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Abstract

Numerous approaches based on metrics, token sequence
pattern-matching, abstract syntax tree (AST) or program
dependency graph (PDG) analysis have already been pro-
posed to highlight similarities in source code: in this pa-
per we present a simple and scalable architecture based on
AST fingerprinting. Thanks to a study of several hashing
strategies reducing false-positive collisions, we propose a
framework that efficiently indexes AST representations in a
database, that quickly detects exact (w.r.t source code ab-
straction) clone clusters and that easily retrieves their cor-
responding ASTs. Our aim is to allow further processing
of neighboring exact matches in order to identify the larger
approximate matches, dealing with the common modifica-
tion patterns seen in the intra-project copy-pastes and in
the plagiarism cases.

1 Introduction

Software analysis, maintenance and reengineering could
often benefit from performing clone detection, either for
software evaluation or for refactoring issues [1, 5, 16].
Several tools address the problem of identifying software
clones that come from copy-paste modifications sometimes
followed by slight modifications [4, 20]. A related more
complex problem is the detection of software plagiarism,
i.e. copies with intentional obfuscations, for instance for
license issues or in evaluation of student projects [17, 8].
Even if they could rely on similar transformations, tools
addressing this latter issue often require more complex
abstraction and processing than for simple clone detec-
tion. They also support a loosened association of code
chunks [24, 18, 6].

To bring these two problems together into the general
issue of source code similarity detection, the choice of an
appropriate representation for the source code is required.

Four kinds of representation are widely used by similarity
detection tools: translation of source in a vector space us-
ing metrics (easily defeated by trivial edits), token sequence
linear representation, AST representation obtained by pars-
ing or PDG representation. Linear representations by (ab-
stracted) token sequences of source code allow the compar-
ison algorithms to be efficient (based on global [19] or lo-
cal alignment [10] and n-gram fingerprinting [24, 21]), but
they hide the structural organization of the program. Richer
representations (ASTs or PDGs) permit fine-grained analy-
sis, manipulation and comparison possibilities, even if, for
PDGs [15], it implies a more expensive processing cost.

Beyond the comparison of costs, a key-point of similar-
ity detection tools relies on their scalability. Indeed, the
search for common parts of code could be performed in-
side a huge project (e.g. for refactoring), between two large
projects (e.g. for plagiarism litigation), between an impor-
tant number of projects, or against a database of projects
and could concern a large amount of data. This scalabil-
ity requires not only practical space and time complexities
but also the possibility to incrementally store and re-use the
processed data. We also expect from a similarity detection
tool to retrieve direct clone clusters rather than numerous
simple clone pairs that would later be costly to group by
a clustering algorithm. Through subtree fingerprinting, us-
ing ASTs to retrieve clones appears as a good compromise
between syntactic understanding and scalability.

The usual process for clone detection consists in a dedi-
cated process that looks for approximate matches that might
yield a large amount of false-positives. Matches have to be
further confirmed or discarded. If there is a change in the
set of parameters defining an acceptable degree of similar-
ity, this costly process has to be completely redone. Rather,
our approach consists in providing an efficient access to ex-
act AST clones (w.r.t representation abstraction). Instead
of providing a global solution, clones are available to be
extended into larger approximate matches through various
analysis and transformation plugins relying on ASTs.



Figure 1. Overview of the system

In this paper, we present in section 2 our system of
source code matching that allows large-scale software sys-
tems to be stored and processed. It first parses each compi-
lation unit and serializes, stores and references its AST in a
repository. Next, each node of this AST is associated with a
fingerprint based on a hash value (incrementally computed)
of the subtree rooted at the node in question allowing parent
and children node information to be reached. These finger-
prints are indexed and the system permits the retrieval of
clusters of exact matches in the database but also looks for
clones matching a (part of a) given single query tree. In both
cases, the ASTs of detected clones could be retrieved from
the repository to discard the possible false-positives but,
contrary to existing methods [2, 11] that artificially choose
bad hash function to associate a same value for near-miss
clones, we prefer syntax tree hashing that avoids collisions,
saving us the costly detection of false-positives. Then, for
a concrete case study, section 3 shows some results of our
system for the Java API source code.

