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Abstract

The high availability of a huge number of documents on the Web makes plagiarism
very attractive and easy. This plagiarism concerns any kind of document, natural
language texts as well as more structured information such as programs. In order
to cope with this problem, many tools and algorithms have been proposed to find
similarities. In this paper we present a new algorithm designed to detect similarities
in source codes. Contrary to existing methods, this algorithm relies on the notion of
function and focuses on obfuscation with inlining and outlining of functions. This
method is also efficient against insertions, deletions and permutations of instruc-
tion blocks. It is based on code factorization and uses adapted pattern matching
algorithms and structures such as suffix arrays.

Key words: program transformation, factorization, inlining,
outlining, similarity metrics, software plagiarism

1 Introduction

Current similarity detection techniques on source codes are mainly inspired
from computer genomic algorithms [21,23,11] in which factorization and de-
velopment (outlining and inlining) have not been widely explored. In this
paper, we present a new similarity detection technique based on the factor-
ization of source code that permits finding similarities and quantify them at
a function-level thanks to a synthetized graph-call of the programs.

This technique consists in splitting each original function into sub-functions,
sharing as much sub-functions as possible between original functions. The
whole source code is then represented by a call graph: the vertices are the
functions and the edges are the function calls. Thus, similar functions should
derive in an identical, or comparable, set of sub-functions, i.e., leaves of the
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call graph. Depending on the measurement used to evaluate (sub-)function
similarities, this technique may not be sensible to insertion, deletion, inver-
sion, inlining or outlining of source code which are the most common methods
of obfuscation.

The rest of this paper is organized as follows. Section 2 gives an overview
of the whole detection process. The main steps of the factorization algorithm
and call graph analysis are detailed in section 3 and 4. Related work and
benchmarks are discussed in sections 5 and 6. The paper then presents a
conclusion and introduces some future work.

2 Overview

Our work is directed towards finding similarities in source code in procedural
languages at the level of function. Our aim is to experiment a similarity de-
tection technique based on function transformations. Indeed, to be insensitive
to outlining, inlining and source block displacements, we manipulate abstrac-
tions of the programs that are call graphs. Initially, the call graph is the one
of the original program. Next, by using several algorithms, the call graph is
enriched with new synthetic sub-functions that represent the granularity of
similarities.

2.1 From source code to token sequences and call graph

From the original source code of a program, a lexical analysis provides us
with a sequence of tokens. In this sequence, the concrete lexical tokens are
represented by abstract parameterized tokens. Some tokens, such as function
parameters or variable declarations are discarded. It is also possible to use
normalization techniques, based on syntactic or semantic properties, to filter
and enhance the result. For instance, the sequence we process is independent
of the identifiers of variables and functions in order to defeat the simplest
obfuscations 2 . Since the tokens could be scattered and merged into synthetic
sub-functions by the factorization process, each token is associated with its
position (project, file, line number of the token) in the source code in order
to backtrace information. A segment tree [8] is used to store this information,
and is updated to take into account synthetic sub-functions.

After the normalization and the tokenization step, each function of the
source code is represented as a sequence of two kinds of parameterized abstract
tokens: a primitive token is a reserved keyword of the language, a constant or
a variable identifiers and a call token, noted 〈f〉, models a call 3 to a function
f . We respectively note Σp and Σc the sets of primitive and call tokens. For
instance, figure 2 gives the token sequence and alphabets obtained from the
C function f2 of the figure 1.

2 This first step is also performed by other similarity detection tools [18,12].
3 We note that function calls may be statically ambiguous in some languages like Java.
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Each original function of the source code being represented as a sequence
of tokens, the next step of our algorithm is then to identify common factors in
these functions and to factorize them in some new outlined synthetic functions.
However, several factorizations are possible and they potentially require heavy
computations. To cope with these problems, we use classical pattern matching
data-structures, such as suffix arrays, and some new dedicated structures, such
as the parent interval table, allowing our algorithms to be efficient.

