
Boolean algebras by length recognizability

Didier Caucal and Chloé Rispal1

1 CNRS, LIGM, University Paris-East, France

caucal@u-pem.fr and rispal@u-pem.fr

Abstract

We present a simple approach to define Boolean algebras on languages. We proceed by inverse

deterministic and length-preserving morphisms on automata whose vertices are words. We give

applications for context-free languages and context-sensitive languages.

1 Introduction

The family of regular languages is closed under many operations. Those closure prop-

erties give an easy way to work with this family and specially the closure under Boolean

operations. Some of these Boolean closure properties are not satisfied at the next level of

the Chomsky hierarchy: the family of context-free languages is not closed under comple-

mentation and intersection, and the subfamily of deterministic context-free languages is not

closed under union and intersection. A standard way to get Boolean algebras is by recog-

nizability by inverse morphism. This notion has been extended to many finite structures

(see [9] among others) and also to infinite automata [4].

An automaton is a set of labeled edges with some initial and final vertices. A morphism

f from an automaton G into an automaton H is a mapping from the vertices of G to the

vertices of H such that for any edge s
a

−→ t of G, f(s)
a

−→ f(t) is an edge of H and

for s initial/final in G, f(s) is initial/final in H. The recognizability by an automaton

H according to an automata family F is defined as the set of languages accepted by the

automata of F that can be mapped by morphism into H.

A good way to obtain Boolean algebras of context-free languages is by structural recog-

nizability [4]. Considering a family of automata such that each labeled transition
a

−→ is a

binary relation on a set R, the morphism has to be a relation of R. This structural notion,

together with a natural notion of determinism on morphisms defines Boolean subalgebras

of many language families. Nevertheless, those Boolean algebras can be too restrictive.

For instance, the set of visibly pushdown languages [1] can not be obtained by structural

recognizability.

In this paper, we consider the length recognizability for automata whose vertices are

words: the morphisms are still deterministic but we replace the structural condition by

the length-preserving property. We define natural conditions on automata families such

that this length recognizability defines Boolean subalgebras. The closure under intersection

is given by the length synchronization, a natural and usual parallelization operation on

word automata. To get the closure under difference, we introduce a new operation: the

length superposition. When an automata family is closed under these two operations and

under simple conditions, we get a Boolean algebra of languages accepted by automata which

are deterministically length recognized by an unambiguous automaton (see Theorems 16

and 17). We give applications for sub-families of context-free languages and of context-

sensitive languages. In particular, the family of visibly pushdown languages can be defined

by length recognizability.

http://www.dagstuhl.de/lipics/

XX:2 Boolean algebras

2 Word automata

We consider finite and infinite automata having words as vertices. In this section, we give

basic notations and definitions, and recall the notions of determinism and unambiguity.

Let N, T be countable sets of symbols called respectively non-terminals and terminals.

We take a set C = {ι, o} of two colors.

A word automaton G is a subset of N∗
×T ×N∗ ∪ C×N∗ of vertex set

VG = { u | ∃ a, v (u, a, v) ∈ G ∨ (v, a, u) ∈ G } ∪ { u | ∃ c ∈ C (c, u) ∈ G }

such that the following sets are finite:

NG = { x ∈ N | ∃ u, v ∈ N∗ uxv ∈ VG } the set of non-terminals of G,

TG = { a ∈ T | ∃ u, v (u, a, v) ∈ G } the set of terminals or labels of G.

We denote by IG = { s | (ι, s) ∈ G } the set of initial vertices and by FG = { s | (o, s) ∈ G }

the set of final vertices of G. Any triple (s, a, t) ∈ G is an edge labeled by a from source s

to goal t ; it is also denoted by s
a

−→G t i.e.
a

−→G = { (s, t) | s
a

−→G t } is the a-transition

of G. Any couple (c, s) ∈ G is a vertex s colored by c ∈ C; it is denoted by c s ∈ G and
c

−→G = { (s, s) | c s ∈ G } is the c-transition of G.

