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ABSTRACT
Finding exact clones in source code can be efficiently handled
using classical exact substring or subtree pattern match-
ing techniques inspired from genomics applications. These
methods may be wisely employed as a foundation to sketch
new techniques highlighting duplicated code chunks present-
ing minor edits or more extensive modifications at a higher
structural scale. The main goal is to improve recall of small
near matches and to aggregate them into larger ones to pro-
vide a more global view of similarities with a reasonable
complexity. These concerns are essential to be able to ad-
dress a large database of source code projects.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics; I.5.3 [Computing
Methodologies]: Pattern Recognition

General Terms
Algorithms
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1. CONTEXT
Most popular clone detection tools, either in a code reengi-

neering or in a plagiarism highlighting context, consider se-
quences of tokens [10, 8] or syntax trees [1] as an abstracted
view of the source code. For token sequence representations,
groups of occurrences of exact repeated token factors can be
found with suffix indexing structures like the suffix arrays [9]
or the suffix trees [13] in linear time. Zones of high density
of similar n-grams [12] can also be used to spot similari-
ties. Nevertheless, when local edits are introduced between
code clones, looking for exact repeated factors is inappro-
priate: in this case, local alignment algorithms [6] could be
used to retrieve approximate substring matches containing
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small unmatched gaps. However, these techniques require a
detrimental quadratic running cost in number of tokens: it is
preferable to use them on carefully selected zones containing
suspected clones.

2. FUNCTIONAL CALL GRAPHS
OF TOKEN SEQUENCES

To cope with multiple occurrences of similarities and to
have a global view of them, we proposed in [3] a method
allowing similarity report at a kind of function level. Us-
ing suffix structures, we split each original function of the
source code into different components that are either token
substrings shared by other functions or unmatched token
sequences. Shared token substrings may themselves be de-
composed with the help of smaller nested similarities found
among them. Following this approach, we transform indi-
vidual function call graphs of the compared projects into a
global call graph introducing new synthetic functions that
represent the granularity of shared chunks of code across
the projects. We do not use these call graphs for refac-
toring purpose, but rather to define several metrics based
on the amount of code represented by shared nodes be-
tween projects. This method allows similarity retrieval at
a synthetic-function level despite extensive edits involving
removal, transposition, addition of source code or even in-
lining or outlining of functions (clones of type 3 according
to [2] or types 3-4 for [11]).

Thanks to this factorization approach, comparing elemen-
tary unmatched token sequences using an alignment algo-
rithm allows retrieval of similarities that would be missed
otherwise thanks to resiliency towards local edits (like re-
moving or adding neutral token sequences, for instance - 0
or * 1 in arithmetic expressions like in figure 1). Identifying
tiny local similarities may also help to counter to the devel-
opment of identifiers into expressions (like the development
of identifier diff seen in lines 8-9 of stdDev2) but also to
select pairs of token sequences containing high densities of
tiny clones that will be tested through alignment methods.

3. CLASSIFYING ABSTRACT SYNTAX
SUBTREES

Concerning methods based on syntax tree representations,
most accurate approaches [14] involve extensive and very
costly dynamic programming comparison of all subtrees com-
paring to linear token approaches. Preclustering potential
similar subtrees, using degraded hashing strategies or met-
rics [7], appears essential to reduce the number of subtree



1 double mean(double[] data) {
2 double sum = 0.0;
3 for (double datum: data) sum += datum;
4 return sum / data.length;
5 }
6 double stdDev1(double[] data) {
7 double stddev = 0.0;
8 double mean = mean(data);
9 for (double datum: data) {

10 double diff = datum − mean;
11 stddev += diff ∗ diff;
12 }
13 return Math.sqrt(stddev);
14 }

1 double stdDev2(double[] donnees) {
2 double somme = 0.0;
3 for (double donnee: donnees)
4 somme = somme + donnee;
5 double moyenne = somme / donnee.length − 0;
6 double ecartype = 0.0;
7 for (double donnee: donnees)
8 ecartype += (donnee − moyenne)
9 ∗ (donnee − moyenne) ∗ 1;

10 return Math.sqrt(ecartype);
11 }

Figure 1: An original standard deviation computation function stdDev1 in Java and a transformed copy stdDev2
involving inlining, identifier renaming and local edits

comparisons.
We explore in [4] some of these hashing strategies based

on an abstracted view of the syntax tree associated with dif-
ferent hash functions. We could then introduce hash values
of subtrees according to several abstraction profiles (con-
founding all types, discarding small subtrees above a given
size, considering commutativity of operators...) and infer
similarity metrics on subtree pairs according to these ab-
straction profiles. Thus, duplicated subtrees involving most
trivial local edits are detected and their distance quantified.

4. STRUCTURAL CONSOLIDATION
OF LOCAL CLONES

The second challenge related to clone detection based on
syntax trees focuses on merging simple subtree clones to
form higher level clones. This problem does not involve
only gathering sibling subtree clones that can be handled
with suffix indexation algorithms [5] but also more distant
clone subtrees like cousins. It allows detection of large clones
composed of smaller ones that are transposed or flooded with
other clones that are too heavily transformed to be recog-
nized.

Gathering close clones in the syntax tree using various
fast heuristics is an interesting issue to be explored. The
call graph can also be used to assemble clones that are po-
tentially reachable from a common function. It leads then
to a more concise view of the similarities in source code at
a higher level that may be later refined according to the
user will. For example, in figure 1, reporting a single match
between the complete functions stdDev1 and its copied coun-
terpart stdDev2 appears more appropriate that two matches
involving mean and stdDev1 respectively linked to the start
and the end of stdDev2.
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