that the interiors of two distinct triangles
are disjoint. For the sake of a contradiction, let a be a point of R2 in the
interior of two triangles t and t′. Shoot a ray from a to the boundary of
the polygon f(v1) . . . f(vk) avoiding the image of every vertex. Whenever
the ray leaves t′, by Proposition 2.18, it enters another triangle. So we get
a sequence of triangles t′ = t′1, t

′
2, . . . , t

′′ where t′′ is the unique triangle in-
cident to the boundary edge that is on the end of the ray. Similarly, we get
a sequence of triangles t′′ = t′′1, t

′′
2, . . . , t

′′. Going back in both sequences
from t′′, we pass from a triangle to an unambiguously de�ned preceding
triangle. Since we start with the same triangle, we get t = t′.

In particular, we have:

Corollary 2.20 (Fáry�Stein�Wagner's theorem). Every planar graph can

be drawn in the plane with straight line edges.

18



ALGORITHMS FOR EMBEDDED GRAPHS 2. Planarity testing and graph drawing

Furthermore, if the graph is 3-connected, then we can choose the faces to
be convex, since it is the case in a Tutte embedding. This latter fact is in
particular important in the next application.

2.4 Steinitz' theorem

Every convex polytope in R3 has a set of vertices (extremal points) and
edges. This is called the 1-skeleton of the polytope. In this section, we
will prove the following theorem.

Theorem 2.21 (Steinitz' theorem (1922)). Let G = (V,E) be a graph

without loops or multiple edges. Then G is a planar 3-connected graph if

and only if it is the 1-skeleton of a convex polytope in R3.

The �if� part is the easiest direction: Imagine a big physical model of
your convex polytope, where the faces and the interior of the polytope are
transparent. If you sit outside the polytope, close enough to the center
of a face, you will see no crossing between the edges. In other words,
the 1-skeleton is planar. We omit the proof that the 1-skeleton of a 3-
dimensional polytope is 3-connected; this can be proved directly without
too much trouble, and follows from a more general theorem by Balinski
(see the proof for example in Ziegler's book [85, Sect. 3.5]).

Let ω : E → (0,∞) be a function from the (undirected) edges of G to a
set of strictly positive coe�cients. (In the sequel, we could take ω to be
constant, equal to one.)

Let f : V → R2 be the corresponding Tutte equilibrium given by Theo-
rem 2.14, where every vertex v is barycenter with coe�cients ωuw1 , . . . , ωuwm

of its neighbors w1, . . . , wm. We actually assume that f : V → R3 maps
the vertices into the plane z = 1 of R3.

To every interior face f of G we associate a vector qf in R3. We choose
an arbitrary interior face f0, for which qf0 = 0. The other qf 's are de�ned
by the following formula: For every interior edge uv with left face f1 and
right face f2, we de�ne

qf1 = ωuv(f(u)× f(v)) + qf2 (2.1)

where × denotes the cross-product in R3.

Lemma 2.22. The vectors qf are well-de�ned.

Proof. First note that exchanging u exchanges f1 and f2 in (2.1), and thus
gives qf2 = ωvu(f(v) × f(u)) + qf1 , which rewrites qf2 = ωuv(−f(u) ×
f(v)) + qf1 ; this is exactly Equation (2.1).

Let v be a vertex of G, and w1, . . . , wm be its neighbors. We get:

m∑
i=1

ωvwi(f(v)× f(wi)) = f(v)×

(
m∑
i=1

ωvwi(f(wi)− f(v))

)
= 0.

Therefore, Equation (2.1) gives consistent vectors qf for all faces around
an interior vertex.

Now, starting from the initial face f0, we may de�ne the value of qf by
choosing an arbitrary sequence of faces from f0. In other words, in the dual
graph G∗, every path starting at f∗0 and ending at some face f gives a value
of qf . (Incidentally, this shows that the function q, if it exists, is unique.)
We need to check that this value does not depend on the particular path
chosen. For this purpose, consider two such paths p and p′ in G∗. We may
assume that p and p′ use distinct vertex sets of G∗ except at the endpoints
f∗0 and f∗. Then by the Jordan curve theorem 1.3, p and p′ enclose a set
of faces of G∗. The result is proven by induction on the number of faces
of G∗ enclosed by p and p′: The case of one face is the previous paragraph.
For the induction step, build one path p′′ in G∗ that is in-between p and p′,
and apply induction. See Figure 2.11.

We de�ne a piecewise linear function g from the union of the interior faces
to R by setting, for every point x in a face f , g(x) = 〈x | qf 〉.

Lemma 2.23. This map g is well-de�ned.

Proof. We only need to prove that, whenever x belongs to an edge uv
incident with faces f1 and f2, the value of g(x) is the same, whichever face
f1 or f2 we choose for the computation; in other words, 〈x | qf1〉 = 〈x | qf2〉.
By linearity it su�ces to prove the result for x = f(u) and x = f(v).

〈f(v) | qf1〉 = 〈f(v) | ωuv(f(u)× f(v)) + qf2〉 = 〈f(v) | qf2〉 .

19



ALGORITHMS FOR EMBEDDED GRAPHS 2. Planarity testing and graph drawing

p

p′

p′′

f∗0

f∗

Figure 2.11. Illustration of the proof of Lemma 2.22. We wish to prove that
the de�nition of qf is the same, whichever of the two paths p and p′ in G∗ we
choose. This is done by choosing an �intermediate� path p′′ that contains less
vertices of G on both sides; since there are less vertices of G between p and p′′ or
between p′ and p′′ than between p and p′′, we may assume by induction on the
number of enclosed vertices that choosing p or p′′, and similarly p′ or p′′, does
not a�ect the computation of qf .

A similar computation holds for f(v).

Lemma 2.24. Let uv be an edge with left face f1 and right face f2. Assume

x is in the face f1. Then 〈x | qf1〉 < 〈x | qf2〉.

Proof.

〈x | qf2〉 − 〈x | qf1〉 = ωuv 〈x | f(u)× f(v)〉 = ωuv det(x, f(u), f(v)) > 0,

by our orientation convention (recall that the last coordinate of the points
x, f(u), and f(v) is one) and the fact that ωuv > 0.

Sketch of proof of Theorem 2.21. Recall that the position of a vertex v is
f(v) in R3, actually in the plane z = 1. We just move vertically f(v) to
height g(f(v)). Let F (v) be the new position. Let P be the convex hull
of the F (v). Lemma 2.24 implies that every interior edge uv is an edge
of P , because every such edge is a �valley�; the same clearly holds for the
exterior edges. It is clear that the lifts of all vertices on a given face are
coplanar, and therefore each face of P is a convex polygon. Therefore, P
is a convex polytope.

There is one subtlety, however: the vertices of the outer face are not nec-
essarily coplanar; though, if the outer face is incident with three vertices,
this condition is automatically satis�ed. If G contains a triangle, we may
have taken that triangle to be the outer face in the application of Tutte's
theorem. Thus, the only case that remains to be shown is when G contains
no triangle.

From Exercise 3.2, we know that G∗, the dual graph of G, contains a
triangle. Clearly, G∗ is planar, and it can be shown that it is also 3-
connected. We may therefore realize G∗ as the 1-skeleton of a convex
polytope. Now, a known construction, polarity, allows to transform a 3-
polytope into another one, whose 1-skeleta are dual to each other [85,
Sect. 2.3]. So G is the 1-skeleton of a convex polytope as well.

2.5 Notes

The planarity testing algorithm is taken from [24, Section 3.3]. (The algorithm
to compute the blocks is due to Hopcroft and Tarjan [49]; the presentation is
inspired from Wikipedia's article �Biconnected component�.) The algorithm to
draw a graph on a grid is due to de Fraysseix et al. [21], with simpli�cations
from Castelli Aleardi et al. [11]; see also the book by Nishizeki and Rahman [69,
Section 4.2]. The ordering of the vertices found in that algorithm is also related
to Schnyder woods, which provide an elegant alternative grid embedding.

The proof of Tutte's theorem we described uses arguments from Edelsbrunner
and Harer [26] other sources [19,74]; the proof of Steinitz' theorem is also taken
from Richter-Gebert [74]. In addition to the original paper proving Tutte's theo-
rem [82], there are many other proofs [4,15,19,38,44,74,81]. The correspondence
between Tutte embeddings where every vertex is barycenter of its neighbors and
the height function g is the Maxwell-Cremona correspondence (see for example
Hopcroft and Kahn [51]).

There are some straight-line graph embeddings that cannot be �lifted� to a convex
polytope (Figure 2.12).

The fact that every planar graph without loops or multiple edges admits a
straight-line embedding was shown a few decades before the discovery of the
algorithms given above [36,77,84]. Actually, if G is a planar graph without loops
or multiple edges with n vertices, a straight-line embedding exists where all ver-

20



ALGORITHMS FOR EMBEDDED GRAPHS 3. E�cient algorithms for planar graphs

1

23

4

5

6

Figure 2.12. An embedding that cannot be lifted to a convex polytope. Indeed,
assume every interior edge is an edge on the �bottom� of the convex polytope. We
can suppose, by adding a suitable a�ne form to all the zi's, that z4 = z5 = z6 = 0.
Then z1 > z2 > z3 > z1, which is impossible.

tices lie in the (n− 2)× (n− 2)-grid [37]. Many other representations exist, such
as circle packing representations: the vertices are mapped to non-overlapping
disks in the plane, two of which are tangent if and only if an edge between the
corresponding vertices exists (see Mohar and Thomassen [68, Chapter 2] for a
proof and references).

Chapter 3

E�cient algorithms for planar

graphs

In this chapter, we illustrate the general idea that algorithmic problems on
graphs are easier to deal with when the graph is assumed to be planar. By
Theorem 2.1, if we are given a planar graph G, we can compute in linear
time a combinatorial map of G in the plane; therefore, we can assume that
in all algorithms for planar graphs, a combinatorial map of the graph is
given.

3.1 Minimum spanning tree algorithm

Let G = (V,E) be a cellular graph embedding in S2, with a weight function
w : E → R on its edges. Let n be its complexity.

Theorem 3.1. A minimum spanning tree of G can be computed in O(n)
time.

We note that, by Lemma 1.8, E′ ⊆ E is a minimum spanning tree of G if
and only if (E \E′)∗ is a max imum spanning tree of G∗ (where the weight
of a dual edge equals the weight of the corresponding primal edge).

Exercise 3.2. 999 Prove that a connected planar graph has either a
vertex or a face with degree at most three.

We introduce two operations to transform a cellular graph embedding in S2

21



ALGORITHMS FOR EMBEDDED GRAPHS 3. E�cient algorithms for planar graphs

into another one. These operations (together with their reverses) are called
Euler operations. Let e be an edge of G that is incident with two dif-
ferent faces. Then removing e yields a cellular graph embedding, denoted
by G \ e. The dual operation is contraction: let e be an edge of G that
is incident with two di�erent vertices (i.e., that is not a loop), then we
may contract e by identifying its two incident vertices; the resulting graph
embedding is denoted by G/e. Obviously, these two operations preserve
the planarity.

Proof of Theorem 3.1. The two following dual rules allow to build induc-
tively the set of edges T (G) of a minimum spanning tree of G:

� Let v be a vertex of G. If all edges incident with v are loops, then
G has exactly one vertex, so there is a unique, empty, spanning tree.
Otherwise, let e be a minimum-weight edge incident exactly once
with v. Necessarily, edge e belongs to a minimum spanning tree
of G. Hence T (G/e) ∪ e is a minimum spanning tree of G;

� let f be a face of G. If all edges incident with f have f on both sides,
then G has exactly one face, so G is a tree, and there is a unique
spanning tree, G itself. Otherwise, let e be a maximum-weight edge
incident exactly once with f . Then e does not belong to a minimum
spanning tree of G (because e∗ belongs to a maximum spanning tree
of G∗). It follows that T (G \ e) is a minimum spanning tree of G.

The number of iterations of this algorithm is O(n). Assuming we can pick
a vertex v or a face f with degree O(1) (whose existence is guaranteed
by Exercise 3.2) in constant amortized time, we have a linear-time algo-
rithm. Indeed, without loss of generality assume we have a vertex v with
degree O(1); the dual case is similar. Determining which edges incident
to v are loops takes O(1) time. If all of them are loops, then the recursion
stops; otherwise, �nding a minimum-weight edge e that is not a loop can
clearly be done in O(1) time. Also, contracting e can be done in O(1)
time, since there are O(1) �ags to update: this uses the fact that one
vertex incident with e has degree O(1).

It remains to explain how to compute in O(1) amortized time a vertex or a
face with degree at most three. For this purpose, we maintain a bucketB (a
list) containing all vertices and faces of degree at most three (and possibly

other vertices and faces, possibly some of them being destroyed in the
course of the algorithm after they are put in the bucket). Initially, put
all vertices and faces in B. When contracting or deleting an edge e, only
the degrees of the vertices and faces incident with e can change, so we put
them in the bucket before contracting or deleting e. Therefore in total
O(n) vertices and faces are put into B.

To �nd a vertex or face of degree at most three in the current graph, pick
an element of B, check in O(1) time whether it still belongs to the current
graph and, if so, whether it has degree at most three. If it is not the case,
remove it from B and proceed with the next element. Since O(n) elements
in total are put in B, also O(n) elements are removed from B, so the total
time spent to �nd vertices and faces with degree at most three is O(n).

3.2 Separators

Let G be a graph. Here we assume that G is vertex-weighted : Every
vertex gets a non-negative weight, and all the weights sum up to one. (As
an important special case, one could choose 1/n for the weight of each of
the n vertices of G.) A separator for G is a set S of vertices such that
every connected component of G− S has weight at most 1/2.

Separators of small size, when they exist, are very useful, and often allow
for e�cient divide-and-conquer strategies. The purpose of this section is
to show how to compute e�ciently (optimally) small separators in planar
graphs.

Let us �rst focus on the special case of trees, which is the mother of all
examples for graph separators.

Proposition 3.3. Let T be a vertex-weighted tree with n vertices and

edges. In O(n) time, one can compute a separator for T made of a single

vertex.

Proof. Root T at an arbitrary vertex r. Using a traversal of the tree, one
can label each vertex v of T with the sum of the weights of v and all
its descendents. This allows to compute in O(d) time the weight of each

22



ALGORITHMS FOR EMBEDDED GRAPHS 3. E�cient algorithms for planar graphs

component of T − v, for an arbitrary vertex v of degree d. Now, starting
at an arbitrary vertex v of the tree:

� if all components of T − v have weight at most 1/2, return v;

� otherwise, replace v with the neighbor w of v belonging to the largest
connected component of T − v.

When the algorithm returns, its result is correct. Furthermore, it moves
from vertex to vertex along edges, but it never visits the same vertex twice,
because T is a tree and because, in the second case, the component of T−w
containing v has weight at most one minus the weight of the component
of T − v containing w, and this is at most 1/2. The running time is thus
proportional to the sum of the degrees of the vertices, which is O(n).

Here is the general result on planar graphs.

Theorem 3.4. Let G be a vertex-weighted planar graph with n vertices

and edges. Then one can compute in O(n) time a separator for G of size

O(
√
n).

One can prove that this result is optimal: Each separator of the
√
n×
√
n-

grid has size Ω(
√
n).

Proof of Theorem 3.4. Without loss of generality, we may assume that G is
triangulated. Indeed, we can without harm iteratively remove some edges
forming faces of degree one or two and then triangulate every face of degree
at least four (we do not insist in having G simple).

Let r be an arbitrary vertex of G, and let U be a breadth-�rst search of G
rooted at r. For every vertex v of G, de�ne its level to be its distance to r
in G (or, equivalently, in U).

First step. We compute a separator S1 of G that has at most three vertices
on each level, without any restriction on the size of S1.

For this purpose, de�ne weights on the vertices of the dual graph G∗ by
charging the weight of each vertex of G to the dual of exactly one incident
face of G. Now G∗ quali�es as a vertex-weighted graph. Let T be the set of
edges of G not in U ; thus, T ∗ is a spanning tree of G∗. By Proposition 3.3,

T ∗

G1
r

c∗

Figure 3.1. The situation in the proof of Theorem 3.4.

we can compute a vertex c∗ of T ∗ such that each connected component of
T ∗ − c∗ has weight at most 1/2.

Let t be the triangle of G containing c∗. Let G1 be the subgraph of G that
is the union of the three edges of t together with the three shortest paths
from the vertices of t to the root r. Let S1 be the set of vertices in G1.

By construction, S1 has at most three vertices per level. We prove that S1
is a separator: Let C be a connected component of G−G1 (or equivalently
G − S1). Note that G1 splits the plane into several connected regions
(Figure 3.1), and C belongs entirely to a single region. By the Jordan curve
theorem, the vertices of G∗ inside that region belong to a single component
of T ∗−c∗ and therefore have total weight at most 1/2. Furthermore, when
we assigned weights to G∗, all the weight of C was charged into that region.
Thus, C has weight at most 1/2, as desired. This concludes the �rst step.

Second step. Let `med be a weighted median level of a vertex in G: namely,
the total weight of the vertices with level lower (resp., higher) than `med

is at most 1/2. Let `min be the largest level smaller than or equal to `med

containing at most
√
n vertices. Similarly, let `max be the smallest level

larger than or equal to `med containing at most
√
n vertices. (It may be

that these levels contain no vertices.) These computations take O(n) time.

Here are the key properties of the levels `min and `max:

23



ALGORITHMS FOR EMBEDDED GRAPHS 3. E�cient algorithms for planar graphs

1. Let S2 be the set of vertices of G at levels `min and `max. Then S2
has size at most 2

√
n.

2. Each level strictly between `min and `max contains at least
√
n + 1

vertices of G, so there are less than
√
n such levels. Hence `max −

`min ≤
√
n.

3. Any connected component of G− S2 with weight larger than 1/2 is
con�ned between levels `min and `max.

Third step. Let S′1 be the set of vertices in S1 with level strictly between
`min and `max. The algorithm returns S′1 ∪ S2. It is clear that the run-
ning time is linear, and there remains to prove two properties to prove
correctness:

S′1∪S2 has size O(
√
n): Indeed, S2 has size O(

√
n) by (1), and S′1 has size

O(
√
n) because it contains at most three vertices per level (by construction

of S1) and because O(
√
n) levels appear in S′1 by (2).

S′1 ∪ S2 is a separator: Indeed, let C be a connected component of G −
(S′1 ∪ S2); we need to prove that C has weight at most 1/2. The levels
of the vertices of C are all either smaller than `min, larger than `max, or
between `min and `max. In the �rst two cases, the result follows from (3).
In the latter case, C is only adjacent to vertices with a level in [`min, `max],
so C is also a connected component of G− (S1 ∪ S2), hence included in a
connected component of G− S1, which concludes since the vertices in S1
form a separator.

3.3 Graph coloring

Let G = (V,E) be a graph and k ≥ 1 be an integer. A coloring of G with
k colors is a map V → {1, . . . , k} such that adjacent vertices are mapped
to di�erent integers (�colors�). If a graph has a coloring with k colors, we
say that it is k-colorable .

In coloring problems, we can safely ignore graphs with loops (edges incident
twice to the same vertex), because such graphs are not k-colorable, for
any k. In this section, we implicitly only consider graphs without loops,
and all subsequent graphs built in the proofs have this property.

Determining whether a graph is k-colorable is NP-hard, except for k = 1
(it is equivalent to have no edge in the graph) and k = 2 (it is equivalent
to have a bipartite graph, a problem easily solvable in linear time). For
planar graphs, life seems to be no easier: It is NP-hard to decide whether
a planar graph is 3-colorable [42], by reduction from 3-SAT.