2.2 The factorization process

To be able to efficiently identify common factors (identical substrings of to-
kens) in token sequences of functions, we use the suffix array structure [17].
To minimize the number of synthetic outlined functions, we first seek if a
(part of a) small function could be found in a larger one. At first sight, the
notion of small could be perceived as the length of the factor (number of to-
kens); we rather use the notion of weight function w, that may include more
parameters 4 . We note F 0 = {f1, . . . , fn} the set of all original functions,
sorted by increasing weight. Thus, for each function fk ∈ F 0 we scan the
functions F 0

<k = {f1, . . . , fk−1} (functions whose weight are smaller than the
weight of fk) to find pairs of factors (u1, u2) with u1 ∈ fact (F 0

<k) (u1 is a
factor of a function fj ∈ F 0

<k, i.e., j < k) and u2 ∈ fact ({fk}) such as u1 = u2.
Thereafter, the occurrence u1 is outlined into a new synthetic function g = u1

whereas the occurrence u2 from fk is replaced by the call token 〈g〉. We note
that the function fj of u1 is unchanged at this step, to allow larger factors to
be identified in a further fl for l > k. The next iteration of the algorithm will
allow the entire sequence of g to be identified as common with the factor u1

of fj, and the replacement of u1 by 〈g〉 will occur at this time. Anyway, if the
factor u1 covers an entire function fj, there is no need to create a new function
g. These operations of search and replacement of factors by call tokens are
undertaken for all of the functions from F 0. Thus, for the next iteration, a
new set of functions F 1 ⊇ F 0 can be deduced from F 0 adding the new outlined
functions and ordering the resulting set by increasing weight.

Several iterations of this algorithm are needed to achieve better precision
for the call graph, in particular to detect shorter redundancies. Nevertheless,
at the end of each iteration, we are able to evaluate a score of similarity
between two functions. This score is based on the number and the weight
of common leaves of the call-graph that are attainable from each of these
functions. To ease the evaluation, only two kinds of functions are considered
according to their content: either they only contain primitive tokens or only
call tokens. A mixed function is transformed into a function containing only
call tokens via an outlining of all subsequences of primitive tokens.

4 For instance, a function call could have a greater weight than a primitive token, or a usual
instruction (assignment, semicolon) could have a lesser weight than a rare one (switch).
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f3

f3 f1

Φ2Φ1

 1 int min_index(int t[],int start) {
 2    int i_min, j;
 3    i_min=start; j=start+1;              
 4    while (j<SIZE) {
 5      if (t[j]<t[i_min]) i_min=j;
 6      j++;
 7    }
 8    return i_min;
 9  }

10  void exchange(int t[],int a,int b) {
11    int tmp;
12    tmp=t[a]; t[a]=t[b]; t[a]=tmp;
14  }

14  void subsort(int t[],int i) {
15    int i_min;
16    if (i>=SIZE) return;

18    exchange(t,i,i_min);
19    subsort(t,i+1);
20  }

22    int i_min, j, tmp; 
23    if (i>=SIZE) return;
24    i_min=i; j=i+1;
25    while (j<SIZE) {
26      if (t[j]<t[i_min]) i_min=j;
27      j++;
28    }
29    tmp=t[i]; t[i]=t[i_min]; t[i_min]=tmp;

31  }

17    i_min=min_index(t,i);

f1

f2

f4

Φ1

21  void inlined_subsort(int t[],int i) {

30    inlined_subsort(t,i+1);

Φ1

Φ2

Φ2

f2

f2[16]

f4

= f2’

f3[8]
= f3’

f4[23]
= f4’

Figure 1. Source code example and call graph deduced after two iterations

Σp Σc Raw sequence of abstract tokens from f2

IF, LPAR, RPAR, GE <min index> IF LPAR identifier GE identifier RPAR RETURN SEMI

identifier, ASSIGN <exchange> identifier ASSIGN <min index> SEMI

RETURN <subsort> <exchange> SEMI

SEMI <subsort> SEMI

Figure 2. Tokenization of function f2 (subsort)

2.3 Example

For a better understanding, we introduce a small example explicited on fig-
ure 1: a bubble-sort in C where the recursive function subsort (f2) calls the
functions exchange (f1) and min index (f3). The function inlined subsort

(f4) could be considered as an obfuscated version of f2 after the inlining of
f3 and f1. Actually, from such a source code, our algorithm first produces a
sequence of abstract tokens. For example the dictionaries Σp, Σc and the raw
sequence of abstract tokens extracted from f2 are explicited on figure 2. Note
that variable declaration tokens have been omitted.