2 Code matching process overview

2.1 Fingerprinting/indexing syntax trees

The main steps of our source code matches retrieval sys-
tem are summarized in figure 1. Each compilation unit is
first parsed into an AST that is lazily serialized and stored,
allowing us to fetch backtracing data for a given node with-
out retrieving the complete rooted subtree. Each subtree1,

1Since we are not interested in finding tiny clones and we want to min-
imize the size of our database, only fingerprints whose linked subtrees are
greater than a weight threshold are kept.

from these syntax trees obtained from parsing, is repre-
sented with a digest form (a fingerprint). The fingerprint
of subtree t is a tuple including its weight w(t) (in fact the
size of the subtree), its hash value H(t) reflecting its struc-
tural properties computed thanks to a hash function (cf. sec-
tion 2.3) and pointers to its related subtree root node and to
its parent node. A double index is maintained on the fin-
gerprint database: fingerprints are first sorted according by
decreasing weight, then by hash value, and also by parent
linked node. We implement these indexes using a B+-k-
tree [3] (k to 2k arity tree indexing structure adapted for
mass storage). Thanks to this structure, it is possible to it-
erate over the database to retrieve first the most weighted
clones and to get all of the fingerprints of children subtrees
of a given node. Assuming a linear parsing algorithm and
an incremental hashing function for the subtrees (see sec-
tion 2.3) the time complexity is limited by the fingerprint
indexing process requiring O(n logk n) I/O accesses for a
B+-k-tree to index a tree of size n. We study and evaluate
several tree fingerprinting methodologies in section 2.3.

2.2 Retrieving clusters of exact matches

2.2.1 Single subtree exact match clusters

A simple iteration over the fingerprint database2 enables the
retrieval of clusters of exact subtree matches: clusters share
the same weight and hash value. However, even if false-
positives are relatively improbable (syntactically different
subtrees with same weight and hash value), they must not
be ignored. The length of hash values can be increased to
reduce the occurrences of false-positives with a detrimental
burden on the size of the database.

To discard false-positives in clusters, we examine a fixed
number of children fingerprints in a breadth-first explo-
ration, that drastically reduces the collision probability.
For instance, considering two subtrees, rooted at nodes α
and β with respective children a1, . . . , ai and b1, . . . , bi.
If α and β share the same weight and hash values, we
compare the weight and hash values of the children pairs
(a1, b1), . . . , (ai, bi). This is easily done through the parent
node pointer of the fingerprint that allows, given a node, the
retrieval of the fingerprints of its children. This probabilis-
tic approach of false-positive detection does not require the
deserialisation of the syntax trees.

Furthermore, a subtree exact matches cluster C of a
given weight implies the existence of clusters of smaller
weights containing each subtrees of the trees in C. Iterat-
ing from greatest weight to smallest weight in the database
allows us to discard these sub-matches.

2Rather than iterating over all the database, only fingerprints from a
given set of hash values may be fetched if we are interested in clones
existing between a given tree and the forest of fingerprinted trees in the
database.



2.2.2 Multi-subtrees exact matches clusters

The fingerprint database structure does not address the
problem of finding clusters of sequence of consecutive sib-
ling subtrees. Basically, this would require fingerprinting all
factors of sequences of child nodes and would consequently
multiply the size of the database by a factor up to the maxi-
mal arity of the tree. To efficiently cope with this problem,
we use a suffix tree or a suffix array to index all of the suf-
fixes (and implicitly the factors) of the sequences of child
node fingerprints. This approach has already been used
on token sequences or tokenized representations of syntax
trees (obtained from complete tree depth traversal) [22, 14],
but not yet on sequences of fingerprints representing sibling
subtrees, each subtree already being a member of a clone
cluster. This allows to minimize the size of handled struc-
tures and to syntactically bound considered matches.

Given single subtree exact match clusters (cf. sec-
tion 2.2.1), our algorithm uses a suffix array to compute
consecutive multi-subtrees exact matches. First, an array of
all of the single subtree nodes contained in an exact match
cluster (i.e. subtrees occurring at least twice) is sorted ac-
cording to the syntax tree links, such that fingerprints of
sibling nodes in the syntax tree are adjacent in the sorted
array. Next, all of the segments of consecutive sibling sub-
trees (represented by their cluster, i.e. their equivalence
class identifier) are collected to build a generalized suffix
array. This suffix array contains all of the suffixes of finger-
print segments sorted such that matching consecutive sib-
ling subtrees are adjacent in the suffix array. We next cre-
ate an interval tree from the suffix array: this interval tree
is homomorph with the generalized suffix tree (without its
leaves) that may be built from the fingerprint segments.