However, it is a remarkable fact that every planar graph is 4-colorable [2];
this was proved by Appel and Haken, heavily relying on computer assis-
tance (up to date, no proof is known that does not involve a lot of case
distinctions). We shall prove that every graph is 5-colorable, and give an
algorithm to 5-color a planar graph in linear time, assuming a combinato-
rial map is given.

Theorem 3.5. Every (simple) planar graph is 5-colorable.

Proof. Consider a planar drawing of a graph G in the plane. We can
assume without loss of generality that G is connected and has no face
(including the outer face) of degree one or two. Let v, e, and f be the
number of vertices, edges, and faces of G. Euler's formula v − e + f = 2
and double-counting of the edge-face incidences 2e ≥ 3f implies e ≤ 3v−6
and thus the average degree of a vertex, 2e/v, is strictly less than 6. Thus,
G has at least one vertex of degree at most �ve. This directly implies that
G is 6-colorable, since if x is a vertex of degree at most �ve, we can assume
by induction that the graph G−x obtained from G by removing x and its
incident vertices is 6-colorable, and then color x with one color not used
by any of its neighbors. To prove that every planar graph is 5-colorable,
we only need to re�ne the argument slightly.

If G has a vertex incident with at most four distinct vertices, then by
induction we are done. So let x be a vertex of degree exactly �ve, with
distinct neighbors v1, . . . , v5 in clockwise order around x. Let a 5-coloring
of G−x be given. If v1, . . . , v5 do not have distinct colors, then at least one
color remains to color x, so we are done. So assume (up to permutation)
that vi bears color i.

Let G13 be the subgraph of G−x induced by the vertices colored 1 and 3.
Assume �rst that there is no path in G13 connecting v1 to v3. We can
exchange colors 1 and 3 in the component of G13 that contains v1 (this is

24



ALGORITHMS FOR EMBEDDED GRAPHS 3. E�cient algorithms for planar graphs

v4

v5

v1

v2

v3

v1

v5

v4 v3

v2x

Figure 3.2. The last step in the proof of Theorem 3.5.

clearly valid). Now, both v1 and v3 are colored 3, which frees one color for
vertex x, and we are done.

On the other hand, if v1 and v3 are connected in G13, then we claim that
v2 and v4 cannot be connected in G24 (the subgraph of G− x induced by
the vertices colored 2 and 4), which implies that we can use the same trick
with v2 and v4 in place of v1 and v3.

To prove the claim, we assume the contrary: There are two disjoint paths
p13 and p24 in G−x connecting pairs (v1, v3) and (v2, v4) respectively. We
can modify G−x to exhibit a planar graph that is K5, the complete graph
with �ve vertices (Figure 3.2), which is a contradiction (Exercise 1.10).
To do that, take the graph with vertex set {x, v1, v2, v3, v4} and with the
following edges: x is connected to all other vertices via edges drawn like
in G; v1 and v3 are connected via p13, similarly v2 and v4 are connected via
p24. Moreover, (v1, v2), (v2, v3), (v3, v4), (v4, v1), (v2, v5), and (v3, v5) can
be connected together without crossing other edges because they appear
in cyclic order around x. This is K5.

We can actually obtain an e�cient 5-coloring algorithm:

Theorem 3.6. Every (simple) planar graph, given in the form of a com-

binatorial map, can be 5-colored in linear time.

We will rely on the following independent proposition.

Proposition 3.7. Let G be a planar graph with no face of degree one or

two. Then G has either a vertex of degree at most four, or a vertex of

degree �ve adjacent to two vertices of degree at most six.

(Precisely, this should be understood as follows: among the three vertices
involved in the second alternative, some of them can be the same, however
the two edges involved should be distinct.)

Proof. It su�ces to prove the result assumingG is triangulated (Lemma 2.11).
We proceed by contradiction, assuming that such con�gurations cannot
occur.

Let us put a charge equal to 6 in each triangle. Now each triangle T sends
its charge to all its incident vertices of degree �ve and six, in a way that
the degree-5 incident vertices get all the same charge from T , the degree-6
incident vertices get all the same charge from T , and any degree-5 incident
vertex gets twice the charge of a degree-6 incident vertex from T . (If T
has no vertex of degree 5 or 6, the charge remains in T .)

After this operation, each degree-6 vertex v gets charge at least 2 from
each of its incident triangles. Indeed, excepting v, such a triangle can be
incident to at most two other degree-6 vertices, or to one degree-5 vertex
and to a vertex of degree at least 7. Therefore, each degree-6 vertex gets
charge at least 12. Note that the reasoning is also valid if some triangles
around v are identi�ed.

Also, each degree-5 vertex v gets charge at least 24. Indeed,

� If it is not adjacent to any degree-5 or degree-6 vertex, except pos-
sibly itself, it gets all the charge from its incident triangles, which
is 30;

� if it is adjacent to a degree-5 vertex w 6= v, then it has no other
vertex of degree 5 or 6 around, so it gets all the charge from the 3
triangles not incident to w and half the charge from the 2 triangles
also incident to w, and thus 24;

� if it is incident to a degree-6 vertex w, similarly, it gets all the charge
from the 3 triangles not incident to w and 2/3 of the charge from
the 2 triangles also incident to w, which is 26.

25



ALGORITHMS FOR EMBEDDED GRAPHS 3. E�cient algorithms for planar graphs

vkx

vk

v`

v`

Figure 3.3. Illustration of the inductive construction in the proof of Theo-
rem 3.6.

Let t be the number of triangles in G, and ni be the number of vertices
of degree i in G. The previous discussion implies 6t ≥ 24n5 + 12n6, or
equivalently t ≥ 4n5 + 2n6 (∗).
On the other hand, Euler's formula can be rewritten in the two following
ways:

�
∑

i(2− i)ni = 4− 2t, since 2e =
∑

i ini;

�
∑

i 2ni = t+ 4, since 2e = 3t.

Eliminating n7 in these two linear equations yields
∑

i(14−2i)ni = t+28.

Since ni = 0 for i ≤ 4, this implies 4n5 + 2n6 − 2n8 − 4n9 − . . . = t+ 28.
In particular, t < 4n5 + 2n6, contradicting (∗).

Proof of Theorem 3.6. By Lemma 2.11, we can assume that our input
planar graph G is simple and triangulated. In the rest of the proof, we
consider only graphs that have no loops, but may have multiple edges.

We �rst describe the high-level approach, without worrying about com-
plexity. We also proceed by induction, like in the proof of Theorem 3.5.
Let x be a vertex of G obtained by Proposition 3.7. If x has at most four
distinct neighbors, then we are done by applying induction to G−x (after
triangulating the new face). Otherwise, x has degree �ve, and �ve distinct
neighbors v1, . . . , v5 in this cyclic order around x, two of which, say v1
and vi (i ∈ {2, 3}), have degree at most six.

By planarity, if i = 2, then either v1 and v3 are not adjacent, or v2 and v4
are not adjacent. If i = 3, then either v1 and v4 are not adjacent, or v3
and v5 are not adjacent. So let k, ` ∈ {1, . . . , 5} such that vk and v` are
not adjacent and vk has degree at most six; they can be determined in
O(1) time.

Let H be the graph obtained from G − x by identifying vk and v`, as in
Figure 3.3 (this operation preserves planarity since vk and v` belong to the
same face of G−x, and no loop is created since vk and v` are not adjacent
in G). We apply induction to H. After H is 5-colored, this corresponds
to a coloring of G − x where vk and v` have the same color, which leaves
one color free to color x.

If we omit the time taken to �nd vertex x, then this algorithm can be
implemented in linear time. Indeed, �nding which vertices adjacent to x
have degree at most six takes constant time. Using the �elds vu described
in Section 1.2.1, we can test whether the neighbors of x are distinct in
constant time. We can also test whether two given vertices are adjacent
in constant time if one of the vertices has bounded degree; this allows to
determine vk and v` in constant time. Then identifying vk to v` takes con-
stant time because vk has bounded degree (this latter property is needed
since updating the �elds vu takes time linear in the smaller degree of vk
and v`).

There remains to compute vertex x e�ciently. To do this, we maintain,
during the algorithm, a stack (a linked list, for example) containing the
vertices of degree at most four, and the vertices of degree �ve adjacent to
two vertices of degree at most six. At each step, a constant number of
vertices can enter or leave the stack, which can be updated in constant
time.

3.4 Minimum cut algorithm

We now give an e�cient algorithm for computing minimum cuts in planar
graphs.

Before that, we need to state without proof a result on shortest paths in

26



ALGORITHMS FOR EMBEDDED GRAPHS 3. E�cient algorithms for planar graphs

planar graphs. Let G = (V,E) be a connected graph where each edge has
a non-negative length (also called weight), and let s be a vertex of G. A
shortest path tree is a spanning tree of G rooted at s that contains a
shortest path from s to each vertex in G. Dijkstra's algorithm (with the
appropriate data structure for the priority queue, for example Fibonacci
heaps) allows to compute a shortest path tree in O(|E|+ |V | log|V |) time.
The following result, which is (fortunately) admitted, improves the result
for planar graphs.

Theorem 3.8. Given a graph cellularly embedded in S2, a shortest path

tree from a given vertex can be computed in time linear in the complexity

of the graph.

We shall use this result to prove the following theorem related to cuts in
graphs. Recall that an (s, t)-cut X of an edge-weighted graph G is a subset
of vertices containing s but not t, and its weight is the sum of the weights
of the edges with exactly one endpoint in X.

Theorem 3.9. Let G = (V,E) be a weighted planar graph of complexity n,
cellularly embedded in S2. Let s and t be two vertices of G. The problem

of computing a minimum-weight (s, t)-cut of G can be solved in O(n log n)
time.

To prove Theorem 3.9, we �rst dualize the problem in the following propo-
sition, which is rather intuitive but not so easy to prove formally. Hence-
forth, let G = (V,E) be a weighted planar graph, and let F be the faces
of G.

Proposition 3.10. X ⊆ E is an (s, t)-cut in G if and only if X∗ contains
the edge set of some circuit of G∗ separating s and t.

Proof. If X∗ contains (the edge set of) a circuit in G∗ separating s and t,
then any (s, t)-path in G must cross an edge in X∗, and thus contain an
edge in X, so X is an (s, t)-cut.

Conversely, let X be an (s, t)-cut; we will prove that X∗ contains the edge
set of a circuit in G∗ separating s and t. Without loss of generality, we
may assume that X is inclusionwise minimal among all (s, t)-cuts.

First, label �S� each face v∗ of G∗ such that there is, in G, an (s, v)-path
avoiding X. Similarly, label �T� each face v∗ of G∗ such that there is, in G,
a (v, t)-path avoiding X. Since X is a cut, no face of G∗ is both labeled
�S� and �T�. Any edge of G∗ incident to faces labeled di�erently must be
in X∗. Therefore, by minimality of X∗, each face of G∗ is labeled either
�S� or (exclusive) �T�, and X∗ is the set of edges incident to faces with
di�erent labels.

Let S be the subset of the plane made of the faces of G∗ labeled �S�, to-
gether with the open edges of G∗ whose incident faces are both labeled �S�.
De�ne similarly T . Thus S and T are disjoint, connected subsets of the
plane. Let f∗ be a vertex of G∗; we claim that there cannot be four faces
incident to f∗ that belong respectively, in cyclic order around the vertex,
to S, T , S, and T . Indeed, if the opposite assertion holds, then by con-
nectivity of S, there is a closed curve in S ∪ {f∗} that goes through f∗

and has faces of T on both sides of it, which contradicts the connectedness
of T by the Jordan curve theorem.

Thus, X∗ is a union of vertex-disjoint circuits in G∗; let γ be one such
circuit. Since each edge of γ is incident to one face labeled �S� and one
face labeled �T�, γ ⊆ X∗ separates s from t.

We now reformulate the problem in terms of curves crossing G. More
precisely, we consider closed curves in general position with respect to G,
which do not meet any vertex of G and intersect the edges of G at �nitely
many points, where they cross. The length of such a closed curve is the
sum of the weights of the edges of G crossed by that curve, counted with
multiplicity. Computing shortest paths between two points in this setting
can be done in O(n) time by applying Theorem 3.8 in the dual graph.

Proposition 3.11. Let γ be a simple closed curve in general position with

respect to G; assume that γ has minimum length among all such curves that

separate s from t. Then the set of edges of G crossed by γ is a minimum-

weight (s, t)-cut in G.

Proof. The set of edges of G crossed by γ is an (s, t)-cut, by the Jordan
curve theorem. Conversely, if we have a minimum-weight (s, t)-cut in G,
Proposition 3.10 implies that its dual contains a circuit separating s and t,

27



ALGORITHMS FOR EMBEDDED GRAPHS 3. E�cient algorithms for planar graphs

which corresponds to a simple closed curve γ separating s and t whose
length is the same as the weight of the cut.

Now, we view G as embedded on the sphere, and we remove two small disks
around s and t. We now have an embedding of G on an annulus A, and
by Proposition 3.11 it su�ces to compute a shortest simple closed curve
in general position with respect to G that goes �around� the annulus. The
general idea of the algorithm is depicted in Figure 3.4. Let p be some
shortest path from an arbitrary point on one boundary to an arbitrary
point on the other boundary (again, where the length is measured by the
sum of the weights of G crossed by p). Let D be the disk obtained by
cutting the annulus along p; let p′ and p′′ be the pieces of its boundary
corresponding to p.

3.4.1 Naïve algorithm

The following lemma implies that some shortest simple closed curve sep-
arating the two boundaries of A corresponds, in D, to a shortest path
between a pair of �twin� points of p′ and p′′.

Lemma 3.12. Some shortest closed curve separating the two boundaries

of A is simple and crosses p exactly once.

Proof. Let γ be a shortest closed curve separating the two boundaries.
The image of γ in D (after cutting along p) must contain a simple path q
from p′ to p′′, for otherwise γ would not separate the boundaries of A.

Let γ′ be a closed curve obtained by connecting the endpoints of q with
a shortest path running along p. This closed curve is simple, separates
the boundaries of A, crosses p exactly once, and is no longer than γ, since
γ has at least the length of q plus the length necessary to connect the
endpoints of q.

This allows a naïve O(n2)-time algorithm: Let k ≥ 0 be the number
of edges of G crossed by p; let v0, . . . , vk be points on p, in this order
on p, such that the subpath between vi and vi+1 crosses exactly one edge
of G. Compute all shortest paths between v′i and v′′i (the twin points

p

Figure 3.4. Overview of the algorithm of Theorem 3.9. The initial annulus is
recursively cut into smaller annuli, until one of the two conditions for stopping
the recursion happens; then computing one or two new shortest paths (not shown
here) concludes.

corresponding, in D, to vi), and take a shortest such path. The running-
time follows since k = O(n) and since shortest paths can be computed in
linear time in planar graphs (Theorem 3.8).

3.4.2 Divide-and-conquer algorithm

To beat this quadratic bound, we use a �divide-and-conquer� strategy
based on the following lemma, illustrated in Figure 3.5.

Lemma 3.13. Let x, y, and z be points on p, in this order, and (x′, x′′),

28



ALGORITHMS FOR EMBEDDED GRAPHS 3. E�cient algorithms for planar graphs

a b ba
x′ x′′

y′′y′

z′′z′

x′ x′′

y′′y′

z′′z′

Figure 3.5. Illustration of Lemma 3.13.

(y′, y′′), and (z′, z′′) be the corresponding twin points on D. Let px and pz
be disjoint simple shortest paths in D between the corresponding twin pairs

(x′, x′′) and (z′, z′′). Then some shortest path py between the twin pairs

(y′, y′′) crosses neither px nor pz, and is simple.

Proof. Let py be an arbitrary shortest path between y′ and y′′. It crosses px
an even number of times, because y′ and y′′ are not separated by px in D.
If py crosses px at least twice, at points a and b, we may replace the part
of py between a and b by a path running along px, removing two crossings
between px and py; this does not decrease the length of py, since py is a
shortest path; and this does not introduce additional crossings between py
and pz, since py and pz are disjoint.

So by induction, we may assume that py is disjoint from px. Similarly, we
may assume that py is also disjoint from pz. Finally, we may remove the
loops in py to make it simple.

We �rst describe the two base cases of the recursion, which can be solved
in linear time:

1. If k = O(1) (for example, if k ≤ 2), we may conclude by computing
all shortest paths, in D, between each pair of twin vertices v′i and v

′′
i ,

and taking the shortest of these paths;

2. similarly, if there is a face f of the graph incident with both bound-
aries of A, then the shortest closed curve has to go through this face;
we can conclude by cutting the annulus A into a disk along a path
entirely contained in f and computing a shortest path, in this disk,
between the two copies of the path.

Otherwise, we consider vertex v := vb k2c and compute a shortest path in D

between the points v′ and v′′ corresponding to v on p′ and p′′, respectively;

this is thus a shortest closed curve γ passing through v and crossing p
exactly once. Let A1 and A2 be the two annuli obtained by cutting A
along γ. The previous lemma implies that it su�ces to recursively compute
the shortest closed curve separating the two boundaries of A1 and of A2

(using the pieces of p within A1 and A2 as new shortest paths), and to
take the shortest of these closed curves. This concludes the description of
the algorithm.

3.4.3 Correctness and complexity analysis

Proof of Theorem 3.9. The execution of the algorithm can be represented
with a binary tree, where each node corresponds to an annulus. The
root corresponds to A; internal nodes always have two children; leaves
correspond to the base case of the recursion.

The algorithm terminates, since the path p crosses at most
⌈
k/2i

⌉
edges

at the ith level in the recursion tree, and by base case (1). In fact, this
proves that there are at most dlog ke = O(log n) levels in the recursion
tree. The correctness follows from Proposition 3.11 and from the above
considerations. There remains to show the O(n log n) complexity.

Consider a given edge e of G. At some level r of the recursion tree, that
edge is cut by some closed curves into a number of subedges e1, . . . , ej
(j ≥ 1), all belonging to distinct annuli at level r. However, only the
subedges e1 and ej can belong to an annulus that is an internal node of
the recursion tree: the other ones end in base case (2). Therefore, e occurs
at most twice in total in the annuli that are internal nodes at level r, and
thus at most four times in total in the annuli at level r + 1. Hence, the
total number of non-boundary edges of the annuli at a given level is at
most 4n.

Furthermore, every boundary edge of an annulus can be charged to an adja-
cent non-boundary edge of that annulus, in a way that every non-boundary
edge is charged at most twice. Thus, the total number of boundary edges
of the annuli at a given level is at most 8n.

Bottom line: the total number of edges of all annuli at a given level is O(n);
by Euler's formula, this is also a bound on the sum of the complexities of

29



ALGORITHMS FOR EMBEDDED GRAPHS 3. E�cient algorithms for planar graphs

all annuli at a given level. Since, at each node, all the operations (cutting
and shortest paths computations) take linear time in the complexity of the
annulus, the overall complexity of the algorithm is proportional to the total
complexity of the annuli appearing in the recursion tree, which is made of
O(log n) levels, each containing annuli of total complexity O(n).

3.5 Notes

The minimum spanning tree algorithm described above is based on Matsui [66]
(see also Cheriton and Tarjan [14] for a more complicated, but more general,
algorithm). Actually, the same technique shows that a minimum spanning tree
of a graph cellularly embedded on a surface of genus g can be computed in O(gn)
time. (See Chapter 4 for more on surfaces.) On arbitrary graphs, things are
more complicated: there is a randomized algorithm with linear time [53], and a
deterministic algorithm with almost linear time (where �almost� means up to a
factor involving the inverse Ackermann function) [13].