The first iteration of the algorithm searches matches in F 0 = {f1, . . . , f4}
(we chose function indices with respect to increasing weight of functions, i.e.
number of tokens in our example). During the examination of f4 two matches
in f3 (new function Φ1) and in f1 (new function Φ2) are found. The functions
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Φ1 and Φ2 are outlined and replaced by their call tokens in f4. Depend-
ing on the chosen weight-threshold for match reporting, another function Φ3

corresponding to the lines 16 and 23 could be outlined. Here we consider
instead that these lines yield two distinct primitive-token functions (leaves)
f ′2 = f2[16] and f ′4 = f4[23]. In order to ensure that f3 only contains call
tokens, a new function f ′3 is also outlined, corresponding to the line 8 of
f3: thus, f3 only contains two call tokens to Φ1 and f ′3. Finally, at the
end of the first iteration, the set of functions ordered by increasing weight
is F 1 = {f ′3, f ′2, f ′4, Φ2, f1, f4, f2, Φ1, f3}.

During the second iteration, Φ2 is found and replaced by a call token while
examining f1 and Φ1 is found in f3. We then obtain the call graph explicited
on figure 1 at the end of the second iteration.

This graph allows us to define three kinds of metrics, or scores, based on
the number and the weight of leaves attainable from each function. We define
more precisely in section 4 the score of inclusion (scincl) of a function into
the other, the score of coverage (sccover) of a function by another one and
finally the score of similarity (scsimil) between two functions. For example,
for functions f2 and f4, we obtain following values: scincl(f2, f4) ≈ 0.88 >
sccover(f2, f4) ≈ 0.85 > scsimil(f2, f4) ≈ 0.76.

3 Factorization algorithm

In this section, we focus on the algorithms and data-structures involved in
the factorization of a given function fi using most-weighted non-overlapping
factors of F<i. Realistic examples generate long sequences with a lot of to-
kens. For concision and in order to easily exhibit interesting cases, we will
use a simplistic 5 but illustrative running example with the alphabet {a, b}
for primitive tokens and with five initial functions of F 0:

f1 = aba f2 = aaba f3 = bbaba f4 = bababa f5 = abaabbababa

We will show how f5 could be factorized as aba · ab · bababa, and then be
considered as constituted by sub-functions f1 [0..2], f2 [1..2] and f4 [0..5].

3.1 Working with suffix array

First of all, we have to identify common factors (sub-sequences of tokens) in
functions. Indeed, while inspecting the sequence of tokens of f5, we want to
know which parts of others functions are candidates for a match. To deal with
this problem, our algorithms rely on a suffix array [17], i.e., an indexed table
containing all suffixes of the functions, sorted according to a given order on
the tokens, e.g. lexicographical. Various suffix array construction algorithms

5 The example presented in section 2 is more detailed on the following web page:
http://igm.univ-mlv.fr/∼chilowi/research/finding similarities/
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rank (f, p) suffix (not stored) rank (f, p) suffix (not stored)

1 (f1, 2) a 17 (f1, 1) b a

6 (f2, 0) a a b a 22 (f5, 1) b a a b b a b a b a

7 (f5, 2) a a b b a b a b a 23 (f3, 1) b a b a

8 (f1, 0) a b a 26 (f4, 0) b a b a b a

13 (f5, 0) a b a a b b a b a b a 28 (f3, 0) b b a b a

14 (f4, 1) a b a b a 29 (f5, 4) b b a b a b a

16 (f5, 3) a b b a b a b a

Figure 3. Suffix array for the example

may be used such as the direct linear model of Kärkkäinen and Sanders [13].
The main advantage of this structure is its small size since for a string of
length n only log2 n bits are needed for each suffix whereas the better known
construction of suffix tree requires at least 10 bytes by indexed token [16].

Figure 3 gives a representation of the suffix array for our running example,
where each suffix appears only once: when the same suffix appears in several
functions, we only show in this figure the smallest function index and position,
and increment the rank in the array for each occurrence of this suffix. For the
sake of clarity, it also shows the corresponding sequences, even if they are
actually not stored: a suffix starting at position p of function fi is simply
designated by the pair of integers (i, p). We also need the reverse suffix array,
not represented here: given function index i and a position p defining a suffix
of this function, it provides its rank in the suffix array.

3.2 Searching Factors through Parent Interval Table

The key idea of the suffix array structure is that suffixes sharing the same
prefix are stored at consecutive ranks. Thus, the notion of rank interval makes
sense: for instance, all factors starting with aba could be found in the interval
[8..15]. Nevertheless, intuitively, we are looking in a “long” function for factors
of “shorter” functions. Thus, if we search factors of the complete function
f5 = abaabbababa in the suffix array, we find the interval (singleton) [13..13]
corresponding to the function f5 itself. This is not a suffix of a function of
smaller index, and we have to successively consider all shorter prefixes of this
sequence until finding a rank interval concerning a function of smaller index.