For instance, let us consider the fingerprint segments
s1 = abcdef , s2 = gbcdeh and s3 = ijcdeh: s1 repre-
sents the fact that a, b, c, d, e and f are the fingerprints
of six consecutive sibling children of a given node. In the
same way as s2 and s3 represent other sequences with some
shared fingerprint values. We then compute the suffix array
and interval tree presented on figure 2 that specifies, besides
the parenthood relationship, the suffix links between inter-
vals. Each interval with a lcp (length of common prefix)
greater than 1 is suffix-linked to an interval that contains at
least the suffixes of the segments of length lcp − 1. If it
contains no other segment suffix, this interval is not inter-
esting for clone cluster reporting, since the clones of this
interval are included into an interval of greater lcp. The
discarded intervals are shown in gray in figure 2; for in-
stance, the interval de[7..9] only contains 3 suffixes that di-
rectly come from interval cde[4..6]. On the other hand, if
the suffix interval contains one or several new segments, it
has to be considered as a clone cluster; for instance, the
interval cde[4..6] contains not only suffixes of the interval
bcde[2..3], but also of the suffix s3[3..5]. Finally, all of the

intervals, minus the discarded ones due to suffix inclusion,
represent the clone clusters containing segments of consec-
utive sibling subtrees.

Building the suffix array can be achieved in a time linear
with the cumulated lengths of segments [12] whereas the
interval tree construction is also obtained in linear time iter-
ating over the computed lcp-table (also in linear time [13])
using a stack.

2.3 A glimpse on subtree hashing

Avoiding collisions and thus subtree false-positive re-
ports is an essential criterion for the choice of an hash func-
tion. An incremental hash functionH is also highly wanted:
given a tree α of kind K with child subtrees a1, · · · , an, a
hash combination function f must exist such as H(α) =
f (K, (H(a1), · · · ,H(an))) may be computed3 in constant
time. Then the subtrees can be bottom-up fingerprinted. A
first requirement is the definition of an assigned hash value
(e.g. a randomly generated integer) for each kind of node
according to the wished abstraction level. For example one
can abstract all the primitive types (integer, long, short, ...)
or loop nodes with a single hash value. We studied in [7]
several hash combination functions through the quantifica-
tion of generated collisions on a randomly generated set of
trees. These functions were based on cryptographic hash
functions (the hash value of a tree is computed by the SHA-
1 or MD5 digest of the concatenation of the hash values
of its child subtrees) or Karp-Rabin hashing (a polynomial
function of the hash values of the child subtrees). Experi-
mental results show that they are nearly equivalent in terms
of encountered collisions. For comparison purpose, we also
introduced a bad hash combination function that sums all
the node kind hash values in a subtree (that behaves like
metrics).

3 A case study: retrieving clones on the
OpenJDK

In order to test several abstraction levels we apply our
clone detection tool on the Java classes of the source code
of the Open JDK 1.74 with the following fingerprinting
methodologies.

Standard fingerprinting (std): the syntax trees are
abstracted regarding to the identifiers with the introduc-
tion of commutative operators (TypeDeclaration for class

3We can derive from the combination function f a commutative func-
tion fc by sorting the hash values of children: fc may be used for nodes
whose child subtrees are commutative (operands of some infix operators,
members of a class, ...).

4Open JDK 1.7 build 42 of 2008-12-19 with∼2.5M LOC in 7378 files
parsed in 29.9 million nodes by the Eclipse JDT parser



Suffix array Interval tree with suffix-links Multi-subtree clone clusters
Rank Suffix

1 s1[1..] = abcdef
2 s1[2..] = bcdef
3 s2[2..] = bcdeh
4 s1[3..] = cdef
5 s2[3..] = cdeh
6 s3[3..] = cdeh
7 s1[4..] = def
8 s2[4..] = deh
9 s3[4..] = deh
10 s1[5..] = ef
11 s2[5..] = eh
12 s3[5..] = eh
13 s1[6..] = f
14 s2[1..] = gbcdeh
15 s2[6..] = h
16 s3[6..] = h
17 s3[1..] = ijcdeh
18 s3[2..] = jcdeh

Clone cluster Members

bcde s1[2..5]
s2[2..5]

cde s1[3..5]
s2[3..5]
s3[3..5]

cdeh s2[3..6]
s3[3..6]

Figure 2. An example of extension of single subtree matches to consecutive sibling nodes between
sequences of fingerprints s1 = abcdef , s2 = gbcdeh and s3 = ijcdeh

members and InfixOperation). Only fingerprints for sub-
trees greater than a set weight threshold w (in terms of
number of nodes) are kept. Fingerprinting with subtree
abstraction (subAbstr): a new level of abstraction is
introduced by attributing to all of the subtrees of strictly
smaller weight than w′ (w′ ≤ w) the same hash value.
Even if close to Asta’s approach [9] that abstracts subtrees
at a depth greater than a given threshold it may detect less
false-positives in depth-unbalanced trees. Minor edit opera-
tions done on small subtrees are ignored by the fingerprint-
ing process and near-miss clones can be detected with a loss
of precision. Fingerprinting with primitive type abstrac-
tion (primAbstr): since Java does not provide a template
system for primitive types, large amount of code may be du-
plicated for different primitive types. Abstracting primitive
types enables the localizing of these chunks of code even if
they cannot be factorized. Fingerprinting using the sum
hash function (sum): the sum hash function does not con-
sider the structure and may induce numerous false-positives
on semantically different subtrees sharing the same number
of nodes of each type.