The linear-time separator algorithm is inspired by the original paper by Lipton
and Tarjan [63] and by the notes by Klein and Mozes [55]. The interest of
separators is that they often allow for divide-and-conquer strategies, by cutting
the problem into two subproblems of roughly half the size of the original problem,
computing a solution in these subproblems, and using them to compute the
entire solution. What is actually more powerful is a separator decomposition of
the graph, where separators of the subgraphs are recursively computed; such
a decomposition is also computable in linear time [43]. There are alternative
proofs for the existence of separators, see Alon et al. [1] for a graph-theoretic
approach and Miller et al. [67] for a geometric approach using circle packing with
applications.

Regarding the section on graph coloring, Proposition 3.7 is due to Franklin [40].
The linear-time 5-coloring algorithm is a variant of an algorithm sketched by
Robertson et al. [75], which seems to have a subtle �aw. In that paper, a weaker
version of Proposition 3.7 is used; the algorithm still needs to identify two vertices
vk and v`, but with that weaker version, none of these vertices can be assumed
to have bounded degree. Thus updating the vu �elds requires linear time. Such
vu �elds are needed because we must be able to test whether two vertices are
adjacent in constant time, assuming (only) one of these vertices has bounded
degree.

The algorithm for �nding a minimum cut in a planar graph was found by Reif [73].

Here we used, as a black-box, the linear-time algorithm for shortest paths in pla-
nar graphs, due to Henzinger et al. [47]; this algorithm relies on graph separators.
The presentation of the min-cut algorithm above di�ers slightly, by using closed
curves in general position with respect to G; this concept will be re�ned when
we introduce the notion of cross-metric surface in Chapter 5.1. Frederickson [41]
provides a di�erent method. Proposition 3.10 is often regarded as obvious, and
the proof used here is a variant of the one found in Colin de Verdière and Schri-
jver [20, Lemma 7.2].

A shortest circuit in a graph separating two given faces translates, in the dual, to a
minimum cut separating the two dual vertices. By the max-�ow min-cut theorem,
a maximum �ow yields immediately a minimum cut, but not conversely. A very
recent paper shows that both the minimum cut and maximum �ow problems can
be solved in O(n log log n) in planar graphs [52].

30



ALGORITHMS FOR EMBEDDED GRAPHS 4. Topology of surfaces

Chapter 4

Topology of surfaces

4.1 De�nition and examples

A surface is a topological space in which each point has a neighborhood
homeomorphic to the unit open disk

{
(x, y) ∈ R2

∣∣ x2 + y2 < 1
}
. We only

consider compact surfaces in this chapter (and even later, unless speci�cally
noted).

Examples of surfaces are the sphere, the torus, and the double torus:
these are compact, connected, orientable (to be de�ned later) surfaces
with zero, one, and two handles, respectively (see Figure 4.1). The clas-
si�cation of surfaces (Theorem 4.5) asserts that two compact, connected,
and orientable surfaces are homeomorphic if and only if they have the same
number of �handles�.

Despite the �gures, note that a surface is �abstract�: the only knowledge
we have of it is the neighborhoods of each point. A surface is not nec-
essarily embedded in R3. Actually, the non-orientable surfaces cannot be

Figure 4.1. A torus and a double-torus.

a1

a9

a10

a1

a11

a12a8

a1

a11

a12

a7 a5

a12

a6

a10

a12

a11a9

a11

a1

a7

a3 a4a2

a8

a7

a7

a8

a8
a10

a10

a9
a9

Figure 4.2. A polygonal schema of a graph embedded on a sphere (the graph
of the cube) is: a2a11ā1ā12, a3a7ā2ā8, a4ā5ā3a6, a1ā9ā4a10, a9ā11ā7a5, and
a12ā10ā6a8.

embedded in R3.

4.2 Surface (de)construction

4.2.1 Surface deconstruction

A graph embedded on a surface is cellularly embedded if all its faces
are topological disks. As in the case of the plane, we may consider the
combinatorial map of a graph cellularly embedded on a surface; the data
structures are identical. The dual graph is de�ned similarly.

The polygonal schema associated with a cellular graph embedding is
de�ned as follows: assign an arbitrary orientation to each edge; for each
face, record the cyclic list of edges around the face, with a bar if and only
if it appears in reverse orientation around the face. See Figure 4.2.

4.2.2 Surface construction

Conversely, the data of a polygonal schema allows to build up a surface
and the cellular graph embedding. More precisely, let S be a �nite set of
symbols and let S̄ = {s̄ | s ∈ S}. Let R be a �nite set of relations, each
relation being a non-empty word in the alphabet S ∪ S̄, so that for every

31



ALGORITHMS FOR EMBEDDED GRAPHS 4. Topology of surfaces

v

Figure 4.3. The �corners� incident to some vertex v can be ordered cyclically.

s ∈ S, the total number of occurrences of s plus the number of occurrences
of s̄ in R is exactly two.

For each relation of size n, build an n-gon; label its edges by the elements
of R, in order, the presence of a bar indicating the orientation of the edge
(see Figure 4.2). (Polygons with one or two sides are also allowed.) Now,
identify the �twin� edges of the polygons corresponding to the same symbol
in S, taking the orientation into account. (As a consequence, vertices get
identi�ed, too.)

Lemma 4.1. The topological space obtained by the above process is a com-

pact surface.

Proof. Let X be the resulting topological space; X is certainly compact.
We have to show that every point of X has a neighborhood homeomorphic
to the unit disk. The only non-obvious case is that of a vertex v in X, that
is, a point corresponding to a vertex of some polygons. But it is not hard
to prove that a neighborhood of v is an umbrella: the �corners� (vertices)
of the polygons corresponding to v can be arranged into a cyclic order; see
Figure 4.3.

We admit the following converse:

Theorem 4.2 (Kerékjártó-Radó; see Thomassen [80] or Doyle and Moran [25]).
Any compact surface is homeomorphic to a surface obtained by the gluing

process above.

This amounts to saying that, on any compact surface, there exists a cellular
embedding of a graph. Equivalently, every surface can be triangulated.

(a) (b)

Figure 4.4. (a) The orientations of these two faces (triangles) are compatible.
(b) Two non-compatible orientations of the faces. A surface is orientable if there
exist orientations of all faces that are compatible.

4.3 Classi�cation of surfaces

4.3.1 Euler characteristic and orientability character

Let G be a graph cellularly embedded on a compact surface S . The Euler
characteristic of G equals v − e+ f , where v is the number of vertices,
e is the number of edges, and f is the number of faces of the graph.

Proposition 4.3. The Euler characteristic is a topological invariant:

it only depends on the surface S , not on the cellular embedding.

Sketch of proof. The Euler characteristic is easily seen to be invariant under
Euler operations. The result is then implied by the following claim: any
two cellular embeddings on a given surface can be transformed one into
the other via a �nite sequence of Euler operations. Proving this is not very
di�cult but requires some work; a key property is that one can assume both
embeddings to be piecewise linear with respect to a given triangulation of
the surface (using for example the method by Epstein [29, Appendix]).

G is orientable if the boundary of its faces can be oriented so that each
edge gets two opposite orientations by its incident faces (Figure 4.4). The
orientability character is a topological invariant as well; the same proof as
that of Proposition 4.3 works, but it can also be proven directly:

Exercise 4.4. 99 G is orientable if and only if no subset of S is a
Möbius strip.

32



ALGORITHMS FOR EMBEDDED GRAPHS 4. Topology of surfaces

4.3.2 Classi�cation theorem

Theorem 4.5. Every compact, connected surface S is homeomorphic to a

surface given by the following polygonal schemata, called canonical (each

made of a single relation):

i. aā (the sphere; Euler characteristic 2, orientable);

ii. a1b1ā1b̄1 . . . agbgāg b̄g, for g ≥ 1 (Euler characteristic 2 − 2g, ori-

entable);

iii. a1a1 . . . agag, for g ≥ 1 (Euler characteristic 2− g, non-orientable).
Furthermore, the surfaces having these polygonal schemata are pairwise

non-homeomorphic. In particular, two connected surfaces are homeomor-

phic if and only if they have the same Euler characteristic and the same

orientability character.

In the above theorem, g is called the genus of the surface; by convention
g = 0 for the sphere. The orientable surface of genus g is obtained from
the sphere by cutting g disks and attaching g �handles� in place of them.
Similarly, the non-orientable surface of genus g is obtained from the sphere
by cutting g disks and attaching g Möbius strips (since a Möbius strip has
exactly one boundary component). See Figure 4.5. See also Figure 4.6 for
a representation of a double-torus in canonical form.

Proof. We �rst prove that these surfaces are pairwise non-homeomorphic.
To see, this, note that the Euler characteristics and orientability charac-
ters of the surfaces are readily computed, since the canonical polygonal
schemata have exactly one vertex and one face. Since two distinct canoni-
cal polygonal schemata do not have the same Euler characteristic and the
same orientability character, they cannot be homeomorphic, by Proposi-
tion 4.3 and Exercise 4.4.

In the remainder of the proof, we show that every compact, connected
surface S is homeomorphic to one of the above surfaces. Let G be a
graph embedded on S (by Theorem 4.2). The strategy is to transform G
into one of the graphs given by the polygonal schemata in the statement
of the theorem, without changing the surface.

Figure 4.5. Every compact, connected surface is obtained from a sphere by
removing disjoint disks and attaching handles (orientable case) or Möbius strips
(non-orientable case). However, the non-orientable surfaces are not embeddable
in R3.

33



ALGORITHMS FOR EMBEDDED GRAPHS 4. Topology of surfaces

(a) (b)

(c) (d)

d

c
b

ac

d b

a

a

a

b

c

c
d

d

b

a

b c

d

Figure 4.6. (a) A canonical polygonal schema of the double torus. (b) The
identi�cation of the edges of the schema. (c) The actual graph embedded on the
double torus. (d) Closeup on the order of the loops around the basepoint of the
surface, as seen from below; it can be derived directly from (a).

Q

a a

P

Q

a a

P

Q

ab b
P

b

Figure 4.7. The classi�cation of surfaces: grouping the twin edges appearing
with the same orientation.

By iteratively removing edges incident with di�erent faces, we may assume
that G has only one face.1 By iteratively contracting edges incident with
di�erent vertices, we may assume that G has only one vertex and one face2

(unless this yields a sphere, so the polygonal schema is aā � actually,
we could say that the polygonal schema made of the empty relation is a
degenerate polygonal schema for the sphere). The surface S cut along G
is therefore a topological disk; we use cut-and-paste operations on this
polygonal schema to obtain a standard form.

If the polygonal schema has the form aPaQ (where P and Q are possibly
empty sequences of symbols), then we can transform it into bbP̄Q (Fig-
ure 4.7)�Q̄ denotes the symbols of Q in reverse order, inverting also the
presence or absence of a bar above each letter. So inductively, we may
assume that each pair of symbols appearing in the polygonal schema with
the same orientation is made of two consecutive symbols. We still have
one face and one vertex.

Assume some edge appears twice in the polygonal schema with opposite
orientations: aP āQ. Then P and Q must share an edge b, because oth-
erwise the endpoints of a would not be identi�ed on the surface. By the
preceding step, b must appear in opposite orientations in P and Q, so we
may assume that the polygonal schema has the form aPbQāRb̄S. Then, by
further cut-and-paste operations, we may transform the polygonal schema
into dcd̄c̄RQPS (Figure 4.8). We still have one face and one vertex, and
can iterate the process. After this stage, the polygonal schema is the

1This amounts to removing all primal edges of a spanning tree in the dual graph.
2This amounts to contracting the edges of a spanning tree in the primal graph.

34



ALGORITHMS FOR EMBEDDED GRAPHS 4. Topology of surfaces

(a) (b) (c)

a a

(d) (e) (f)

P Q

RS

P Q

RS

P

S R

Q

PS RQ

RQPS

a a

b

b

a a

b

c

b

c

d

a
d

a a

c

b

a a

c

c

d

cc

Figure 4.8. The classi�cation of surfaces: grouping pairs of twin edges appearing
with di�erent orientations.

a

a

b c

c

b a

a

b c

b

c d

c b

a

d
b

c

d

Figure 4.9. The classi�cation of surfaces: transforming one form into the other.

concatenation of blocks of the form aa and abāb̄.

If there are no blocks of the form aa, or no blocks of the form abāb̄, then we
are in form (ii) or (iii), respectively. Otherwise, one part of the boundary of
the polygonal schema has the form aabcb̄c̄. We may transform it to d̄c̄b̄d̄b̄c̄
(Figure 4.9), and, applying the method of Figure 4.7 to b, c, and d in
order, we obtain that we replaced the part of the boundary we considered
into eeffgg; the other part of the boundary is unchanged. So iterating,
we may convert the polygonal schema into form (iii).

Example 4.6.

� The orientable surface with genus 1 is a torus; the orientable surface
with genus 2 is the double torus; and so on.

� The non-orientable surface with genus 1 is a projective plane ; with
genus 2 it is the Klein bottle .

Exercise 4.7. 99 Identify the surfaces with the following schemata:

1. aābb̄;

2. abab;

3. abab̄;

4. a1a2 . . . anā1ā2 . . . ān;

5. a1a2 . . . an−1anā1ā2 . . . ān−1an.

Exercise 4.8 (number of edges). 99 Let G = (V,E) be a graph cellu-
larly embedded on a connected surface of genus g. Assume that each face
of G has degree at least three. Show that |E| = O(|V |+ g).

4.4 Surfaces with boundary

A surface (possibly) with boundary S is a topological space in which
each point has a neighborhood homeomorphic to the unit open disk {(x, y) ∈
R2 | x2+y2 < 1} or to the unit half disk {(x, y) ∈ R2 | x2+y2 < 1 and x ≥
0}.

35



ALGORITHMS FOR EMBEDDED GRAPHS 4. Topology of surfaces

The boundary of S , denoted by ∂S , comprise the points of this surface
that have no neighborhood homeomorphic to the unit disk. The interior
of S is the complementary part of its boundary.

A cellular embedding on a surface with boundary is de�ned as in the
case of surfaces without boundary. In particular, since each face must be
an open disk, the boundary of the surface must be the union of some edges
of the graph. The classi�cation theorem (Theorem 4.5) can be extended for
surfaces with boundary: Given a surface with boundary S , we may attach
a disk to each of its boundary components, obtaining a surface without
boundary S̄ , and apply the previous classi�cation theorem. Furthermore,
the number of boundary components is a topological invariant.

The Euler characteristic and the orientability character of a cellular em-
bedding on a surface with boundary S are de�ned as in the case of surfaces
without boundary; they are also topological invariants. The Euler charac-
teristic of S equals that of S̄ minus the number of boundary components
of S . So two surfaces with boundary S and S ′ are homeomorphic if and
only if they have the same Euler characteristic, orientability character, and
number of boundary components.

If we have a graph embedding G without isolated vertex on a surface S ,
then cutting S along G is a well-de�ned operation that yields a surface
with boundary, denoted by S \\G.3 This fact is not trivial, and follows
from the fact that every graph embedding on a surface S can be mapped
by a homeomorphism of S (actually, an isotopy) to a piecewise-linear
embedding with respect to a �xed triangulation of S , using, e.g., the
method by Epstein [29, Appendix].

4.5 Notes

The classi�cation theorem is due to Brahana, Dehn, and Heegaard; the present
proof is inspired from Stillwell [78]. For another, more visual proof, see Francis
and Weeks [39].

The proofs of the classi�cation theorem usually involve two steps, the �rst one

3This notation is not standard (yet).

being topological (Theorem 4.2, Proposition 4.3, Exercise 4.4), the second one
being combinatorial. In the same vein, the Hauptvermutung (�main conjecture�)
says that any two embeddings of a graph on a surface are subdivisions of graph
embeddings that are combinatorially identical. This is true, but some higher-
dimensional analogs do not hold.

Let G and M be simple graphs (that is, without loops or multiple edges). M
is a minor of G if M can be obtained from G by iteratively contracting edges,
deleting edges, and deleting isolated vertices (at each step, the graph should be
made simple by removing loops and identifying multiple edges). Let S be a
�xed surface. Clearly, if G is embeddable on S , then every minor of G is also
embeddable on S . Let F be the set of minor-minimal graphs not embeddable
on S ; thus G is embeddable on S if and only if no graph in F is a minor of G.
Kuratowski's theorem asserts that G is planar if and only if it does not have K5

or K3,3 as a minor; in other words, if S is the sphere, the family F is �nite. This
actually holds for every surface S ; however, no algorithm is known to enumerate
the family F .
More generally, this property is implied by a deep result by Robertson and Sey-
mour [76] (whose proof needed no less than 20 papers and several hundreds of
pages): In any in�nite family of graphs, at least one is a minor of another.

36



ALGORITHMS FOR EMBEDDED GRAPHS 5. Computing shortest graphs with cut loci

Chapter 5

Computing shortest graphs

with cut loci

In this chapter, we describe algorithms to compute shortest curves and
graphs that �cut� a given surface into simpler pieces.

5.1 Combinatorial and cross-metric surfaces

We aim at computing �short� graphs and curves on surfaces. For this, we
need to de�ne a metric on a surface that is both accurate in the applications
and simple enough so as to be handled algorithmically. We shall introduce
two ways of doing this, which are dual of each other. Depending on the
context, some results and algorithms are more easily described using one
setting or the other.

In this chapter, all surfaces are compact, connected, and orientable. They
do not have boundaries.

5.1.1 More types of curves

We already de�ned paths on surfaces; we need to introduce more types of
curves.

An arc on a surface with boundary S is a path p : [0, 1]→ S such that
p(t) belongs to ∂S if and only if t ∈ {0, 1}. A loop ` is a path with
the same endpoints; `(0) = `(1) is called the basepoint of the loop. A

path is simple if it is one-to-one. A loop is simple if its restriction to
[0, 1) is one-to-one (of course, due to the identi�ed endpoints, it cannot be
one-to-one on [0, 1]).

The concatenation of p and q, denoted by p · q, is the path de�ned by:
� (p · q)(t) = p(2t), if 0 ≤ t ≤ 1/2;
� (p · q)(t) = q(2t− 1), if 1/2 ≤ t ≤ 1.

A reparameterization of a path p is a path of the form p ◦ ϕ, where
ϕ : [0, 1]→ [0, 1] is bijective and increasing. If the paths are considered up
to reparameterization, the concatenation is associative. The inverse of a
path p, denoted by p̄, is the map t 7→ p(1− t).

5.1.2 Combinatorial surfaces

A combinatorial surface (S ,M) is the data of a surface S (possi-
bly with boundary), together with a cellular embedding M of a weighted
graph. The weights must be non-negative. In this model, the only allowed
curves are walks in M ; the length of a curve is the sum of the weights of
the edges traversed by the curve, counted with multiplicity.

5.1.3 Cross-metric surfaces

We will, however, use a dual formulation of this model, which allows to de-
�ne crossings between curves: this turns out to be helpful both for stating
the results and as intermediate steps. A cross-metric surface (S ,M∗)
is a surface S together with a cellular embedding of a weighted graphM∗.
If S has a boundary, we require in particular that each boundary of S be
the union of some edges in M∗, with in�nite crossing weight. We consider
only regular paths on S , which intersect the edges ofM∗ only transversely
and away from the vertices. The length length(γ) of a regular curve γ
is de�ned to be the sum of the weights of the dual edges that γ crosses,
counted with multiplicity. The length of a regular arc is de�ned similarly,
excluding the endpoints of the arc (which belong to an edge of M∗ with
in�nite crossing weight). To emphasize this usage, we sometimes refer to
the weight of a dual edge as its crossing weight.