To efficiently search for a maximal factor, we introduce a new data struc-
ture: the Parent Interval Table (PIT ). It is deduced from the complete interval
tree of the suffix array, i.e., a suffix tree without its leaves. To each suffix s,
the PIT associates a set of data ([k..h], l, α, ρ). In the suffix array, k and h
(k 6= h) are the ranks of the first and the last suffixes that share the longest
common prefix (lcp) with s; l is the value of this lcp of the interval [k..h].
Finally, α is the minimal index of the functions associated to its interval, and
ρ is the rank of the longest suffix extracted from the function of index α in the
interval. Figure 4 shows the structure represented by the PIT for our example.
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[6..7],3,2,6 [28..29],5,3,28[17..27],2,1,17

[14..15],5,4,14 [26..27],6,4,26

[23..27],4,3,23

[8..16],2,1,8

[17..29],1,1,17

[8..15],3,1,8

[1..16],1,1,8a b

ε

ab b a baba

a ba

b ba

prefix α, ρ[k..h], l,[1..29],0,1,8

Figure 4. Tree structure represented by the PIT

To find the maximal-lcp interval in the suffix array, different strategies
may be used. The simplest is to build the complete interval tree of the suffix
array, saving the parent pointers between intervals. Another way is to save
only the needed intervals. An interval is needed if and only if its α-value is
strictly smaller than the α-value of one of its children. We use a dedicated
algorithm (not detailed here) to compute the PIT and the needed intervals on
the branches thanks to the LCP table, already computed in linear time [22].
This algorithm uses a simple sequential reading of the LCP table with a stack
simulating the current branch of the interval tree. It runs in linear time, with
a memory complexity in the height of the interval tree (linear in the worst
case).

Our algorithm identifies all the maximal factors of a function fi that match
with parts of functions of F<i. Thus, for each position p in fi, it looks for a
factor of a function in F<i sharing the longest prefix with fi [p..]. To find it,
the information ([k..h], l, α, ρ) is retrieved from the PIT for the suffix fi [p..]:

• If α < i, then ρ is the rank in the suffix table of a function (fα, q) such
as fα [q..q + l − 1] is a maximal factor of fi [p..]. For instance, for f5[3..],
(abbababa), the PIT yields the information ([8..16], 2, 1, 8): since α = 1 < 5
and ρ = 8 is the rank of (f1, 0) we found f1 [0..0 + 2− 1] (ab) as a maximal
factor of f5[3..].

• If α ≥ i, and since we are only looking for factors in F<i, we must examine
the parent interval of smaller lcp, i.e., a parent node in the PIT, until finding
an interval whose minimal function index is smaller than i. For instance,
looking for maximal factor of f4[0..] (bababa) leads to ([26..27], 6, 4, 26):
since α = 4 ≥ 4, we have to consider the interval of the parent node,
([23..27], 4, 3, 23). Now, α = 3 < 4 and ρ = 23 being the rank of (f3, 1), we
found f3 [1..1 + 4− 1] (baba) as a maximal factor of f4[0..].

3.3 Eliminating overlapping factors

Once a set of maximal factors is associated with fi, one for each position, over-
lapping between them is expected. For the example of f5, these factors appear
in the three left-most column of the table of figure 5. Furthermore, several
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suffixes of f5 factors in F<5 abaabbababa abaabbababa abaabbababa factorization

f5 [0..] f1 [0..2] aba aba← 2 aba aba

f5 [1..] f1 [1..2] ba ba ba ba

f5 [2..] f2 [0..2] aab aab aab← 3 aab

f5 [3..] f1 [0..1] ab ab ab ab

f5 [4..] f3 [0..4] bbaba bbaba bbaba bbaba

f5 [5..] f4 [0..5] bababa← 1 bababa bababa bababa

f5 [6..] f4 [1..5] ababa ababa ababa ababa

f5 [7..] f3 [1..4] baba baba baba baba

f5 [8..] f1 [0..2] aba aba aba aba

f5 [9..] f1 [1..2] ba ba ba ba

f5 [10..] f1 [2..2] a a a a

Figure 5. Selection of non-overlapping matches on f5

combinations of (parts of) these factors are allowed to cover the function fi.
For instance, f5 could be covered by ab.aa.bbaba.ba or by aba.ab.bababa.