The quantitative results obtained5 with these different
methodologies applied on the Open JDK 1.7 can be found in
figure 3. Since the notion of good matches is a very subjec-
tive one, computerized quantification of accuracy and recall
of results is very touchy. However if all of the exact subtree
matches (considering the tree abstraction level induced by
the fingerprinting methodology) can be retrieved, no guar-
antee can be provided on their semantic value. According
to Roy and Cordy’s taxonomy of editions scenarios [20],
our tree fingerprinting technique is insensitive to formatting

5The parsing and fingerprint processes using the four methodologies
were executed with the Sun client JVM 1.6 on an Intel P8600 2.4 Ghz
with 4 GB of RAM in about 15 minutes. Iterating over the fingerprint
database, the creation of exact match clusters and the extension of single
exact matches to consecutive sibling exact matches were executed in less
than 3 minutes.

Methodology Clusters Clones Clone pairs
std w ∈ [10, 50[ 23426 107967 2447949
std w ∈ [50, 100[ 1390 3637 10511
std w ≥ 100 485 1454 10947
subAbstr w ∈ [10, 50[ 19344 128331 6908092
subAbstr w ∈ [50, 100[ 1499 3914 10948
subAbstr w ≥ 100 542 1584 11604
primAbstr w ∈ [10, 50[ 22892 108601 2560195
primAbstr w ∈ [50, 100[ 1417 3717 10706
primAbstr w ≥ 100 516 1530 11087
sum w ∈ [10, 50[ 23953 115914 2651345
sum w ∈ [50, 100[ 1446 3767 10623
sum w ≥ 100 522 1529 10987

Figure 3. Clone enumerations for different
fingerprint methodologies

change and identifier renaming. If it cannot directly deal
with insertion or deletion of statements, the subAbstr ab-
straction can manage minor modification edits and sum ab-
straction code transposition.

We note that the fingerprinting methodologies are more
or less neutral in terms of reported clone numbers whereas
the size of these clusters may vary especially for small
to medium clones when several clusters for a weakly ab-
stracted methodology can be merged by a higher abstracted
one. The detection of large clones (w ≥ 100) is hardly im-
pacted by the various methodologies.

We also studied the localization of clone pairs among
the packages: most clones (more than 80%) can be found
inside the same package. In terms of source code coverage
the clones found using the different fingerprinting method-
ologies represent less than 8% of the source code (6.0%,
6.1%, 6.4% and 7.4% resp. for std, primAbstr, sum
and subAbstr). Unsurprisingly the subAbstr method-
ology (withw′ = 5) induces the better clone code coverage:
the additional large clones reported are comparatively rele-



vant according to a preliminary analysis on a little sample.
Some characteristic clone samples detected with the differ-
ent methodologies could be found in [7].

4 Conclusion and future works

In this paper we focused on a method using finger-
printing on syntax trees to retrieve clone clusters of exact
matches across sets of projects or between a given project
and a database of projects. We proposed a technique to
aggregate continuous sequences of matched single clones
thanks to a suffix array. Then we focused on evaluating
several hash functions to minimize collisions between false
positives: our results show that both Karp-Rabin hashing
and cryptographic hashing could be efficiently used on syn-
tax trees. Beyond these technical consideration, the most
important parameter in the fingerprinting process is the level
of abstraction for the handled syntax trees: different finger-
printing methodologies linked to different abstraction lev-
els were tested. Finally, we reviewed the cases where an
exact matching system, based on syntax tree fingerprint-
ing, showed its limits. However the system described must
be seen as a foundation permitting later extension of exact
matches to near-miss matches, in order to detect more so-
phisticated obfuscation patterns, plagiarized code like mod-
ifications of control structures or inlining/outlining of func-
tions. Extension methods from exact match germs have al-
ready been studied through local alignment on linear to-
ken sequences [23] but not on AST structures. The for-
mal definition and description of a scalable extension pro-
cess on ASTs that could consolidate not only sibling non-
consecutive exact matches but also cousin exact matches
with a behavior adapted to the types of encountered nodes
remain.
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