37



ALGORITHMS FOR EMBEDDED GRAPHS 5. Computing shortest graphs with cut loci

To any combinatorial surface (S ,M) without boundary, we associate by
duality a cross-metric surface (S ,M∗), whereM∗ is (as notation suggests)
the dual graph of M . To any curve on a combinatorial surface, traversing
edges e1, . . . , ep, we can associate a curve in the corresponding cross-metric
surface, crossing edges e∗1, . . . , e

∗
p, and conversely. This transformation

preserves the lengths of the curves. So far, the notions of combinatorial
and of cross-metric surfaces (without boundary) are thus essentially the
same, up to duality. We can easily construct shortest paths on a cross-
metric surface by restating the usual algorithms (for example, Dijkstra's
algorithm) on M in terms of the dual graph M∗.

5.1.4 Curves on cross-metric surfaces, algorithmically

We can represent an arbitrary set of possibly (self-)intersecting curves on a
cross-metric surface (S ,M∗) by maintaining the arrangement of M∗ and
of the curves, i.e., the combinatorial embedding associated with the union
of the curves (assuming this union forms a cellular embedding, which will
always be the case). Contrary to combinatorial surfaces, this data struc-
ture also encodes the crossings between curves. The initial arrangement
is just the graph M∗, without any additional curve. We embed each new
curve regularly : every crossing point of the new curve and the existing
arrangement, and every self-crossing of the new curve, creates a vertex of
degree four.

Whenever we split an edge e∗ of M∗ to insert a new curve, we give both
sub-edges the same crossing weight as e∗. Each segment of the curve
between two intersection points becomes a new edge, which is, unless noted
otherwise, assigned weight zero. However, it is sometimes desirable to
assign a non-zero weight to the edges of a curve. For example, the cross-
metric surface S \\α obtained by cutting S along an embedded curve α
can be represented simply by assigning in�nite crossing weights to the
edges that comprise α, indicating that these edges cannot be crossed by
other curves.

5.1.5 Complexity

The complexity of a combinatorial surface (S ,M) is the total number of
vertices, edges, and faces ofM ; similarly, the complexity of a cross-metric
surface (S ,M∗) is the total number of vertices, edges, and faces of M∗.
The complexity of a set of curves is the number of times it crosses edges
of M∗.

5.2 Cut loci

Let us �x the notations for the remaining part of this chapter. Unless
otherwise noted, (S ,M∗) is a cross-metric surface (connected, compact,
orientable, without boundary) of genus g and complexity n. Furthermore,
b is a point inside a face of M∗ and is the basepoint of all loops considered
in this chapter (we omit the precision that the basepoint is b in the sequel).

Let T be the shortest path tree from b to a point in each face of M∗.1

The cut locus C of (S ,M∗) with respect to b is the subgraph of M∗

obtained by removing all edges ofM∗ crossed by T . It is therefore a graph
embedded on S . See Figure 5.1.

Lemma 5.1. S \\C is a disk.

Proof. At some stage of the growth of the shortest path tree T , consider
the union of all open faces of M∗ visited by T , and of all edges of M∗

crossed by T . This is an open disk; at the end, it contains all faces of M∗,
and its complement is C. In particular, S \\C is a disk.

Intuitively, we are in�ating a disk around b progressively, without allowing
self-intersections, until it occupies the whole surface; the cut locus C is the
set of points of the surface where the boundary of the disk touches itself.

1Strictly speaking, the shortest path tree is not always unique: there may be several
shortest paths between two given points. However, uniqueness holds for generic choices
of the weights; in other words, it can be enforced using an arbitrarily small perturbation
of the lengths. By a slight abuse of language, we will therefore use the article �the� in
such cases, since it does not harm (and may help the reader) to think that unique-
ness holds. Nevertheless, no algorithm or result presented here requires uniqueness of
shortest paths.

38



ALGORITHMS FOR EMBEDDED GRAPHS 5. Computing shortest graphs with cut loci

b

Figure 5.1. The cut locus C of a double torus (in bold lines) and the remaining
edges of M∗ (in thin lines).

Dijkstra's algorithm implies that we can compute C in O(n log n) time.

Exercise 5.2 (Complexity of the reduced cut locus). 9 Let C ′ be the
graph obtained from the cut locus C ′ by repeatedly removing every degree-
one vertex, together with its incident edge, and replacing every degree-two
vertex v and its incident edges with an edge connecting the two neighbors
of v. Prove that C ′ has complexity O(g).

Given an edge e ∈ C, the loop σ(e) is de�ned as a loop with basepoint b
that follows the shortest path tree to go from its root b to a face incident
with e, crosses e, and goes back from the other face incident with e to the
root. This can be done so that all the loops σ(e) are simple and disjoint
(except, of course, at their basepoint b�we shall omit this triviality in the
sequel). See Figure 5.2.

De�ne the weight of an edge e of C to be the length of the corresponding
loop σ(e) (this is not the same as the crossing weight, de�ned for every
edge ofM∗!); these weights can be computed with no time overhead during
the cut locus computation.

b

Figure 5.2. The loops σ(e), for three edges e ∈ C.

5.3 Shortest non-contractible loop

A (possibly non-simple) loop is contractible if it can be continuously
deformed into a point.

Exercise 5.3. 999 Prove that, on a disk or a sphere, every loop is
contractible.

Lemma 5.4. A simple loop is contractible if and only if it bounds a disk.

Proof. If a loop bounds a disk, it is certainly contractible. The proof of
the converse is more di�cult, and we admit it.

Our goal now is to give an algorithm to compute the shortest non-contractible
loop.

5.3.1 3-path condition

A set L of loops satis�es the 3-path condition if, for any point a 6= b and
any three paths p, q, and r from b to a, if p · q̄ and q · r̄ belong to L, then
p · r̄ belongs to L.

Lemma 5.5. The set of contractible loops satis�es the 3-path condition.

39



ALGORITHMS FOR EMBEDDED GRAPHS 5. Computing shortest graphs with cut loci

r

p

q
a

b

Figure 5.3. Illustration of Lemma 5.6.

Proof. If p · q̄ and q · r̄ are contractible, then so is their concatenation,
(p · q̄) · (q · r̄), which deforms continuously to p · r̄.

Lemma 5.6. Let L be a set of loops satisfying the 3-path condition. Some

shortest loop not in L crosses the cut locus C at most once.

Proof. See Figure 5.3 for an illustration of the proof. Let ` be a shortest
loop not in L; without loss of generality, we can choose ` such that it
crosses C as few times as possible. Assume, for the sake of a contradiction,
that ` crosses C at least twice; let a be a point on ` not on M∗ between
its �rst and last crossing with C. This point a splits ` into two paths p
and q, both from b to a, and we have ` = p · q̄. Furthermore, let r be the
shortest path from b to a; this path does not cross C.

The 3-path condition applied to p, q, and r implies that p · r̄ or q · r̄ does
not belong to L. Both paths are no longer than ` = p · q̄ and cross C fewer
times than `, implying the desired contradiction.

5.3.2 Structural lemmas

Lemma 5.7. Some shortest non-contractible loop has the form σ(e).

Proof. Let ` be a shortest non-contractible loop. By Lemmas 5.5 and 5.6,
some shortest non-contractible loop crosses the cut locus at most once. On

the other hand, every non-contractible loop has to cross C at least once
(since S \\C is a disk). Hence some shortest non-contractible loop crosses
the cut locus exactly once, at some edge e. This loop deforms continuously
to σ(e), which cannot be longer. The result follows.

Lemma 5.8. Let e be an edge of C. Then σ(e) is contractible if and only

if some component of C − e is a tree.

Proof. Assume �rst that one component of C − e is a tree. One can
them move σ(e) continuously over the tree to make it disjoint from C; the
resulting loop is contractible.

Conversely, if σ(e) is contractible, it bounds a disk D by Lemma 5.4. We
want to prove that the part of C inside D is a tree. But if it is not the
case, this part contains a circuit, which further bounds a disk D′ ⊂ D,
and therefore C cuts S into at least two pieces, one of which is D′; this
is impossible (Lemma 5.1).

5.3.3 Algorithm

Theorem 5.9. Finding a shortest non-contractible loop can be done in

O(n log n) time. The loop computed is simple.

Proof of Theorem 5.9. We �rst compute the cut locus C, and assign to
every edge e of C a weight that is the length of σ(e), in O(n log n) time.
We show how to eliminate the edges e such that at least one component
of C − e is a tree. This concludes, since it then su�ces to select the
minimum-weight remaining edge of C (by Lemmas 5.7 and 5.8).

This graph pruning can be done in O(n) time: put all edges incident with
a degree-one vertex in a list. Then, while the list is non-empty, remove an
edge e from it; remove it from C (unless it was already removed); if one
or both of its endpoints have now degree one in C, put the corresponding
edge(s) in the list. Clearly, this removes only edges e such that no compo-
nent of C − e is a tree. All them must eventually be removed, because a
tree has a degree-one vertex (a leaf).

Corollary 5.10. Finding a shortest non-contractible loop without speci�ed

basepoint can be done in O(n2 log n) time.

40



ALGORITHMS FOR EMBEDDED GRAPHS 5. Computing shortest graphs with cut loci

Proof. For every face of M∗, run the algorithm in Theorem 5.9 with the
basepoint in that face, and return the shortest loop.

5.4 Shortest non-separating loop

5.4.1 Types of simple loops

A simple loop ` is separating if S \\` is not connected. A simple con-
tractible loop bounds a disk, hence is separating; the converse is false. So
there are (essentially) three kinds of simple loops: contractible, separating
but not contractible, and non-separating. These three types are illustrated
in Figure 5.2.

Exercise 5.11. 9

1. Give an algorithm that determines whether a given simple loop is sep-
arating.

2. Give an algorithm that determines whether a given simple loop is con-
tractible. Indication: use Lemma 5.4.

Our present goal is to compute the shortest non-separating (simple) loop.
We need �rst to de�ne the notion of homology boundary, which generalizes
the notion of separating loop to possibly non-simple loops. To anticipate,
we introduce a bit more technicalities than those needed for this sole pur-
pose.

5.4.2 Preliminaries on homology

We introduce 1-dimensional homology for graphs embedded on sur-

faces, over Z/2Z.
To simplify matters, we assume here (and in Section 5.5) that all curves
considered are drawn on a very dense graph G = (V,E) embedded on S ,
transversely to M∗.2 We consider chains: subsets of E. It is a natural

2This would not be needed if we introduced singular homology, but it seems prefer-

Z/2Z-vector space: the addition of two subsets of E is the symmetric dif-
ference, multiplication by 0 gives the empty subset of E, and multiplication
by 1 is the identity.

A chain E′ ⊆ E is a homology cycle if every vertex of V is incident with
an even number of edges of E′. A chain E′ ⊆ E is a homology boundary

if the faces of G can be colored black and white so that E′ is the set of edges
of E with exactly one black and one white incident face. Equivalently, if
we consider the �dual� graph of (V,E′), which has one vertex inside each
face of (V,E′) and one edge crossing each edge of (V,E′), then E′ is a
homology boundary if and only if this dual graph is bipartite.

Exercise 5.12. 999

1. Prove that the set of homology cycles (resp. homology boundaries)
forms a vector space, and that every homology boundary is a homology
cycle.

2. Assume S is a sphere. Prove that every homology cycle is a homology
boundary.

Lemma 5.13. A simple loop ` in G disconnects S if and only if its edge

set forms a homology boundary.

Proof. Let E′ be the set of edges of `. Either the graph (V,E′) has one
face, in which case the only boundary is the empty set, or it has two faces,
in which case coloring one face in black and the other one in white yields
a non-zero boundary formed by the edge set of `.

So the notion of homology boundary extends the notion of being separat-
ing.

As shown in Exercise 5.12, the set of homology boundaries, B, is included
in the set of homology cycles, Z. The reverse inclusion does not hold in
general. Homology measures the �di�erence� between Z and B; formally, it

able to avoid doing so. The assumption above is actually not needed: we only require G
to be dense enough so that the loops σ(e) are disjoint walks on G and so that G contains
some shortest non-separating loop (or some shortest system of loops, in Section 5.5).
The existence of such a graph G is clear, and it is never used in the algorithms, only in
proofs, so its complexity does not matter.

41



ALGORITHMS FOR EMBEDDED GRAPHS 5. Computing shortest graphs with cut loci

is Z/B, the Z/2Z-vector space that is the quotient of the two Z/2Z-vector
spaces Z and B.

Given a loop ` in G, its mod 2 image is the set of edges of G used an
odd number of times by `. (We sometimes identify a loop with its mod 2
image.)

5.4.3 Algorithm

We prove here:

Theorem 5.14. Finding a shortest loop whose mod 2 image is not a ho-

mology boundary can be done in O(n log n) time. The loop computed is

simple, and is (therefore) also a shortest simple non-separating loop.

Corollary 5.15. Finding a shortest loop without speci�ed basepoint that

is not a homology boundary (or a shortest simple non-separating closed

curve) can be done in O(n2 log n) time.

Lemma 5.16. A subset A of the edges of C disconnects C if and only if

the set of loops σ(A) disconnects S .

Proof. We may certainly assume A 6= ∅. Let D be the disk S \\C; the
basepoint b belongs to the interior of D. Each loop σ(e) in σ(A) corre-
sponds, in D, to two paths from b to the boundary of D, connecting twins
of e. See Figure 5.4.

Therefore, if we let τ(e) be the intersection of e with σ(e), any path in
S \ σ(A) continuously retracts to a path in C \ τ(A), without moving
the endpoints if they already belong to C. This implies that S \ σ(A) is
connected if and only if C \ τ(A) is connected; this is in turn equivalent
to having C −A connected.

Proof of Theorem 5.14. The general strategy is very similar to the proof
of Theorem 5.9. The set of all loops in G whose mod 2 images are ho-
mology boundaries satis�es the 3-path condition. Hence, by Lemma 5.6,
some shortest loop in G whose mod 2 image is not a homology boundary
crosses the cut locus at most once, hence exactly once, at some edge e, by

b

σ(v)

σ(u)

σ(u)

σ(v)

u

v

w

w

u

v

Figure 5.4. A view of the disk S \\C, whose polygonal schema is uvww̄ūv̄. The
loops σ(u) and σ(v) are cut into two paths connecting the basepoint to twin
points.

Exercise 5.12. A slight extension of that exercise implies that σ(e) is in
the same homology class, and it is no longer. Hence some shortest loop
whose mod 2 image is not a homology boundary has the form σ(e).

In particular, it is simple, and is therefore a non-separating loop (Lemma 5.13).
It must be a shortest non-separating loop in G because every separating
loop is a homology boundary. It is therefore a shortest non-separating
loop, because we can (retroactively) assume that G contains some short-
est non-separating loop.

By Lemma 5.16, we are thus looking for a minimum-weight edge e of C
such that C − e is connected; such edges are called non-bridge edges.
By Lemma 5.17 below, we can determine all non-bridge edges in linear
time. Alternatively, note that any minimum-weight edge not in a maxi-
mum spanning tree of C is such an edge.

Lemma 5.17. Let G be a graph of complexity n. One can in O(n) time

determine all the bridge edges of G.

42



ALGORITHMS FOR EMBEDDED GRAPHS 5. Computing shortest graphs with cut loci

Proof. The proof is in the same spirit as that of Lemma 2.3. Run a
depth-�rst search on the graph G, starting from an arbitrary root vertex.
Recall that this partitions the (undirected) edges of G into link edges,
which belong to the rooted search tree T , and back edges, which connect a
vertex v with an ascendent of v in T . Clearly, no back edge is a bridge. An
edge e with endpoints u and v, where u is visited before v, is a non-bridge
edge if and only if there exists a back edge from a descendent of v (maybe
v itself) to an ascendent of u (maybe u itself). The algorithm will consider
each back edge (uv) in turn and mark as non-bridge the edges on the path
from u to v in T ; the remaining edges are exactly the bridge edges.

To achieve this in linear time, take all back edges (x1, y1), . . . , (xk, yk)
(where yk is an ascendent of xk), ordered such that y1, . . . , yk are discovered
in this order during the depth-�rst search (such an ordering can easily be
found in O(n) time). Starting from x1, and walking towards the root
of T , mark every edge as being a non-bridge edge until reaching y1. Start
from x2, and walk towards the root of the tree, marking every edge as non-
bridge, until either reaching y2 or reaching an edge e that is already marked
as non-bridge. If the latter possibility occurs, y1 must be an ancester of y2
in T by the choice of the ordering, so all edges between e and y2 must
be already marked. Continue similarly with the other back edges. This
process clearly takes linear time in total.

5.5 Shortest system of loops

In this section, we describe an algorithm to compute a shortest topological
decomposition of the surface. Namely, a system of loops L is a set of
simple loops meeting pairwise only at their common basepoint b, such
that S \\L is a disk (refer to Figure 4.6(c) for an example). We give an
algorithm to compute the shortest system of loops of a given surface.

5.5.1 Algorithm

De�ne a homology basis of loops to be a set of loops whose homology
classes (of their mod 2 images) form a basis of the homology vector space.

There exist homology bases of loops:

Exercise 5.18. 999 Prove that every homology cycle is the mod 2
image of a loop.

Recall that a system of loops L is a set of simple loops meeting pairwise
only at their common basepoint, such that S \\L is a disk. Denote by [`]
the homology class of a loop `, and by [L] the set of homology classes of a
set of loops L.

Lemma 5.19. Some shortest homology basis is made of loops of the form

σ(e). In particular, the loops in that basis are simple and disjoint.

Proof. Let ` be a loop in the shortest homology basis. Let e1, . . . , ek be
the edges of the cut locus crossed by `. Then it is not too hard, using
Exercise 5.12(2), to prove that [`] = [σ(e1)] + . . .+ [σ(ek)].

In particular, ` crosses at least one edge of the cut locus. Furthermore,
since [`] is linearly independent from the homology classes of the other
loops in the basis, one of the [σ(ei)] must be linearly independent from
the homology classes of the other loops in the basis. Replacing ` with
σ(ei) still yields a homology basis, which is no longer than the original
one because σ(ei) is a shortest loop with basepoint b among the loops that
cross ei, and ` indeed crosses ei. Iterating, we obtain that some shortest
homology basis is made of loops of the form σ(e).

Exercise 5.20. 999 Let L be a set of simple, disjoint loops in G.
Prove that L disconnects S if and only if the homology classes of the
loops in L are linearly dependent.

Theorem 5.21. We can compute a a shortest homology basis of loops in

O(gn + n log n) time. Furthermore, there are 2g loops, each of the form

σ(e).

Proof. By Lemma 5.19, computing a shortest homology basis of loops
boils down to computing a shortest inclusionwise maximal set of loops
σ(e1), . . . , σ(ek) with linearly independent homology classes, or, equiva-
lently, that does not disconnect S (Exercise 5.20). This is equivalent to
computing an inclusionwise maximal set S of edges of C such that C − S

43



ALGORITHMS FOR EMBEDDED GRAPHS 5. Computing shortest graphs with cut loci

is connected, with minimal sum of weights (Lemma 5.16). This precisely
means computing the complement of a maximum-weight spanning tree
of C.

Recall that C is cellularly embedded on S with one face (Lemma 5.1).
Therefore, by Euler's formula, the number of vertices, v, and edges, e, of C
satisfy v− e = 2− 2g− 1 = 1− 2g. A spanning tree always contains v− 1
edges (Lemma 1.7), so the complement of a spanning tree of C has exactly
2g edges; we conclude that there are 2g loops in L.

Computing the cut locus C takes O(n log n) time. A maximum spanning
tree can be computed in O(n log n) time using any textbook algorithm.
The actual loops may each have O(n) size, and there are 2g of these.

Proposition 5.22. The shortest homology basis of loops L computed in

Theorem 5.21 is actually a shortest system of loops.