To retain a factorization of fi using most-weighted 6 non-overlapping fac-
tors, all the matched factors are placed in a priority queue, and the most-
weighted ones will be successively selected, as indicated by the numbered ar-
rows in the figure 5. For each selected factor, we must remove all intersecting
parts from all other candidate factors before selecting the next factor.

To achieve this, a segment tree [8] is created and fed with the intervals
of positions of the factors found on fi. A range tree is an adaptation of a
balanced binary tree: each node is a interval whose key is the low bound. This
structure can be used to find k intersecting factors in O (max(k, log |fi|)). For
each iteration we extract the most-weighted factor u from the priority queue
and search all the intersecting factors V =

{
v1, . . . , v|V |

}
in the range tree.

Since we use an homogeneous weight function 7 , u is not a strict factor of any
factors of V (∀v ∈ V, w(u) ≥ w(v)). For each factor vk ∈ V , we remove it from
the priority queue and from the range tree. If it is not a factor of u but shares
an intersecting part on the left or on the right, we remove the intersecting
part of vk with u to obtain v′k that is added in the range tree.

Since there is at most one match for each position in fi, the most-weighted
matches must be selected between at most |fi| matches. For each selected
match there is at most |fi| − 1 intersecting factors, each of them needed a
time in O (log |fi|) to update the range tree and the queue. So the global

6 The weight function is defined on Σ∗. In a first approach we define the weight function
w(u ∈ Σ∗) = w(u0) + w(u1) + · · · + w(u|u|−1) and a constant weight vector associating to
each primitive token a constant value. To infer the weights of the call tokens, we establish
for each function f the set of reachable leaf functions lf (f) according to the call graph of
the previous iteration (see 4.1) and compute the sum of the weights of these reachable leaf
functions. Thus the weight of a call token reflect the amount of coverage of code of its
underlying called function.
7 A weight function w is homogeneous iff ∀(x, y) ∈ Σ2 such as x ∈ fact (y), w(x) ≤ w(y).
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time complexity is in O
(
|fi|2 log |fi|

)
(O (|fi| log |fi|) if we use the length of

the factor as a weight function).

4 Call graph analysis

The process of factorization we apply is based on the algorithm previously de-
scribed, which is iterated several times. Nevertheless, each iteration provides
us with a call graph whose nodes are functions, with leaves being primitive
functions (composed of only primitive tokens). This graph could be used to
define and measure some metrics, or scores, relative to similarity between two
functions. We will first define abstract metrics qualifying similarity between
two projects, and then present how we value them in the concrete context of
our process. Next, we will see that these metrics could be used to enhance the
factorization algorithm at each iteration.

4.1 Quantifying plagiarism

To measure the degree of similarity on pairs of projects (a project being one
or a set of functions), we define an abstract information metrics I(pi) repre-
senting the amount of information contained in a project pi. The associated
metrics I(pi ∩ pj) and I(pi ∪ pj) quantify respectively the amount of common
information shared between two projects pi and pj and the total amount of
information contained in the two projects pi and pj. We then define the three
following metrics over projects:

• scincl(pi, pj) =
I(pi∩pj)

min(I(pi),I(pj))
is the inclusion metrics and states the degree

of inclusion of one project into another. In fact scincl(pi, pj) = 1 means
that the smaller project (in term of amount of information) is included into
the greater.

• sccover(pi, pj) =
I(pi∩pj)

max(I(pi),I(pj))
is the coverage metrics and quantifies the

degree of coverage of the greater project by the smaller project.

• scsimil(pi, pj) =
I(pi∩pj)

I(pi∪pj)
is the similarity metrics and measures the degree of

similarity between the two projects pi and pj. We note that scsimil(pi, pj) =
1 iff the projects pi and pj are identical according to the information metrics
I.

Since I(pi ∪ pj) ≥ max (I(pi), I(pj)) ≥ min (I(pi), I(pj)) ≥ I(pi ∩ pj) the
following inequality is verified: scincl(pi, pj) ≥ sccover(pi, pj) ≥ scsimil(pi, pj).