Proof. Every system of loops is made of 2g loops by Euler's formula. The
homology classes of a system of loops are linearly independent (Exer-
cise 5.20), and there are 2g of these, so they form a basis. So any system of
loops is a homology basis. It therefore su�ces to prove that L is a system
of loops.

L is a set of 2g simple, disjoint loops that does not disconnect S . Cutting
along it yields a (connected) surface of Euler characteristic 1 (because
cutting along the �rst loop keeps the Euler characteristic unchanged and
cutting along each subsequent loop increases it by one), hence a disk.

5.6 Extensions

5.6.1 Shortest loops on surfaces with boundary

Let (S ,M∗) be a cross-metric surface with genus g and b ≥ 1 boundary
components, and complexity n. We brie�y indicate how the results of
Sections 5.3 and 5.4 generalize to surfaces with boundary.

Let Ŝ be the surface S where a handle is attached to each boundary
component. Thus Ŝ is a surface without boundary. The graph M∗ is not

cellularly embedded in S , but we can make it cellular by adding two edges
per attached handle. We assign in�nite weights to these new edges. Let
M̂∗ be the resulting graph.

A loop in S is contractible if and only if it is contractible in Ŝ . There-
fore, to compute the shortest non-contractible loop in (S ,M∗) with a
given basepoint, it su�ces to compute the shortest non-contractible loop
in (Ŝ , M̂∗) with that basepoint. Similarly, a loop in the interior of S is
separating if and only if it is separating in Ŝ . So, to compute the short-
est non-separating loop in (S ,M∗), it su�ces to compute the shortest
non-separating loop in (Ŝ , M̂∗).3

There is no direct analog of the notion of system of loops for surfaces with
boundary, because no set of disjoint simple loops in the interior of the
surface can cut it into a disk. We shall see a replacement of this notion in
Section 5.6.3.

5.6.2 Shortest paths relatively to a set of points

We now extend the result of Section 5.5 to the case where there are �more
than one basepoint�. Speci�cally, let (S ,M∗) be a cross-metric surface
without boundary, with a �nite set P of k points, each in a di�erent face
of M∗. Let us call a P -path any path with endpoints in P . A system

of P -paths is a set of simple P -paths that are pairwise disjoint, except
possibly at their endpoints, cutting S into a topological disk, and meeting
every point in P ; equivalently, it is a graph embedded on S with vertex set
exactly P whose removal leaves a disk. Our goal is to compute a shortest
system of P -paths.

Let F be a shortest path forest in M∗, growing simultaneously from each
point of P , and connecting every face of M∗. The cut locus C of (S ,M∗)
with respect to P is de�ned as the subgraph of M∗ obtained by removing
all edges of M∗ crossed by F . It cuts S into k topological disks, each
containing exactly one point in P . Given an edge e of the cut locus, the

3Here, instead of attaching a handle to every boundary component of S , attaching
a disk would also work.

44



ALGORITHMS FOR EMBEDDED GRAPHS 5. Computing shortest graphs with cut loci

arc σ(e) is the concatenation of two shortest paths following the shortest
path forest starting on both sides of e until each of them reaches a root.

The 3-path condition generalizes as follows to P -paths: a set S of P -paths
satis�es this condition if and only if, for every point a and any three paths
p, q, and r from points in P to a, if p · q̄ and q · r̄ belong to S, then so does
p · r̄.
Homology is de�ned almost as in Section 5.4.2: we assume G = (V,E) is
a very dense graph with P ⊆ V . A chain E′ ⊆ E is a homology cycle if
every vertex not in P is incident with an even number of edges of E′. A
chain E′ ⊆ E is a homology boundary if, as usual, the faces of (V,E′) can
be colored in black and white such that every edge of E′ is incident with
one black and one white face. A homology basis of P -paths is a set
of P -paths whose homology classes form a basis of the homology vector
space.

Then as in Section 5.4.2, we have:

Theorem 5.23. Let (S ,M∗) be a cross-metric surface with genus g and

without boundary; let n be its complexity. Let P be a set of k points on S .

Finding a shortest homology basis of P -paths can be done in O(n log n +
(g+k)n) time. The basis computed is actually a shortest system of P -paths.
The number of P -paths in every system of P -paths, and every homology

basis of P -paths, is 2g + k − 1.

5.6.3 Shortest arcs on a surface with boundary

We come back to the case of surfaces with boundary: Assume (S ,M∗)
has b ≥ 1 boundary components. A system of arcs on S is a set of
disjoint simple arcs cutting S into a disk (this is an appropriate analog
of a system of loops for surfaces with boundary).

Let S̄ be the cross-metric surface without boundary obtained by attach-
ing disks to each boundary component of S . Let M̄∗ be the graph M∗

where all edges on the boundary of S are assigned a �xed large enough
crossing weight W ; thus (S̄ , M̄∗) is a cross-metric surface without bound-
ary. Furthermore, let P be a set of points, one inside every disk glued to

the boundaries of S .

Call a P -path on S̄ admissible if it intersects the boundary of S in ex-
actly two points. Admissible P -paths in S̄ precisely correspond to arcs
in S ; this correspondence preserves the lengths, up to a shift of 2W . Fur-
thermore, a system of admissible P -paths in S̄ corresponds to a system of
arcs in S . Since the algorithm of Theorem 5.23 only computes admissible
P -paths (provided W is chosen large enough), the above considerations
yield:

Theorem 5.24. Let (S ,M∗) be a cross-metric surface with genus g and

b ≥ 1 boundary components, and complexity n. Finding a system of arcs

can be done in O(n log n + (g + b)n) time. Every system of arcs is made

of 2g + b− 1 arcs.

5.7 Notes

5.7.1 Discrete vs. continuous setting

Most of the combinatorial and cross-metric surface model is taken from Colin
de Verdière and Erickson [18]. Several tools of this section were described in
a combinatorial setting for simplicity of exposition, but they have well-studied
continuous counterparts.

In general, the cut locus of a point x in a metric space S is the set of points in S
for which there exist at least two distinct shortest paths to x. It is closely related
to the notion of the medial axis of a compact set K ⊂ S: it is the set of points
of S \ K whose distance to K is realized by at least two points of K. If K is
�nite, the medial axis contains in particular the Voronoi diagram of K.

The main topological property of a cut locus we have used (in Lemmas 5.8
and 5.16) can be stated as follows for a surface with boundary: for any sub-
set A of the edges of C, S \ σ(A) deformation retracts to C −A. In particular,
they have the same number of connected components, and one of the components
of S \ σ(A) is a disk if and only if the corresponding component of C − A (is
connected and) contains no non-contractible loop, i.e., is a tree.

As mentioned earlier, homology can be de�ned in a continuous setting (singular
homology), which vastly generalizes the ad-hoc route we took. Let S be any
topological space. Let ∆n be the n-dimensional simplex. The set of n-chains Cn

45



ALGORITHMS FOR EMBEDDED GRAPHS 6. Deciding homotopy with universal covers

is the vector space (say over Z/2Z, but this generalizes to arbitrary �elds, and
even rings) generated by all continuous maps ∆n → S. There is a boundary
operator ∂n taking Cn to Cn−1: the boundary of ∆n → S is a sum of n+ 1 maps
∆n−1 → S, one for each face of ∆n. One checks the important property that
∂n−1◦∂n = 0, so Im ∂n ⊆ Ker ∂n−1. The set of homology cycles is Zn := Ker ∂n−1
and the set of homology boundaries is Bn := Im ∂n. These vector spaces have
in�nite dimension (except in trivial cases), but their quotient Hn := Zn/Bn,
the homology vector space, is usually of �nite dimension; it is non-trivial to prove
that, under reasonable conditions, H1 is isomorphic to the homology vector space
as introduced in Section 5.4.2.

The appropriate machinery for the generalization to the shortest system of B-
paths (and arcs) is relative homology. See any textbook on algebraic topology
for more details on homology [45,46].

5.7.2 Algorithms

Erickson and Har-Peled [32] gave the �rst algorithms to compute the shortest
non-contractible or non-separating loop, relying on the idea of �wavefront propa-
gation�. The method presented here is di�erent; the idea of considering the edges
of the cut locus is borrowed from Erickson and Whittlesey [34]. The 3-path
condition is a variation on Mohar and Thomassen [68, p. 110].

If the genus is small, then our O(n2 log n) algorithm is not very e�cient; after
successive improvements [10, 57], the best algorithm up to date has running-
time O(g3n log n) [7]. In contrast, computing the shortest separating but non-
contractible simple loop (without speci�ed basepoint) is NP-hard [12].

Erickson andWhittlesey [34] described the algorithm of Section 5.5; the algorithm
was further generalized, and the proof was simpli�ed, by Colin de Verdière [16],
which was in turn simpli�ed by Erickson [30].

Note that there are systems of loops whose polygonal schema is not in canonical
form (for example abcdāb̄c̄d̄). The shortest system of loops is not necessarily in
canonical form. There is an O(gn) time algorithm to compute a system of loops
in canonical form [59, 83], but computing the shortest such system is likely to
be NP-hard. There are other kinds of topological decompositions of surfaces,
such as pants decompositions: sets of disjoint simple closed curves that cut the
surface into spheres with three boundary components. The status of computing
the shortest pants decomposition is open [72].

Chapter 6

Deciding homotopy with

universal covers

In this chapter, we introduce two important tools related to surfaces. The
notion of homotopy captures the intuitive notion of deformation. The
universal cover of a surface provides a way to compute paths restricted to
a given homotopy class, i.e., up to deformation.

In this section, S is a compact, connected, orientable surface, although
the de�nition would apply to almost arbitrary topological spaces.

6.1 Homotopy

6.1.1 De�nition

Two paths p and q on S , having both u and v as endpoints, are homo-

topic if there exists a continuous family of paths whose endpoints are u
and v between p and q. More formally, a homotopy between p and q is
a continuous map h : [0, 1]× [0, 1]→ S such that h(0, ·) = p, h(1, ·) = q,
h(·, 0) = u, and h(·, 1) = v. This de�nition applies in particular to the
case of loops (u = v).

46



ALGORITHMS FOR EMBEDDED GRAPHS 6. Deciding homotopy with universal covers

6.1.2 Fundamental group

Let b be a point of S . The relation �is homotopic to� partitions the
set of loops with basepoint b into homotopy classes. Let us denote by
[[`]] the homotopy class of a loop `. The set of homotopy classes can be
equipped with the law �·� de�ned by [[`]] · [[`′]] = [[` · `′]], and, with this law,
the set of homotopy classes of loops with basepoint b is a group, called the
fundamental group of (S , b) and denoted by π1(S , b) or more concisely
π1(S ), whose unit element is the class of contractible loops.

In particular, the fundamental group of the disk or the sphere is trivial:
two paths having the same endpoints are homotopic. The fundamental
group of the annulus is Z (the homotopy class of a loop is the same as the
signed number of times it �winds around the hole�), and the fundamental
group of the torus is Z2.

6.2 Universal cover

Informally, the universal cover S̃ of a surface S is a surface S̃ which
�locally looks like S �, but is �much larger than S �: it is not compact
(except in trivial cases) and every point in S generally corresponds (�lifts�)
to in�nitely many points in S̃ ; two paths are homotopic in S if and only
if these paths can be lifted to paths which have the same endpoints in S̃ .
The universal cover is thus a tool to compute homotopy.

6.2.1 Examples

Let S be the annulus depicted on Figure 6.1(a). If this annulus is cut along
the dashed line segment, we obtain a rectangle; if we glue together in�nitely
many copies of this rectangle, we obtain an �in�nite strip�, depicted on
Figure 6.1(b), which will be denoted by S̃ . There is a natural �projection�
π from S̃ onto S , such that a path in S can be lifted to a path (in
fact, in�nitely many paths) in S̃ . We see that two paths p and p′ are
homotopic in S if two lifts of p and p′ starting at the same point of S̃

(a) (b)

Figure 6.1. (a): An annulus S and two loops with the same basepoint (in
black). (b): Its universal cover S̃ , with lifts of these loops. The vertices of S̃
in black are the lifts of the basepoint.

(c)(b)(a)

a

b

a

b

Figure 6.2. (a): A torus. (b): A polygonal schema of the torus. (c): The
universal cover of the torus.

have the same targets. The two loops represented on the �gure are not
homotopic, because one of them is contractible (its lifts in S̃ are loops),
and the other one is non-contractible (its lifts are not closed).

The same kind of �gure can be drawn for the torus (Figure 6.2(a)). If this
torus S is viewed as a polygonal schema in canonical form (Figure 6.2(b)),
a square whose opposite sides will be identi�ed to obtain S , its universal
cover consists of in�nitely many copies of this copy organized in a grid-like
fashion: hence, it is the plane (Figure 6.2(c)).

47



ALGORITHMS FOR EMBEDDED GRAPHS 6. Deciding homotopy with universal covers

6.2.2 De�nition and properties

Precisely, a universal cover of a connected surface S is the data of a
pair (S̃ , π), where:

� S̃ is a (possibly non-compact) surface which is simply connected,
i.e., every loop in S̃ is contractible;

� π is a continuous map from S̃ onto S , called projection, which is
a local homeomorphism: any point x of S has an open, connected
neighborhood U such that π−1(U) is a disjoint union of open sets
(Ui)i∈I and π|Ui : Ui → U is a homeomorphism.

Every connected surface (possibly with boundary) has a universal cover
(we will provide constructions in the following sections). On the other
hand, two universal covers are isomorphic (that is, there is a homeomor-
phism between them that �projects� to the identity map). This allows to
speak without ambiguity of the universal cover of a surface S .

A lift of a path p is a path p̃ in S̃ such that π ◦ p̃ = p.

The main properties of (S̃ , π) that we will use are:

� the lift property : let p be a path in S whose source is y; let x ∈
π−1(y). Then there exists a unique path p̃ in S̃ , whose source is x,
such that π ◦ p̃ = p;

� the homotopy property : two paths p1 and p2 with the same endpoints
are homotopic in S if and only if they have two lifts p̃1 and p̃2 sharing
the same endpoints in S̃ ;

� the intersection property : a path p in S self-intersects if and only if
either a lift of p self-intersects, or two lifts of p intersect.

6.2.3 Construction for surfaces with boundary

Let S be a surface with boundary with a cellular graph embedding G on
it (for example, S is a cross-metric surface). For convenience, we sketch
the construction of S̃ in the case where all vertices of G belong to the
boundary of S . This latter restriction is not severe, as every surface with

boundary has a cellular embedding where all vertices are on the bound-
ary. However, the construction below does not apply to surfaces without
boundary (you will have to wait until the next section).

The algorithm maintains a portion P of the universal cover of S built so
far, which is a topological disk. P is made of copies of faces of G (in other
words, the image, by π, of each point of P is known). The edges of P can
be of two types: there are active edges, beyond which the construction of
the universal cover needs to be proceeded, and inactive edges, which are
already incident to two copies of faces of G in P (or to one copy, if they
project to the boundary of S ). Initially, P consists of a copy of one single
face of G, and all the edges of this copy are active, except the edges which
project to the boundary of S . The following process is iterated:

� let p be a copy of a face of G in P with an active edge a;

� let p′ be a copy of the face of G adjacent to π(p) through π(a);

� we glue p′ to p via the edge a;

� the edges of p′ which do not project to the boundary of the surface
are made active, except a, which is made inactive.

Figure 6.3 presents an example of this construction. This process is, of
course, in�nite (except in the case of the sphere or the disk). It is clear
that the space built by the algorithm is simply connected, because the
dual graph of its vertex-edge graph is a tree.

6.2.4 Construction for surfaces without boundary

Let S be an orientable surface without boundary, with genus g. If g = 0,
S is the sphere, and the universal cover is S itself, as every loop in S is
contractible. If g = 1, S is the torus, and the universal cover is described
in Figure 6.2. We now explain how to build the universal cover of S ,
assuming g ≥ 2.

S has a polygonal schema of the form a1b1ā1b̄1 . . . agbgāg b̄g; namely, a
4g-gon with sides identi�ed by pairs. Moreover, the unique vertex of the
corresponding graph on S has a single vertex, of degree 4g. By analogy
with the case g = 1, the universal cover of S can be built by gluing

48



ALGORITHMS FOR EMBEDDED GRAPHS 6. Deciding homotopy with universal covers

(b) (c) (d)(a)

(e) (f) (g)

Figure 6.3. The construction of the universal cover of a surface with boundary.
The active edges are depicted in bold lines. (a): The polyhedral surface itself.
(b): Initialization of the construction with one single copy of a face of G. (c):
After one elementary step, P consists of two copies of faces. (d): A few stages
later. (e), (f), (g): Continuation of the process.

Figure 6.4. Two views of the universal cover of the double torus (images taken
from http://topologygeometry.blogspot.fr/2010/06/notes-from-062310.

html).

Figure 6.5. The combinatorial construction of the universal cover of the double
torus.

together 4g-gons in the plane in a way that each vertex has degree 4g,
see Figure 6.4 for an example for g = 2. Of course the 4g-gons become
quickly distorted, but there is no obstruction in designing this construction
combinatorially by induction as follows (see Figure 6.5).

For each positive integer i, let Ci be the circle centered at the origin with
radius i. We place 4g points on the �rst circle C1, whose interior forms
the �rst 4g-gon. Now, each vertex of C1 must have degree 4g, so needs to
be connected with 4g − 2 new vertices, which we place on C2. Each arc
between consecutive vertices on C2 is now subdivided with the appropriate
number of vertices (4g− 2 or 4g− 3) so that each face between C1 and C2

is a 4g-gon. Now, each vertex on C2 is linked to 4g−2 new vertices on C3.
And so on.

Moreover, if we choose the labels of the sides of the initial polygon as pre-
scribed by the polygonal schema a1b1ā1b̄1 . . ., one sees that, by induction,
one can label the edges of the polygons in a way consistent with the polyg-
onal schema. This de�nes the projection from our space to S . We have
thus built the universal cover of S .

49

http://topologygeometry.blogspot.fr/2010/06/notes-from-062310.html
http://topologygeometry.blogspot.fr/2010/06/notes-from-062310.html


ALGORITHMS FOR EMBEDDED GRAPHS 6. Deciding homotopy with universal covers

6.3 Testing homotopy for surfaces without bound-
ary

The contractibility problem is de�ned as follows: Given a loop ` in a
graph G cellularly embedded on a surface S with genus g, determine
whether ` is contractible. This is an instance of the word problem in com-
binatorial group theory (given a group speci�ed in terms of generators and
relations, and a word in the generators and their inverses, decide whether
the element represented by the word is the unit element).

In what follows, we assume that S is a surface without boundary; it turns
out to be the most di�cult case. Deciding whether ` is contractible can
be done in time linear in the input size (namely, the complexity of G and
the number of edges of `) [23,35,60]. We provide a simpler algorithm with
worse running time, but still linear if the genus g is �xed. We start with
a special case.

Lemma 6.1. If G is a system of loops, then one can determine whether

a loop ` with k edges is contractible in time O(k poly(g)).

The proof is essentially an argument due to Dehn [22] more than one
century ago. In the proof below, we make no attempt to optimize the
dependence on g, because more complicated linear-time algorithms exist.

Proof. The case g = 0 is obvious, as every loop is contractible. The case
g = 1 is easy; as can be seen from the universal cover of the torus, if G is
made of two loops a and b, then ` is contractible if the algebraic numbers
of occurrences of both a and b in ` are zero. So we now assume g ≥ 2.

If ` has a spur, an edge of G used twice consecutively in opposite directions,
we can remove that spur. Removing iteratively all spurs takes O(k) time;
so we can assume that ` has no spur.