In the particular case of our algorithm, we evaluate concrete metrics based
on the previous definitions. Considering the graph of call relations deduced
from the last iteration of the factorization algorithm, the set lf (f) of leaf
functions (functions of primitive tokens) reached by each internal function f
(not leaf) is computed by transitive closure. Then, for each pair of internal
functions (f1, f2) the set lf (f1) ∩ lf (f2) is computed. Based on the weight
function w on leaf functions (w : f −→ |f |may be used), we define the function
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W that associates to a set of leaf functions the sum of their weights. These
data are used to introduce a concrete definition of the amount of information
I contained in projects or shared between functions:

I :


I(f) = W (lf (f))

I(f1 ∩ f2) = W (lf (f1) ∩ lf (f2))

I(f1 ∪ f2) = W (lf (f1) ∪ lf (f2))

Then we deduce a valuation for the metrics scincl, sccover and scsimil:
scincl

sccover

scsimil

 : (f1, f2) −→ W (lf (f1) ∩ lf (f2)) ·


1/ min [W (lf (f1)) ,W (lf (f2))]

1/ max [W (lf (f1)) ,W (lf (f2))]

1/W (lf (f1) ∪ lf (f2))


These metrics have different purposes. scincl is useful to quantify plagia-

rism: if scincl(f1, f2) = 1, then one of the internal functions shares all its
reachable leaf functions with the other like in case of small functions copied
from larger ones or the contrary. For instance, this score detects a plagia-
rism between the functions f4 and Φ1 of figure 1. sccover quantifies the
amount of coverage of the leaf functions of the heaviest function (in terms
of the sum of the weights of the reachable leafs) by those of the lightest. Fi-
nally scsimil(f1, f2) measures the amount of similarity between f1 and f2:
scsimil(f1, f2) = 1 iff lf (f1) = lf (f2).

Since reachable functions are represented by sets, without order consider-
ation in the defined family of metrics, two algorithmically distinct functions
may be considered similar. This method may report false-positive matches,
in particular if the length of leaf functions is not lower-bounded 8 .

For a graph of n functions, computing the weight vector and the simi-
larity matrix requires the knowledge of the reachable leafs of each function
(determined in O (n2) through a graph-walk) and the computation of the in-
tersection of the reachable leaves of each pair of function (in O (n)). Finally,
the computation of a similarity matrix between all functions takes a temporal
complexity in the worst case of O (n3).

4.2 Clustering of similar functions

After each iteration, we introduce a clusterization process on the internal
functions to obtain equivalent classes of functions. Each call token is replaced
by a member of its equivalence class. This induces a simplification of the call
graph with the removal of other functions of the class and some unshared
leaf functions. In the example of figure 1, f2 and f4 may be clustered into an

8 If the leaf functions are reduced to primitive instructions all functions may be similar.
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equivalent class with the removal of {f ′2, f ′3} or {f ′4} depending on the removed
function (f2 or f4). For the next iteration a new total order on Σc is deduced.
Here a call token to f2 or f4 will be considered equivalent. For instance, if
two sequences 〈f2〉 〈f2〉 〈f4〉 and 〈f4〉 〈f4〉 〈f2〉 are encountered, they cannot be
reported as a match. But if f2 and f4 are sufficiently similar to be clustered,
they will be renamed and the two sequences will exactly match at the next
iteration. Clustering introduces false-positives but increases the recall.

We also consider a clusterization process on the leaf functions in order to
treat as similar near sequences of primitive tokens to cope with local additions,
deletions or substitutions of tokens.

5 Related work

Many research work has already focused on the detection of similarities. Among
them, some look for similarities in free texts [7], in this section, however, we
will focus on research work that search similarities in source code. These work
may be divided into two main groups depending on their aim.

The first group of work focuses on software engineering. It attempts to
find exact matching in order to factorize redundant cut-and-paste or to follow
the evolutions between different versions of one project. Usually they do not
address the problem of obfuscation. In this context exact methods of pattern
matching [1,9,3] and complex algorithms on the abstract syntax trees [2] or the
dependency graphs [10,15] may be applied. Several tools such as CCFinder [4]
or CloneDR [6] are used to implement these approaches.