Assume that ` is contractible but not reduced to a single point. We claim
that a subpath of ` consists of strictly more than half of the facial walk
of G. To see this, look at a lift ˜̀ of ` in the universal cover, de�ned as
above. Let Ck be the outermost circle used by ˜̀, and let ˜̀′ be a maximal
subpath of ˜̀on Ck. Since ` has no spur, ˜̀′ is made of at least 4g−2 edges

on Ck, because ˜̀ arrives and leaves Ck by an edge going to Ck−1. Thus
the �rst 4g−2 > 2g edges of ˜̀′ project to a subpath of ` that is more than
half of the facial walk of G. This proves the claim.

Accordingly, here is the algorithm to test contractibility. While some sub-
path of ` consists of strictly more than half of the facial walk of G, we
replace that subpath with the complementary part of the facial walk of G;
this strictly decreases the length of ` and does not change its homotopy
class. When no such subpath exists, the loop ` is contractible if and only
if it is reduced to a single vertex.

Encoding ` with the word of the oriented edges used by `, �nding an
appropriate subpath of ` boils down to combinatorial pattern matching.
Each time we �nd an appropriate subpath, we replace it with the comple-
mentary part, decreasing the length of `. We need to go back along ` by
O(g) edges, because the replacement may have created a new appropriate
subpath starting O(g) edges earlier. So each step either moves forward
along `, or decreases its length and goes back by O(g) edges. Each such
step takes poly(g) time, and there are at most k steps.

More generally:

Theorem 6.2. Let ` be a loop with k edges in a graph G with complexity n
cellularly embedded on a surface with genus g. In O(n + k) poly(g) time,

we can determine whether ` is contractible.

Proof. We iteratively contract edges of G until we get a single vertex,
removing the occurrences of the corresponding edges in `. Each time we
have a face with degree one, we remove the incident edge in G, and all its
occurrences in ` (since the face is a disk, the edge is contractible). Each
time we have a face with degree two, we remove one of the two incident
edges in G, and replace every occurrence of that edge in ` with the other
edge incident to the face.

Euler's formula with double counting now implies that G has O(g) edges
(see Exercise 4.8). We choose a subset of edges that form a system of
loops G′, as in the beginning of the proof of Theorem 4.5. Each edge not
in G′ used by ` can be replaced with a homotopic subpath of O(g) edges

50



ALGORITHMS FOR EMBEDDED GRAPHS 7. Tightening paths on surfaces

in G′. The new loop ` has O(gk) edges. We have thus reduced the problem
to the case whereG is a system of loops, for which we can apply Lemma 6.1.

6.4 Notes

Homotopy is a very natural and �geometric� notion (compared with homology, for
example). However, homology has more algebraic structure and is therefore more
tractable. Homotopy problems are generally hard: determining whether a loop
is contractible is undecidable in innocent-looking spaces such as two-dimensional
simplicial complexes and four-dimensional manifolds. The case of manifolds of
dimension three is related to the Poincaré conjecture, solved only recently [70,71].

Massey [65, Chapter 5] contains details on the construction of the universal cover
of more general topological spaces. The construction of the universal cover for
surfaces with boundary is also described by Hershberger and Snoeyink [48]. The
description of the universal cover for surfaces without boundary is also described
by Stillwell [78, Sect. 6.1.3].

The aforementioned papers [35,60] provide linear-time algorithms not only for the
contractibility problem, but also for the free homotopy problem (corresponding,
in group theory, to the conjugacy problem): Given two loops `1 and `2, can
one transform one into the other by a free homotopy, a deformation that allows
moving the basepoint during the deformation?

Chapter 7

Tightening paths on surfaces

In this chapter, we consider the following problem. Let (S ,M) be a combi-
natorial surface (compact, connected, orientable, possibly with boundary).
Let p be a path on (S ,M) represented as a walk in the graph M . How
e�ciently can we compute the shortest path homotopic to p?

We say that a path is tight if it is as short as possible among all homotopic
paths. We are therefore looking for a tight path homotopic to p. The
problem is formulated entirely in terms of combinatorial surfaces; however,
the algorithm crucially relies on cross-metric surfaces and its ability to
encode crossings between curves.

Of course, the answer is obvious in cases where the surface is topologically
trivial: in the sphere or the disk, any two paths with the same endpoints are
homotopic, so the answer is just any shortest path between the endpoints
of the input path. We henceforth assume that we are not in such cases.

The problem can be reformulated as computing a shortest path in S̃
between the endpoints of a lift of p. One di�culty is that S̃ is in�nite
(except precisely for the sphere and the disk). The general approach to
solve this problem is as follows:

1. compute a lift p̃ of the input path;

2. build a suitable part P of the universal cover of S , containing the
endpoints of p̃;

3. compute the shortest path p̃′ in P between the endpoints of p̃.

Of course, P has to be �large enough� to contain the shortest path in S̃

51



ALGORITHMS FOR EMBEDDED GRAPHS 7. Tightening paths on surfaces

between the endpoints of p̃, but �small enough� to allow a good complexity.
This is done with the help of a preprocessing step: initially, we compute a
certain set of curves on the surface that splits it into disks, such that p̃′ can
cross a lift of a curve only if p̃ does. For this purpose, we will see that the
decomposition needs to consist of tight curves. It turns out that tightening
paths on surfaces is much easier for surfaces with boundary, because there
exists a shortest system of arcs (Section 5.6), so we �rst focus on this case.

A cycle on a surface S is a continuous map from the unit circle S1 to S .
It di�ers from the concept of loop in the sense that a loop is a closed curve
with a distinguished basepoint; in contrast, the term cycle is used when
no point is to be distinguished.

7.1 Surfaces with boundary

In this section, (S ,M) is assumed to have at least one boundary compo-
nent. We will prove:

Theorem 7.1. Assume S has genus g, b ≥ 1 boundary components, and

complexity n. Let p be a path in (S ,M) of complexity k.

After a preprocessing step on (S ,M) in O((g + b)n + n log n) time, we

can compute a shortest path homotopic to p in O((g + b)nk) time.

We can de�ne a cross-metric surface with boundary, (S ,M∗), as follows
(Figure 7.1). Glue a disk to each boundary component of S , obtaining a
surface without boundary S̄ . The graph M is cellularly embedded on S̄ ;
let M∗ be the dual of the primal graph M on (S̄ ,M); remove the disks
we glued to the boundary components, and the corresponding vertices and
pieces of edges of M∗; furthermore, add the mandatory boundary edges
of in�nite weight. To tighten a path on (S ,M), it su�ces to tighten it
on (S ,M∗), because transforming the resulting path to a walk on M is
trivial.

The universal cover S̃ is naturally a cross-metric surface: simply lift the
graph M∗ in S̃ , with the same weights.

Figure 7.1. Primal (solid) and dual (dashed) graphs on a combinatorial annulus.

7.1.1 Tightness of the shortest system of arcs

Let A be the shortest system of arcs of (S ,M∗). Let D = S \\A be the
disk obtained by cutting S along A. The construction of Section 6.2.3
applies: we may build any �nite portion of the universal cover of S by
gluing copies of D together (forgetting about the internal vertices of D,
and then later re-creating the internal structure of D).

Proposition 7.2. Every arc in A is tight.

We give two di�erent proofs of this result. The �rst one is short and
natural; the second one, while more pedestrian, makes use of interesting
techniques.

7.1.1.1 Homotopic arcs are homologous

Proposition 7.2 follows directly from the following important lemma, since
the shortest system of arcs is made of shortest loops within their respective
homology classes:

52



ALGORITHMS FOR EMBEDDED GRAPHS 7. Tightening paths on surfaces

Lemma 7.3. Two homotopic arcs on a surface are homologous.

Proof. As usual when using homology, we assume the arcs, a and b, are
walks in some re�ned graph G = (V,E). Lifting them to the universal
cover, we obtain lifts ã and b̃ with the same endpoints. We may as well
lift G, obtaining an in�nite graph G̃ = (Ṽ , Ẽ). Let Ẽ′ ⊆ Ẽ be the mod 2
image of ã and b̃.

By similar arguments as in Exercise 5.12(2), one can label the faces of the
graph G̃ with 0s and 1s so that an edge in Ẽ belongs to Ẽ′ if and only if
it is incident to faces with di�erent labels.

In particular all faces of G̃ corresponding to a given face of (Ṽ , Ẽ′) have the
same label. We may actually assume, up to exchanging the 0s and the 1s,
that every in�nite face of (Ṽ , Ẽ′) is labeled 0, because every boundary com-
ponent of S̃ contains an even number of points of a and b. In particular,
�nitely many faces of G̃ are labeled 1.

Now, project this labeling onto S : every face of G gets as label the mod 2
sum of the labels of its lifts. (The sum is �nite, by the preceding para-
graph.) E′ is precisely the set of edges incident with faces with di�erent
labels, and is the mod 2 image of a and b; this proves that the two arcs
are homologous.

As a side remark, the same arguments show that two homotopic loops or
cycles are homologous.

7.1.1.2 Crossing words

Let A be a family of arcs on (S ,M∗), and c be a path in (S ,M∗). Let
X be the set of letters of the form a or ā, where a ∈ A. Walk along c
and, each time we encounter a crossing with an arc a ∈ A, write the letter
a or ā, according to the orientation of the crossing. The resulting word
is called the crossing word of c with A, denoted by A/c. A word is
parenthesized if it reduces to the empty word by successive removals of
consecutive pairs of letters of the form aā or āa.

c1

c2

`

Figure 7.2. A step of the proof of Lemma 7.4.

Lemma 7.4. Assume every arc a ∈ A separates the surface into two

connected components, and that the arcs in A are pairwise disjoint. Let `
be a loop. Then the crossing word A/` is parenthesized.

Proof. We prove the result by induction on the number of crossings between
` and the arcs in A. The result is trivial if ` does not cross any arc in A.
Hence, let us assume that there is at least one crossing between ` and an
arc a ∈ A.
As ` is a loop, it must cross a at least once with the opposite orientation.
Consider now ` as a cycle γ (i.e., let us forget the basepoint of `). The
two crossings split the cycle γ into two paths c1 and c2 (Figure 7.2). For
k = 1, 2, it is possible to extend ci to a closed path c′i, so that A/c

′
i = A/ci,

by adding a piece of a path which goes along a part of a. By the induction
hypothesis, A/c1 and A/c2 are parenthesized. In addition, A/c equals, up
to cyclic permutation,

a · (A/c1) · ā · (A/c2) or ā · (A/c1) · a · (A/c2).

Therefore, A/c is also parenthesized.

Proof of Proposition 7.2. Let a be a slightly translated copy of an arc in A,
disjoint from all arcs in A; let c be a shortest arc homotopic to a. These
arcs a and c lift, in S̃ , to two arcs ã and c̃ with the same endpoints. We
will move c̃ into ã without increasing its length, which will prove the result.
Let Ã be the set of all lifts of the arcs in A.

53



ALGORITHMS FOR EMBEDDED GRAPHS 7. Tightening paths on surfaces

c̃

d̃d̃

Figure 7.3. The uncrossing operation used in the proof of Proposition 7.2.

Note that every lift of A separates S̃ into two connected components.
Therefore, the crossing word w := Ã/(c̃ · ã) is parenthesized by Lemma 7.4,
and it equals Ã/c̃ since a does not cross A. If w is the empty word, then
a and c both live in D. We may therefore assume c is simple (removing
its loops cannot make it longer). Then, if we replace a by c, we also get a
system of arcs, so c cannot be shorter than a. This indeed means that a
is tight.

If w is non-empty, then c̃ crosses consecutively the same lift d̃ of an arc in A,
with opposite orientations (Figure 7.3); let c̃1 and d̃1 be the corresponding
subpaths of these lifts between the crossing points. Since c̃ is a shortest
path, we may assume that c̃1 is simple. Replacing, in d̃, the subpath d̃1
by c̃1 would give a system of arcs, so c̃1 cannot be shorter than d̃1. So we
may replace, in c, its subpath c1 by d1 without changing its length or its
homotopy class. This removes two crossings; we conclude by induction.

Exercise 7.5. 9 Prove Lemma 5.4 in the case of cross-metric surfaces
with boundary, using Lemma 7.4 and techniques similar as those in the
previous proof.

7.1.2 Algorithm

We now describe an algorithm to tighten a path p in the combinatorial
surface (S ,M). We start by computing the shortest system of arcs A
on (S ,M∗).

Any �nite portion of the universal cover of S can be built using A, as in
Section 6.2.3. In particular, we may compute a lift p̃ of the input path p,

together with the corresponding part P of the universal cover traversed
by p̃: start with a copy of the disk D := S \\A; follow p in D until it
exits the currently built portion P of the universal cover, and add to this
portion a copy of D necessary to extend the lift p̃ of p; iterate.

Let q̃ be the shortest path in P with the same endpoints as p̃. The algo-
rithm returns q, the projection of q̃ onto S .

To prove the correctness of the algorithm, it su�ces to prove that q̃ is a
shortest path in the universal cover S̃ , not only in P . Let r̃ be the shortest
path in S̃ with the same endpoints as p̃; we will move r̃ inside P without
increasing its length, which concludes.

Since p̃ and r̃ have the same endpoints, they cross a lift ã of an arc in A
an odd number of times if and only if their endpoints are in distinct com-
ponents of S̃ \\ã. On the other hand, without loss of generality, we may
assume that r̃ crosses every lift of A at most once: for if it crosses a given
lift ã twice, then we may shortcut r̃ as in Figure 7.3; this does not make it
longer, since ã is a shortest path. So r̃ crosses only lifts of A crossed by p̃,
and therefore remains in P .

7.1.3 Complexity analysis and re�nement

It remains to bound the complexity. For this purpose, we need to bound
the number of times the input path p crosses the shortest system of arcs.
This is most e�ciently done using the following modi�cation of the algo-
rithm: Instead of considering the cross-metric surface (S ,M∗), we con-
sider the cross-metric surface (S ,M+), where M+ is a weighted graph
obtained by overlaying M∗ with its primal graph M (Figure 7.1).

The vertices ofM+ are either vertices ofM , vertices ofM∗, or intersections
between an edge e of M and its dual edge e∗ of M∗. Each edge of M and
dual edge in M∗ is partitioned into two edges in M+. Finally, each face
of M+ is a quadrilateral. The complexity of M+ is asymptotically the
same as M∗.

To treat (S ,M+) as a cross-metric surface, we assign a crossing weight
to each edge e+ of M+ as follows. If e+ is on the boundary of S , it has

54



ALGORITHMS FOR EMBEDDED GRAPHS 7. Tightening paths on surfaces

in�nite crossing weight. Otherwise, if e+ is contained in an edge of M∗,
it has the same crossing weight as that dual edge; otherwise, its crossing
weight is made in�nitesimally small.1

We actually compute the shortest system of arcs A in this cross-metric
surface (S ,M+). By construction, every arc in A is of the form σ(e), and
therefore crosses a given edge of M+ at most twice. Note that the input
path p is a walk in the graph M , so every edge of p crosses every arc of A
at most four times. So there are O((g + b)k) crossings between p and A.

Each of the O(g + b) arcs of A has complexity O(n), so the disk D has
complexity O((g + b)n). Furthermore, the preceding paragraph implies
that p̃ visits O((g+ b)k) copies of D. The portion P of the universal cover
we thus need to explore has complexity O((g + b)2nk). The algorithm
computes a shortest path in this space, and this takes linear time since
P is planar. This completes the proof of Theorem 7.1, up to an O(g + b)
factor in the complexity, which is removed in the following exercise.

Exercise 7.6. 9 Let (S ,M) be a combinatorial surface (compact, con-
nected, orientable), with genus g and b ≥ 1 boundary components, and
complexity n. Let (S ,M∗) be the associated cross-metric surface.

1. Prove that one can, inO((g+b)n+n log n), compute a tight triangulated
system of arcs A: a set of pairwise disjoint simple arcs such that every
face of A is incident with exactly three arcs in A. Indication: extend
the shortest system of arcs.

2. Show how to reduce the time complexity of Theorem 7.1 from O((g +
b)2nk) to O((g + b)nk).

7.2 Surfaces without boundary

In this section, we explain how to tighten paths on surfaces without bound-
ary. This is much more involved and technical, so we mostly sketch the

1Equivalently, we can take the crossing weight of any edge in M∗ to be a vector
(`, 0) for some non-negative real number `, and the crossing weight of any edge in M to
be (0, 1). Crossing weights are now vectors, which are added normally and compared
lexicographically.

Figure 7.4. An octagonal decomposition built by the algorithm.

main ideas, referring to the research paper [18] for details. We assume
that S has genus at least two and no boundary; the case g = 1 is indeed
exceptional (but the result is similar).

Theorem 7.7. Assume S is a surface with genus g ≥ 2, no boundary,

and complexity n. Let p be a path in (S ,M) of complexity k. After a

preprocessing step on (S ,M) in O(gn + n log n) time, we can compute a

shortest path homotopic to p in O(gnk) time.

The main tool is an octagonal decomposition : an arrangement of simple
cycles in which every vertex has degree four and every face has eight sides.
See Figure 7.4. If we lift the cycles of an octagonal decomposition to the
universal cover of the surface, we obtain a tiling of the unit open disk with
octagons, where each vertex has degree four; see Figure 7.5.

Exercise 7.8. 99 Let O be an octagonal decomposition of a surface S
with genus g ≥ 1. Compute the number of octagons of O. Deduce that no
octagonal decomposition exists for the torus. What kind of decomposition
could be used instead?

The multiplicity of a set of curves on a cross-metric surface (S ,M∗) is
the maximal number of times the union of the curves crosses a given edge
of M∗.

Proposition 7.9. Let (S ,M∗) be a cross-metric surface with complex-

ity n, genus g ≥ 2, and no boundary. In O(n2 log n) time, we can con-

struct a tight octagonal decomposition of (S ,M∗) in which each cycle has

multiplicity O(1).

55



ALGORITHMS FOR EMBEDDED GRAPHS 7. Tightening paths on surfaces

Figure 7.5. Universal cover of an octagonal decomposition.

We will admit this result. The main steps of the construction are shown
in Figure 7.6; it uses shortest non-contractible or non-separating arcs or
cycles on the surface (Chapter 5), ultimately relying on Dijkstra's algo-
rithm and on the min-cut algorithm for planar graphs (Theorem 3.9). A
tight pants decomposition (a decomposition of the surface into spheres
with three boundary components) is built, and then cycles are computed
within neighboring pairs of pants. The main di�culties are (1) to prove
that every output cycle is tight, which essentially holds by uncrossing ar-
guments similar to those of the previous section, and (2) to bound the
multiplicity of each cycle.

7.2.1 The universal cover

Let O be a tight octagonal decomposition of a surface S without bound-
ary. We call any lift of a cycle in O to the universal cover S̃ a line ; see
Figure 7.5. The set of lines is denoted by Õ.

Lemma 7.10 (Dehn [22]). Let S be the non-empty union of �nitely many

octagons in the four-valent octagon tiling of the unit disk. Some octagon

in S has at least �ve consecutive sides on the boundary of S.

Figure 7.6. The construction of the octagonal decomposition.

56



ALGORITHMS FOR EMBEDDED GRAPHS 7. Tightening paths on surfaces

Sketch of proof. See Stillwell [78, p. 188]. Intuitively, take one octagon
in S as far as possible from the center of the disk in Figure 7.5. It has at
least �ve octagons adjacent to that octagon that are even further from the
center, hence not in S.

A trivial but important corollary is:

Corollary 7.11. Let S be the non-empty union of �nitely many octagons

in the four-valent octagon tiling of the unit disk. Then at least �ve distinct

lines contain edges on the boundary of S. In particular, two lines in the

tiling cross at most once.

The perimeter of a set of octagons is the number of edges on its boundary.

Lemma 7.12. Any union of N octagons, 1 ≤ N <∞, in the four-valent

octagon tiling of the unit disk has perimeter at least 2N + 6.

Proof. Removing an octagon with at least �ve consecutive sides on the
boundary of the union (Lemma 7.10) reduces the perimeter by at least
two. The base case is a single octagon.

A path p wraps around a cycle γ if p(t) = γ((ut + v) mod 1) for some
real numbers u and v. A cycle δ wraps around γ if δ(t) = γ(m · t), for
some integer m; one also says that δ is the mth power of γ. Observe that
a subpath of a cycle wraps around it, but that the converse is not true (a
path wrapping around the cycle �several times� is not a subpath). We will
need the following result, which we admit [18]:

Proposition 7.13. Any path or cycle on S that wraps around a tight

cycle is tight.

Lemma 7.14. Let p̃ be a path in S̃ , with endpoints x and y; let L be

the set of lines in Õ crossed an odd number of times by p̃. Let p̃′ be a

shortest path with endpoints x and y, where the lines in Õ are assigned

in�nitesimal crossing weight. Then p̃′ crosses exactly once each line in L
and no other line.

Proof. Since each line ` in Õ separates S̃ , a path connecting x and y
crosses ` an odd number of times if and only if ` separates x and y. Hence
it su�ces to prove that p̃′ crosses each line at most once.

Assume that p̃′ crosses some line ` at least twice, at points u and v. Since
` is a lift of a tight cycle, every subpath of ` is a shortest path, by Propo-
sition 7.13. Thus, we can remove the two crossings from p̃′ by replacing
the subpath from u to v with the shortest path in `. Since any pair of
lines in Õ intersect at most once (Corollary 7.11), this exchange results
in a path with fewer line crossings (and possibly shorter length), which is
impossible.

7.2.2 Building the relevant region

Consider an arbitrary path p on a surface S . Let p̃ be a lift of p to the
universal cover S̃ , and let p̃′ be a shortest path in S̃ between the endpoints
of p̃. Projecting p̃′ back down to S gives us a shortest path homotopic to
p. The algorithm exploits this characterization by constructing a subset
of S̃ of small complexity that contains both p̃ and some shortest path p̃′.

Let O be the tight octagonal decomposition of S (Proposition 7.9). Con-
sider a path p in S , and let p̃ be a lift of p to the universal cover S̃ . For
any line ` in Õ, let `+ denote the component of S̃ \ ` that contains the
starting point p̃(0).

Let `1, `2, . . . , `z be the sequence of lines in Õ crossed by p̃, in order of
their �rst crossing. Let L0 = ∅, and for any integer i between 1 and z, let
Li = Li−1∪{`i}. For each i, let S̃i be the subset of S̃ reachable from p̃(0)
by crossing only (a subset of) lines in Li, in any order. Combinatorially,
the region S̃i is a `convex polygon' formed by intersecting the `half-disk' `+

for all lines ` not in the set Li. By Lemma 7.14, some shortest path p̃′

between the endpoints of p̃ crosses only a subset of the lines that p̃ crosses;
so p̃′ is contained in S̃z. For this reason, S̃z is called the relevant region
of S̃ (with respect to p̃).

Lemma 7.15. For any line ` and any i ≥ 0, ` ∩ S̃i is either empty or

connected.

57



ALGORITHMS FOR EMBEDDED GRAPHS 7. Tightening paths on surfaces

??

O′1 O′2 O′3 O′4

O1 O2 O3 O4

`i

Figure 7.7. From S̃i−1 (dark shaded) to S̃i (all shaded).

Proof. Let `[x, y] be the segment of `i between two points x and y in
` ∩ S̃i, and suppose some line `′ crosses `[x, y]. Since two lines cross at
most once, the points x and y are on di�erent sides of `′. Since `′ separates
the universal cover but S̃i is connected, this line must be in the set Li. It
follows that the entire segment `[x, y] belongs to S̃i.

Since `i separates S̃ , Lemma 7.15 implies that `i intersects S̃i−1 on its
boundary, along a connected set of octagons O1, O2, . . . , Ou. For each j
between 1 and u, let O′j be the re�ection of Oj across `i. See Figure 7.7.

The octagons O′j do not belong to S̃i−1.

Lemma 7.16. S̃i = S̃i−1 ∪O′1 ∪ · · · ∪O′u.

Proof. Let T̃ = O′1 ∪ · · · ∪ O′u (the lightly shaded region in Figure 7.7).
To prove the lemma, it su�ces to show that none of the lines bounding
T̃ are in the set L = {`1, . . . , `i−1}. Obviously `i is not in this set. Each
octagon O′j is bounded by eight lines: `i, two inner lines that cross `i at
a vertex of O′j , and �ve outer lines.

If some outer line ` of some octagon O′j intersected `i, then it would also

intersect an inner line `′ 6= ` of O′j . Thus the lines `, `′, and `i would

pairwise intersect, and these three lines would bound a disk in the tiling Õ,
contradicting Lemma 7.10.

Hence, since every line in L has a point in `+i , no outer line can be in L.
Only the �rst and last inner lines contribute a side to the boundary of T̃ .
Neither of these two lines is in L, for otherwise one of the starred octagons
in Figure 7.7 would also belong to S̃i−1.

Lemma 7.17. S̃z contains at most 7z + 1 octagons.

Proof. Let v be a vertex on the boundary of S̃z. Depending on whether
zero or one line incident to v belong to {`1, . . . , `z}, either one or two
octagons incident to v belong to S̃z. In the former case, we say that v is
an extremal boundary vertex, and in the latter case, we say that v is a �at

boundary vertex. If there is no �at boundary vertex, then there is exactly
one octagon, and the lemma holds.

Every �at boundary vertex is the intersection of some line `i with the
boundary of S̃z. There are at most 2z such vertices by Lemma 7.15.
Between two consecutive �at boundary vertices, there are trivially at most
6 extremal boundary vertices, all on the boundary of the same octagon.
Thus, the perimeter of S̃z is at most 14z. The lemma now follows directly
from Lemma 7.12.

Constructing the relevant region S̃z is now straightforward. S̃0 is a copy
of the octagon containing p(0), the starting point of p. To compute S̃i,
we follow p̃ until it exits the previous region S̃i−1. At the exit point, the
path is crossing `i into some octagon O′j (with the notation of Figure 7.7).

To complete S̃i, we append the octagons O′1, . . . , O
′
u.

7.2.3 Conclusion

We can conclude the proof of Theorem 7.7 along the same lines as in
the case with boundary. We consider a path p, represented as a walk
inM , of complexity k. As above, we actually compute the tight octagonal

58



ALGORITHMS FOR EMBEDDED GRAPHS 8. Other decompositions of surfaces

decomposition O in the re�ned graph M+. In particular, p has O(gk)
crossings with O.
We build the relevant region of the universal cover corresponding to a lift p̃
of p, as described in Lemma 7.16. Since every octagon has complexity
O(n), Lemma 7.17 shows that this phase takes time O(gnk), and this is
the complexity of the relevant region.

Now let L be the set of lines crossed an odd number of times by p̃. By
Lemma 7.14, there is a shortest path q̃ with the same endpoints as p̃
that crosses each line in L exactly once and no other line; in particular q̃
remains in the relevant region, and we can compute it in time linear in the
complexity of the region, i.e., in O(gnk) time.

Exercise 7.18. 9 Prove Lemma 5.4 in the case of cross-metric surfaces
without boundary, using Lemma 7.4 and the techniques used above.

7.3 Notes

The material of this chapter is largely taken from Colin de Verdière and Erick-
son [18], where also algorithms to compute tight cycles (shortest cycles up to
deformation with no �xed basepoint) are presented.

The computation of a tight octagonal decomposition can be speeded up: the
O(n2 log n) bottleneck comes from the computation of the initial cycle; but a tight
non-separating cycle can actually be computed in O(n log n) time [8], improving
the overall construction to O(gn log n).

The construction of the universal cover of a surface without boundary equipped
with a regular tiling is closely related to regular tessellations in the hyperbolic
disk, as in Figure 7.5.

Deciding whether two paths on a surface can be done in linear time [35,60]. This
problem has been considered much earlier (from a more combinatorial perspec-
tive) by Dehn [22] (see Stillwell [78, p. 188]); his algorithm is one of the starting
points of combinatorial group theory.

In the speci�c case of the plane, several algorithms exist to test contractibility
or homotopy [9] and to compute shortest homotopic paths [5, 27].

Chapter 8

Other decompositions of

surfaces

8.1 Canonical system of loops

A canonical system of loops L of a surface S with positive genus is a
system of loops whose combinatorial map is canonical. This means that
the polygonal schema associated to L has the form a1b1ā1b̄1 . . . agbgāg b̄g.
Equivalently, the cyclic ordering of the edges around the baspoint is a1b̄1ā1b1 . . . ag b̄gāgbg.
We now describe an algorithm to compute a canonical system of loops. The
multiplicity of a curve c embedded on (S ,M∗) is the maximum number
of times that c crosses a given edge of M∗.

Theorem 8.1. Let (S ,M∗) be a cross-metric surface with genus g ≥ 1,
without boundary. Let n be its complexity. Moreover, let b be an arbitrary

point on S not on M∗. In O(gn) time, one can compute a canonical

system of loops on (S ,M∗) based at b, in which each loop has multiplicity

at most four.

In a broad sense, canonical systems of loops are useful because, like oc-
tagonal pants decompositions, they are canonical decompositions of
surfaces. Cutting along a decomposition gives topologically simple sur-
faces; a type of decomposition is canonical if, given a surface with two
canonical decompositions, there is a homeomorphism that maps one canon-
ical decomposition into the other. Other notions of �canonical� systems
of loops would be suitable (e.g., systems of loops with polygonal schema

59



ALGORITHMS FOR EMBEDDED GRAPHS 8. Other decompositions of surfaces

a1b1 . . . agbgā1b̄1 . . . āg b̄g); however, our proof does not extend to such vari-
ations, and the computations of such alternative systems of loops with
complexity O(gn) (if they exist) is open.

Since the statement of the theorem ignores the weights of the cross-metric
surface, we will without loss of generality assume unit weights.

The �rst step of the proof consists in proving Theorem 8.1 in the special
case where M∗ has a single face (is a cut graph). Unfortunately, the
general case does not exactly follow from that special case: Starting with
an arbitrary M∗, one can remove edges to merge all faces into one, and
apply the special case, but then the edges that were removed need to be
reinstated inside the face, and this could, a priori, increase the multiplicity
to Θ(g). Therefore, the following lemma proves a strengthened version of
Theorem 8.1 in the case where M∗ has a single face.

Lemma 8.2. Assume, moreover, that M∗ has a single face f . Then, in

O(n+ g2) time, we can compute a canonical system of loops L based at b.
Moreover, for each ` ∈ L, we have the following properties:

� ` crosses at most twice each edge of M∗;

� the |`| − 1 internal pieces of `, the connected components of `\\M∗
not containing b, are arcs in f . The 2(|`|−1) endpoints of these arcs
can be ordered cyclically along ∂f . Then, each arc has its endpoints

consecutive in this cyclic order.

Proof. We �rst compute a spanning tree T ∗ of M∗. The edges in M (the
dual graph of M∗) whose dual is not in T ∗ form a system of loops L0.
Like in the proof of the classi�cation of surfaces, we use a sequence of
transformations to make L0 canonical. Compared to the proof of that
theorem, we need to make some appropriate choices, in the sense that
the new loops created need to �run along� only loops that were initially
in L0, and no loop newly created; see Figure 8.1. In other words, there
are two natural choices depending on which side of the current polygonal
schema the new loop could run along, and we choose the side that does
not contain any new loop (which is possible since all the newly created
loops are consecutive).

Let L be the resulting system of loops. By construction, each loop in L

runs along each loop in L0 at most twice, and thus crosses each edge ofM∗

at most twice. Moreover, also by construction, each loop ` ∈ L is obtained
by running along a boundary component of S \\L`, where L` is the subset
of the loops of L0 that are still present when adding `. This implies that
each internal piece has its endpoints consecutive in cyclic order along ∂f
(see Figure 8.2, left).

We will need the following algorithmic lemma, possibly useful in other
contexts:

Lemma 8.3. Let (D,M∗) be a cross-metric disk with complexity n such

that all vertices of M∗ are on the boundary of D. Let P be a set of pairs

of points on ∂D such that no two pairs are interleaved along ∂D. Then

we can compute, in time linear in n plus the size of the output, a set

A = {a(u, v) | (u, v) ∈ P} of arcs such that:

� For each (u, v) ∈ P , a(u, v) has endpoints u and v;

� the arcs in a(P ) are simple and pairwise disjoint;

� each arc a(u, v) crosses exactly once those edges of M∗ whose end-

points are interleaved with (u, v) along ∂f , and no other edge of M∗.

Proof. First, for each pair (u, v) ∈ P , we compute the ordered list of edges
of M∗ that the arc a(A) has to cross. Since the faces of M∗ are arranged
in a tree-like fashion, this can be reformulated as the following problem:
Given pairs of nodes in a tree T , compute the paths in T connecting these
pairs, in time proportional in the size of T plus the size of the output. For
this purpose, we �rst root T arbitrarily, and compute the depth of each
node. Then, for each pair of nodes, we compute the path in T connecting
them as follows: Starting from the deepest of the two nodes, we walk up
the tree until we reach the depth of the other node. We now have two
nodes u and v with the same depth. We walk up the tree simultaneously
from u and v until a common vertex (the lowest common ancestor) is
encountered.

Since the pairs in P are not interleaved, some pair of points (u, v) in P
is consecutive in the cyclic order of all the points in P . The strategy
is to compute the arc a(u, v) and iterate. We �rst remark that, after a

60



ALGORITHMS FOR EMBEDDED GRAPHS 8. Other decompositions of surfaces

a a

X X

a a

b

b

a a

b

b

c

X

a a

c

c

X
b

a a
c

X

a a
c

X

c

d

c

X

c

c

d
d

(a) (b) (c)

(d) (e) (f)

Figure 8.1. One step of the algorithm for making a system of loops canonical.
Initially, we have a system of loops with a (possibly empty) subsequence already
treated, and thus in canonical form, denoted by X. The other loops are the
ones from the original system of loops. (a) Let a be the symbol just after X. (b)
There must be a symbol b interleaved with a along the boundary of the polygonal
schema. Of course, b does not belong to X. (c) We introduce a new loop c. (d)
We cut along c and reglue along b. (e) We introduce a new loop d. (f) We cut
along d and reglue along a. This results in a new subsequence cdc̄d̄ in canonical
form, contiguous to X, which can thus be added to X. Moreover, note that,
when c and d are created in steps (c) and (e), they run along edges from the
original system of loops.

b

b

Figure 8.2. The situation in face f . Left: One step of the proof of Lemma 8.2,
for the creation of a new loop `. The loops drawn at b in solid lines are exactly
the loops from the original system of loops that have not been removed at the
creation of `. The new loop ` is in dashed lines. Right: Illustration of the proof
of Theorem 8.1. The pieces of the loops in L′ are depicted in solid lines (with the
external pieces in thicker lines, and di�erent colors for each loop), and an edge e
of M∗ \N∗ is depicted in dashed lines (with the �rst and last paths of e\\L1 in
thicker lines).

61



ALGORITHMS FOR EMBEDDED GRAPHS Bibliography

linear-time preprocessing, iteratively �nding a pair of points in P that are
consecutive in cyclic order and removing it takes constant time.

In the cross-metric surface (M∗, D), we add the arc a(u, v) connecting u
and v by crossing the edges obtained in the previous paragraph; this takes
linear time in the number of edges of M∗ crossed by a(u, v). Then we
continue in the part D′ of D that is bounded by a(u, v) and contains the
remaining elements of P .

There are some easy but subtle points to emphasize in terms of data struc-
tures. Initially, we have computed, for each pair of points (u, v) ∈ P , a
sequence of edges of M∗ that a(u, v) has to cross; when subdividing the
edges ofM∗, we make sure that this set of pointers stays valid (by keeping
these pointers valid in the part D′ that is still needed). Similarly, in the
algorithm described in the �rst paragraph, we need to be able to determine
whether two faces of the cross-metric surface (e.g., speci�ed by �ags) are
the same. This means that we need to keep pointers from the �ags to the
faces, which become invalid when subdividing a face, unless we update
them; but we actually do not need to update them: They become invalid
only in the part of the disk that is subsequently ignored.

Proof of Theorem 8.1. Let T be an arbitrary spanning tree of the graphM
(the dual of M∗), and let N∗ be obtained from M∗ by removing the dual
of each edge in T . Then (S , N∗) is a cross-metric surface with a single
face f , and we can apply Lemma 8.2. In O(n + g2) time, we obtain a
canonical system of loops L based at b for (S , N∗). The goal is now to
move L, without moving b or the intersections of L with ∂f , so that, after
this operation, every loop in L has multiplicity at most four in (S ,M∗).
Note that the edges in M∗ \N∗ are arcs with endpoints on f .

A piece of a loop ` in L is a connected component of `\\M∗; it is an arc
with endpoints on ∂f . The external piece of ` is the one that contains b;
the other ones are internal.

First, we deal with the external pieces of the loops in L. We replace each
such piece with two shortest paths in f connecting b to the endpoints of
that piece. We can actually do this for each of the 2g external pieces at
once, by computing the desired 4g shortest paths from b using a depth-�rst
search in O(gn) time (techniques similar to Lemma 8.3 are needed). These

shortest paths are disjoint except at b, and each of them has multiplicity
one; let L1 be their union.

Each of the O(g2) internal pieces belongs to one of the 4g connected com-
ponents of f\\L1; for each such connected component, we apply Lemma 8.3
to the arcs it contains. Gluing together the internal and external pieces,
we obtain a canonical system of loops L′ on (S ,M∗). See Figure 8.2,
right.

Let e be an edge of M∗ and ` a loop in L′. If e ∈ N∗, then we already
know that e and ` cross at most twice (Lemma 8.2). So let us assume that
e 6∈ N∗; this edge e is thus an arc in f with endpoints on ∂f . The exter-
nal piece of ` is crossed at most twice by e. Among the paths in e\\L1,
only the �rst and last ones, e1 and e2, can cross an internal piece of `
(because the other ones do not separate the boundary of the correspond-
ing connected component of f\\L1, and by Lemma 8.3). Fix i ∈ {1, 2}.
Since the endpoints of an arc are consecutive in the cyclic order of the
endpoints of the arcs along ∂f (Lemma 8.2), ei can cross at most two
internal pieces of `, and exactly once. This implies that the multiplicity
of ` is at most six. A short case distinction, depending on the number of
times e crosses the external piece, leads to an improved upper bound of
four for the multiplicity.

It also follows from the previous paragraph that each of the 2g loops in L′

has complexity O(n). Hence the 4g applications of Lemma 8.3 take O(gn)
time in total.

8.2 Notes

Theorem 8.1 was proved by Lazarus et al. [59]; see also Lazarus [58]. We remark
that the complexity of computing a shortest canonical system of loops is open;
we suspect that it is at least exponential in g (see, e.g., Erickson and Nayyeri [33,
Section 4.2] for a related problem).