The second group of work focuses on plagiarism detection. Its objectives
are to detect similarities in the potential presence of intentional obfuscation.
The oldest of these works [20,25] that use different program metrics to compare
whole programs are usually defeated by simple transformations. Consequently,
techniques have been used to get around this problem. Several of these tech-
niques [21,23] are based on Karp-Rabin fingerprints of token n-grams [14].
Two popular applications accessible on the Web are used to implement these
approaches. Moss [18] selects and stores fingerprints in a database through the
Winnowing process [23] in order to compare it to a large number of programs.
JPlag [12] extends matching code zones for identical fingerprints with the
Greedy String Tiling algorithm [26]. SourceSecure [19] considers alignment
of semantic fingerprints of salient elements in code generated by grammar-
actions rules. Another approach [5] implemented by the web-service SID [24]
is based on the LZ compression technique [27] to detect redundant code. As
far as we know, the methods based on abstract syntax trees have not been
used to address the detection of plagiarism.

Aside from the differences in the algorithms, unlike other tools that con-
sider complete source code files for comparison, our method is based on a
directed graph representing the program where similar parts of the code are
merged into a single node.

11
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6 Tests

We tested our similarity detection method on a set of 36 student projects
(about 600 lines of ANSI-C code for each project) by comparing it against
Moss [18] and JPlag [12]. Like Moss and JPlag we work on the raw token
stream extracted from the bodies of functions without any preliminary nor-
malization step by syntactic or semantic interpretation.

Among the student projects, we selected a random project that is humanly
obfuscated using the following methods: no change (1), identifier substitutions
(2), changes of positions of functions in the source code files (3), regular inser-
tions and deletions of useless instructions (4), one level of inlining of functions
(5), outlining of parts of functions (6), insertions of identical large blocks of
code (7). We also added a non-plagiarized project (8) according to a human
review.

We studied top inclusion scores from the generated similarity matrices via
Moss, JPlag and our method after 5 iterations using the plagiarism metrics
scincl. Ideally the inclusion (or plagiarism) score between an original project
and an obfuscated project based on the totality of code of it should be 1.
The plagiarism scores for the different kinds of obfuscation can be found in
figure 6 and the execution times (on a Pentium 4 3 Ghz CPU with 1 Go RAM
using the Sun JRE 1.5) for our method in figure 7; since Moss and JPlag are
server-side executed their running time can not be compared. We note that
the parameters used (length of the fingerprinted n-grams and window size)
by the Moss online-service are not known ; concerning JPlag the token length
threshold was set to 10. For our factorization method we used a token length
threshold of 10 to report a match and ignored leafs whose length is smaller
than 10 for the computation of leaf sets.

We observed that almost all the studied student projects contained shared
chucks of code potentially raising false-positive reporting problems. These
can be avoided by discarding code shared by more than one fixed number of
projects (here 10).

Our method, in spite of being directed towards the detection of inlining
and outlining obfuscation, presents lower similarity scores on these kind of
obfuscation than JPlag; the plagiarism score computed by JPlag is not docu-
mented and we will need more work to explain this difference. However, results
are promising for the detection of code obfuscated by insertion and deletion of

Kind of obfuscation 1 2 3 4 5 6 7 8

Factorization (scincl) 1.0 1.0 1.0 0.72 0.87 0.81 0.84 0.04

Moss 0.94 0.94 0.90 0.25 0.74 0.56 0.73 0.01

JPlag 0.99 0.99 0.97 0.37 0.87 0.86 0.81 0.00

Figure 6. Similarity scores between the original and the obfuscated projects
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instructions. The temporal experimental complexity appears linear with the
number of initial tokens.

7 Conclusions

Our factorization method for finding similarities in source code shows modest
but promising results on preliminary tests. Its main advantage relies on the
resistance against obfuscatory methods such as inlining, outlining or shift
of blocks of code. We discuss here the limits of our approach and future
developments to be considered.

Extreme outlining over the set of functions of projects could result in few
short leaf functions (especially when using abstract tokens). For example all
of the instructions and assignments could be outlined in leaf functions. Since
our method does not consider the order of called functions, the precision is
reduced. Some false positive may appear. This is why an upper threshold
for the lengths of the leaf functions must be set. Considering new metrics
for the comparison of pair of functions that takes into account the order of
function calls may be envisaged. Furthermore, some data-flow analysis could
be performed on specific parts of the code to reduce false positives.

Currently, our method does not deal with function calls with one or more
function calls as argument. This type of situation is not unusual in source code
and raises interesting schemes for obfuscation. A preliminary approach could
add temporary local variables to unfold the composed calls into intermediate
assignments.
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Presently, results of outlining processes are viewable as partial outlining
graphs where leaf functions are selected according to their attainability from
initial functions. Similarity between functions or clusters are used to locate
similarities. A more human-friendly tool for the render of results remains to
be studied.
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