62



ALGORITHMS FOR EMBEDDED GRAPHS Bibliography

Bibliography

[1] Noga Alon, Paul Seymour, and Robin Thomas. Planar separators. SIAM
Journal on Discrete Mathematics, 7(4), 1994. [p. 30]

[2] Kenneth Appel and Wolfgang Haken. Every planar map is four-colorable.
AMS, Providence, Rhode Island, 1989. [p. 24]

[3] Mark Anthony Armstrong. Basic topology. Undergraduate Texts in Mathe-
matics. Springer-Verlag, 1983. [pp. 3 and 8]

[4] B. Becker and G. Hotz. On the optimal layout of planar graphs with �xed
boundary. SIAM Journal on Computing, 16(5):946�972, 1987. [p. 20]

[5] Sergei Bespamyatnikh. Computing homotopic shortest paths in the plane.
Journal of Algorithms, 49(2):284�303, 2003. [p. 59]

[6] Erik Brisson. Representing geometric structures in d dimensions: topology
and order. Discrete & Computational Geometry, 9:387�426, 1993. [p. 8]

[7] Sergio Cabello and Erin W. Chambers. Multiple source shortest paths in a
genus g graph. In Proceedings of the 18th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 89�97, 2007. [p. 46]

[8] Sergio Cabello, Matt DeVos, Je� Erickson, and Bojan Mohar. Finding one
tight cycle. In Proceedings of the 19th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 527�531, 2008. [p. 59]

[9] Sergio Cabello, Yuanxin Liu, Andrea Mantler, and Jack Snoeyink. Testing
homotopy for paths in the plane. Discrete & Computational Geometry,
31:61�81, 2004. [p. 59]

[10] Sergio Cabello and Bojan Mohar. Finding shortest non-separating and non-
contractible cycles for topologically embedded graphs. Discrete & Compu-
tational Geometry, 37(2):213�235, 2007. [p. 46]

[11] Luca Castelli-Aleardi, Olivier Devillers, and Éric Fusy. Canonical ordering
for triangulations on the cylinder, with applications to periodic straight-line
drawings. In Proceedings of the 21st International Symposium on Graph
Drawing (GD), pages 376�387, 2012. [p. 20]

[12] Erin W. Chambers, Éric Colin de Verdière, Je� Erickson, Francis Lazarus,
and KimWhittlesey. Splitting (complicated) surfaces is hard. Computational
Geometry: Theory and Applications, 41(1�2):94�110, 2008. [p. 46]

[13] Bernard Chazelle. A minimum spanning tree algorithm with inverse-
Ackermann type complexity. Journal of the ACM, 47(6):1028�1047, 2000.
[p. 30]

[14] David R. Cheriton and Robert Endre Tarjan. Finding minimum spanning
trees. SIAM Journal on Computing, 5(4):724�742, 1976. [p. 30]

[15] Éric Colin de Verdière. Raccourcissement de courbes et décomposition de
surfaces. PhD thesis, Université Paris 7, December 2003. English trans-
lation available at http://monge.univ-mlv.fr/~colinde/pub/03these.

html. [p. 20]

[16] Éric Colin de Verdière. Shortest cut graph of a surface with prescribed
vertex set. In Proceedings of the 18th European Symposium on Algorithms
(ESA), part 2, number 6347 in Lecture Notes in Computer Science, pages
100�111, 2010. [p. 46]

[17] Éric Colin de Verdière. Computational topology of graphs on surfaces. In
Jacob E. Goodman, Joseph O'Rourke, and Csaba Toth, editors, Handbook
of Discrete and Computational Geometry, chapter 23, pages 605�636. CRC
Press LLC, third edition, 2018. [p. 3]

[18] Éric Colin de Verdière and Je� Erickson. Tightening nonsimple paths and
cycles on surfaces. SIAM Journal on Computing, 39(8):3784�3813, 2010.
[pp. 45, 55, 57, and 59]

[19] Éric Colin de Verdière, Michel Pocchiola, and Gert Vegter. Tutte's barycen-
ter method applied to isotopies. Computational Geometry: Theory and Ap-
plications, 26(1):81�97, 2003. [p. 20]

[20] Éric Colin de Verdière and Alexander Schrijver. Shortest vertex-disjoint
two-face paths in planar graphs. ACM Transactions on Algorithms, 7(2):Ar-
ticle 19, 2011. [p. 30]

[21] Hubert de Fraysseix, János Pach, and Richard Pollack. How to draw a
planar graph on a grid. Combinatorica, 10(1):41�51, 1990. [p. 20]

[22] Max Dehn. Transformation der Kurven auf zweiseitigen Flächen. Mathe-
matische Annalen, 72:413�421, 1912. [pp. 50, 56, and 59]

[23] Tamal K. Dey and Sumanta Guha. Transforming curves on surfaces. Journal
of Computer and System Sciences, 58:297�325, 1999. [p. 50]

[24] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis.
Graph drawing. Prentice Hall, Upper Saddle River, NJ, 1999. [p. 20]

[25] P. H. Doyle and D. A. Moran. A short proof that compact 2-manifolds can
be triangulated. Inventiones Mathematicae, 5:160�162, 1968. [p. 32]

63

http://monge.univ-mlv.fr/~colinde/pub/03these.html
http://monge.univ-mlv.fr/~colinde/pub/03these.html


ALGORITHMS FOR EMBEDDED GRAPHS Bibliography

[26] Herbert Edelsbrunner and John Harer. Computational topology. An intro-
duction. AMS, Providence, Rhode Island, 2009. [p. 20]

[27] Alon Efrat, Stephen G. Kobourov, and Anna Lubiw. Computing homotopic
shortest paths e�ciently. Computational Geometry: Theory and Applica-
tions, 35:162�172, 2006. [p. 59]

[28] David Eppstein. Dynamic generators of topologically embedded graphs. In
Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 599�608, 2003. [p. 8]

[29] David B. A. Epstein. Curves on 2-manifolds and isotopies. Acta Mathemat-
ica, 115:83�107, 1966. [pp. 32 and 36]

[30] Je� Erickson. Combinatorial optimization of cycles and bases. In Afra
Zomorodian, editor, Computational topology, Proceedings of Symposia in
Applied Mathematics. AMS, 2012. [p. 46]

[31] Je� Erickson. Computational topology, 2013. Course notes available at
http://compgeom.cs.uiuc.edu/~jeffe/teaching/comptop/. [p. 3]

[32] Je� Erickson and Sariel Har-Peled. Optimally cutting a surface into a disk.
Discrete & Computational Geometry, 31(1):37�59, 2004. [p. 46]

[33] Je� Erickson and Amir Nayyeri. Shortest non-crossing walks in the plane.
In Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pages 297�308, 2011. [p. 62]

[34] Je� Erickson and Kim Whittlesey. Greedy optimal homotopy and homology
generators. In Proceedings of the 16th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1038�1046, 2005. [p. 46]

[35] Je� Erickson and Kim Whittlesey. Transforming curves on surfaces redux.
In Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pages 1646�1655, 2013. [pp. 50, 51, and 59]

[36] István Fáry. On straight line representations of planar graphs. Acta scien-
tiarum mathematicarum (Szeged), 11:229�233, 1948. [p. 20]

[37] Stefan Felsner. Convex drawings of planar graphs and the order dimension
of 3-polytopes. Order, 18(1):19�37, 2001. [p. 21]

[38] Michael S. Floater. One-to-one piecewise linear mappings over triangula-
tions. Mathematics of Computation, 72(242):685�696, 2003. [p. 20]

[39] George K. Francis and Je�rey R. Weeks. Conway's ZIP proof. American
Mathematical Monthly, 106(5):393�399, 1999. [p. 36]

[40] Philip Franklin. The four-color problem. American Journal of Mathematics,
44(3):225�236, 1922. [p. 30]

[41] Greg N. Frederickson. Fast algorithms for shortest paths in planar graphs,
with applications. SIAM Journal on Computing, 16(6):1004�1022, 1987.
[p. 30]

[42] Michael R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simpli-
�ed NP-complete graph problems. Theoretical Computer Science, 1(3):237�
267, 1976. [p. 24]

[43] Michael T. Goodrich. Planar separators and parallel polygon triangulation.
Journal of Computer and System Sciences, 51(3):374�389, 1995. [p. 30]

[44] Steven J. Gortler, Craig Gotsman, and Dylan Thurston. Discrete one-
forms on meshes and applications to 3D mesh parameterization. Journal
of Computer-Aided Geometric Design, 33:83�112, 2006. [p. 20]

[45] Allen Hatcher. Algebraic topology. Cambridge University Press, 2002. Avail-
able at http://www.math.cornell.edu/~hatcher/. [p. 46]

[46] Michael Henle. A combinatorial introduction to topology. Dover Publications,
1994. [pp. 8 and 46]

[47] Monika R. Henzinger, Philip Klein, Satish Rao, and Sairam Subramanian.
Faster shortest-path algorithms for planar graphs. Journal of Computer and
System Sciences, 55(1, part 1):3�23, 1997. [p. 30]

[48] John Hershberger and Jack Snoeyink. Computing minimum length paths of
a given homotopy class. Computational Geometry: Theory and Applications,
4:63�98, 1994. [p. 51]

[49] John Hopcroft and Robert Tarjan. E�cient algorithms for graph manipu-
lation. Communications of the ACM, 16(6):372�378, 1973. [p. 20]

[50] John Hopcroft and Robert Tarjan. E�cient planarity testing. Journal of
the ACM, 21(4):549�568, 1974. [p. 9]

[51] John E. Hopcroft and Peter J. Kahn. A paradigm for robust geometric
algorithms. Algorithmica, 7(4):339�380, 1992. [p. 20]

[52] Giuseppe F. Italiano, Yahav Nussbaum, Piotr Sankowski, and Christian
Wul�-Nilsen. Improved algorithms for Min Cut and Max Flow in undi-
rected planar graphs. In Proceedings of the 43rd Annual ACM Symposium
on Theory of Computing (STOC), pages 313�322, 2011. [p. 30]

[53] David R. Karger, Philip N. Klein, and Robert E. Tarjan. A randomized
linear-time algorithm to �nd minimum spanning trees. Journal of the ACM,
42(2):321�328, 1995. [p. 30]

[54] Lutz Kettner. Using generic programming for designing a data structure for
polyhedral surfaces. Computational Geometry: Theory and Applications,
13:65�90, 1999. [p. 8]

64

http://compgeom.cs.uiuc.edu/~jeffe/teaching/comptop/
http://www.math.cornell.edu/~hatcher/


ALGORITHMS FOR EMBEDDED GRAPHS Bibliography

[55] Phil Klein and Shay Mozes. Optimization algorithms for planar graphs.
Preliminary version of a book, available at http://www.planarity.org,
2017. [pp. 3 and 30]

[56] Casimir Kuratowski. Sur le problème des courbes gauches en topologie.
Fundamenta Mathematicae, 15:271�283, 1930. [p. 8]

[57] Martin Kutz. Computing shortest non-trivial cycles on orientable surfaces
of bounded genus in almost linear time. In Proceedings of the 22nd Annual
Symposium on Computational Geometry (SOCG), pages 430�438. ACM,
2006. [p. 46]

[58] Francis Lazarus. Combinatorial Graphs and Surfaces from the Computa-
tional and Topological Viewpoint. Habilitation thesis, Université de Greno-
ble, 2014. [p. 62]

[59] Francis Lazarus, Michel Pocchiola, Gert Vegter, and Anne Verroust. Com-
puting a canonical polygonal schema of an orientable triangulated surface.
In Proceedings of the 17th Annual Symposium on Computational Geometry
(SOCG), pages 80�89. ACM, 2001. [pp. 46 and 62]

[60] Francis Lazarus and Julien Rivaud. On the homotopy test on surfaces. In
Proceedings of the 53rd Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), pages 440�449, 2012. [pp. 50, 51, and 59]

[61] Bruno Lévy. Topologie algorithmique: combinatoire et plongement. PhD
thesis, Institut National Polytechnique de Lorraine, 1999. [p. 8]

[62] Pascal Lienhardt. N -dimensional generalized combinatorial maps and cel-
lular quasi-manifolds. International Journal of Computational Geometry &
Applications, 4(3):275�324, 1994. [p. 8]

[63] Richard J. Lipton and Robert Endre Tarjan. A separator theorem for planar
graphs. SIAM Journal on Applied Mathematics, 36(2):177�189, 1979. [p. 30]

[64] Yuri Makarychev. A short proof of Kuratowski's graph planarity criterion.
Journal of Graph Theory, 25:129�131, 1997. [p. 8]

[65] William S. Massey. Algebraic topology: an introduction, volume 56 of Grad-
uate Texts in Mathematics. Springer-Verlag, 1977. [p. 51]

[66] Tomomi Matsui. The minimum spanning tree problem on a planar graph.
Discrete Applied Mathematics, 58(1):91�94, 1995. [p. 30]

[67] Gary L. Miller, Shang-Hua Teng, William Thurston, and Stephen A. Vavasis.
Separators for sphere-packings and nearest neighbor graphs. Journal of the
ACM, 44(1):1�29, 1997. [p. 30]

[68] Bojan Mohar and Carsten Thomassen. Graphs on surfaces. Johns Hopkins
Studies in the Mathematical Sciences. Johns Hopkins University Press, 2001.
[pp. 3, 8, 21, and 46]

[69] Takao Nishizeki and Md Saidur Rahman. Planar graph drawing. World
Scienti�c, 2004. [p. 20]

[70] Grisha Perelman. The entropy formula for the Ricci �ow and its geometric
application. arXiv:math/0211159, 2002. [p. 51]

[71] Grisha Perelman. Ricci �ow with surgery on three-manifolds.
arXiv:math/0303109, 2003. [p. 51]

[72] Sheung-Hung Poon and Shripad Thite. Pants decomposition of the punc-
tured plane. arXiv:cs.CG/0602080, 2006. [p. 46]

[73] John H. Reif. Minimum s − t cut of a planar undirected network in
O(n log2(n)) time. SIAM Journal on Computing, 12(1):71�81, 1983. [p. 30]

[74] Jürgen Richter-Gebert. Realization spaces of polytopes, volume 1643 of Lec-
ture Notes in Mathematics. Springer-Verlag, Berlin, 1996. [pp. 16 and 20]

[75] Neil Robertson, Daniel P. Sanders, Paul Seymour, and Robin Thomas. E�-
ciently four-coloring planar graphs. In Proceedings of the 28th Annual ACM
Symposium on Theory of Computing (STOC), 1996. [p. 30]

[76] Neil Robertson and Paul D. Seymour. Graph minors. XX. Wagner's conjec-
ture. Journal of Combinatorial Theory, Series B, 92:325�357, 2004. [p. 36]

[77] S. K. Stein. Convex maps. Proceedings of the AMS, 2:464�466, 1951. [p. 20]

[78] John Stillwell. Classical topology and combinatorial group theory. Springer-
Verlag, New York, second edition, 1993. [pp. 3, 8, 36, 51, 57, and 59]

[79] Carsten Thomassen. Kuratowski's theorem. Journal of Graph Theory,
5(3):225�241, 1981. [p. 8]

[80] Carsten Thomassen. The Jordan-Schön�ies theorem and the classi�cation
of surfaces. American Mathematical Monthly, 99(2):116�130, 1992. [pp. 5
and 32]

[81] Carsten Thomassen. Tutte's spring theorem. Journal of Graph Theory,
45(4):275�280, 2004. [p. 20]

[82] William T. Tutte. How to draw a graph. Proceedings of the London Mathe-
matical Society, 13:743�768, 1963. [p. 20]

[83] Gert Vegter and Chee K. Yap. Computational complexity of combinatorial
surfaces. In Proceedings of the 6th Annual Symposium on Computational
Geometry (SOCG), pages 102�111. ACM, 1990. [p. 46]

[84] K. Wagner. Bemerkungen zum Vierfarbenproblem. Jahresbericht der
Deutschen Mathematiker-Vereinigung, 46:26�32, 1936. [p. 20]

[85] Günter M. Ziegler. Lectures on polytopes, volume 152 of Graduate Texts in
Mathematics. Springer-Verlag, Heidelberg, 2007. [pp. 19 and 20]

65

http://www.planarity.org


ALGORITHMS FOR EMBEDDED GRAPHS Contents

Contents

Foreword and introduction 2

1 Basic properties of planar graphs 3

1.1 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Planarity testing and graph drawing 9

2.1 Planarity testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Graph drawing on a grid . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Tutte's barycentric embedding theorem . . . . . . . . . . . . . . . 16

2.4 Steinitz' theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 E�cient algorithms for planar graphs 21

3.1 Minimum spanning tree algorithm . . . . . . . . . . . . . . . . . . 21

3.2 Separators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Graph coloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Minimum cut algorithm . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Topology of surfaces 31

4.1 De�nition and examples . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Surface (de)construction . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Classi�cation of surfaces . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Surfaces with boundary . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Computing shortest graphs with cut loci 37

5.1 Combinatorial and cross-metric surfaces . . . . . . . . . . . . . . . 37

5.2 Cut loci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3 Shortest non-contractible loop . . . . . . . . . . . . . . . . . . . . . 39

5.4 Shortest non-separating loop . . . . . . . . . . . . . . . . . . . . . 41

5.5 Shortest system of loops . . . . . . . . . . . . . . . . . . . . . . . . 43

5.6 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Deciding homotopy with universal covers 46

6.1 Homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2 Universal cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3 Testing homotopy for surfaces without boundary . . . . . . . . . . 50

6.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 Tightening paths on surfaces 51

7.1 Surfaces with boundary . . . . . . . . . . . . . . . . . . . . . . . . 52

7.2 Surfaces without boundary . . . . . . . . . . . . . . . . . . . . . . 55

7.3 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8 Other decompositions of surfaces 59

8.1 Canonical system of loops . . . . . . . . . . . . . . . . . . . . . . . 59

8.2 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

References 62

66


	Foreword and introduction
	Basic properties of planar graphs
	Topology
	Preliminaries on topology
	Graphs and embeddings
	Planar graphs and the Jordan curve theorem

	Combinatorics
	Combinatorial maps for planar graph embeddings
	Duality and Euler's formula

	Notes

	Planarity testing and graph drawing
	Planarity testing
	Graph drawing on a grid
	Tutte's barycentric embedding theorem
	Steinitz' theorem
	Notes

	Efficient algorithms for planar graphs
	Minimum spanning tree algorithm
	Separators
	Graph coloring
	Minimum cut algorithm
	Naïve algorithm
	Divide-and-conquer algorithm
	Correctness and complexity analysis

	Notes

	Topology of surfaces
	Definition and examples
	Surface (de)construction
	Surface deconstruction
	Surface construction

	Classification of surfaces
	Euler characteristic and orientability character
	Classification theorem

	Surfaces with boundary
	Notes

	Computing shortest graphs with cut loci
	Combinatorial and cross-metric surfaces
	More types of curves
	Combinatorial surfaces
	Cross-metric surfaces
	Curves on cross-metric surfaces, algorithmically
	Complexity

	Cut loci
	Shortest non-contractible loop
	3-path condition
	Structural lemmas
	Algorithm

	Shortest non-separating loop
	Types of simple loops
	Preliminaries on homology
	Algorithm

	Shortest system of loops
	Algorithm

	Extensions
	Shortest loops on surfaces with boundary
	Shortest paths relatively to a set of points
	Shortest arcs on a surface with boundary

	Notes
	Discrete vs. continuous setting
	Algorithms


	Deciding homotopy with universal covers
	Homotopy
	Definition
	Fundamental group

	Universal cover
	Examples
	Definition and properties
	Construction for surfaces with boundary
	Construction for surfaces without boundary

	Testing homotopy for surfaces without boundary
	Notes

	Tightening paths on surfaces
	Surfaces with boundary
	Tightness of the shortest system of arcs
	Algorithm
	Complexity analysis and refinement

	Surfaces without boundary
	The universal cover
	Building the relevant region
	Conclusion

	Notes

	Other decompositions of surfaces
	Canonical system of loops
	Notes

	References