Taking symbols |, κ, and a triple (T−1, T0, T1) of disjoint finite subsets of T , we define the

input-driven automaton :

Inp(T−1, T0, T1) = { |nκ
a

−→ |n+iκ | i ∈ {−1, 0, 1} ∧ a ∈ Ti ∧ n, n + i ≥ 0 }

∪ { ι κ } ∪ { o |nκ | n ≥ 0 }.

The automaton Inp({b}, {c}, {a}) is represented below.

||κ |||κ|κκ

c c cc

aaa

bb b

o ooo
ι

Let −→G be the unlabeled edge relation i.e. s −→G t if s
a

−→G t for some a ∈ T . The

accessibility relation −→∗
G is the reflexive and transitive closure under composition of −→G .

A graph G is accessible (resp. co-accessible) from P ⊆ VG if for any s ∈ VG , there is r ∈ P

such that r −→∗
G s (resp. s −→∗

G r). An automaton G is trimmed if it is accessible from

IG and co-accessible from FG . The previous automaton is trimmed. The restriction G|P

of an automaton G to a vertex subset P is the automaton induced by P :

G|P = { (u, a, v) ∈ G | u, v ∈ P } ∪ { (c, u) ∈ G | u ∈ P }.

The trimmed automaton of G is

Gι,o = G|{ s | ∃ i ∈ IG ∃ f ∈ FG (i −→∗
G s −→∗

G f) }

the restriction of G to the vertices accessible from IG and co-accessible from FG . Thus

Gι,o is trimmed and L(Gι,o) = L(G). Similarly, the accessible automaton of G is

Gι = G|{ s | ∃ i ∈ IG (i −→∗
G s) } .

Recall that a path is a sequence s0
a1−→ s1 . . . sn−1

an−→ sn of consecutive transitions; this

path leads from the source s0 to the goal sn and is labeled by u = a1. . .an ∈ T ∗ and we

write s0
u

−→G sn . We also write ι
u

−→G s , s
v

−→G o , ι
u

−→G o if there exists i ∈ IG and

f ∈ FG such that we have respectively i
u

−→G s , s
v

−→G f , i
u

−→G f . A path is accepting

if its source is initial and its goal is final. The language accepted by an automaton G is

the set L(G) = { u ∈ T ∗ | ι
u

−→G o } of labels of its accepting paths. For instance, the

previous automaton Inp({b}, {c}, {a}) accepts the language

L(Inp({b}, {c}, {a})) = { u ∈ {a, b, c}∗ | ∀ v ≤ u, |v|a ≥ |v|b }

of prefixes of well-parenthesed words (a the open parenthesis and b the close one).

D. Caucal and C. Rispal XX:3

An automaton G is deterministic if it has at most one initial vertex: ι s , ι t ∈ G =⇒ s = t,

and if for any vertex r and any label a ∈ T , there exists at most one transition starting

from r and labeled by a : (r
a

−→G s ∧ r
a

−→G t) =⇒ s = t. More generally, an automaton

G is unambiguous, if any two accepting paths have distinct labels:

s0
a1−→ s1 . . . sn−1

an−→ sn ∧ t0
a1−→ t1 . . . tn−1

an−→ tn ∧ ι s0 , ι t0 , o sn , o tn ∈ G

=⇒ s0 = t0 ∧ . . . ∧ sn = tn .

The previous automaton Inp(T−1, T0, T1) is deterministic. Any deterministic automaton is

unambiguous. Here is an unambiguous automaton Un which is not deterministic.

|p ||p |||pp

q |q ||q |||q

a a

b b b

a

b b b b

o
a a a

ι

3 Recognizability

In order to get Boolean subalgebras of many language families, the recognizability by inverse

morphism [5] has been extended to infinite automata [4]. We recall this notion as well as

the definition of a deterministic morphism.

A morphism f from an automaton G into an automaton H is a mapping f : VG −→ VH

such that for any s, t ∈ VG , a ∈ TG and c ∈ C,

s
a

−→G t =⇒ f(s)
a

−→H f(t) and c s ∈ G =⇒ c f(s) ∈ H

we write G
f

−→ H or G −→ H and we say that G is reducible into H.

Any word accepted by an automaton is by morphism accepted by the image automaton.

◮ Lemma 1. Let G −→ H. We have

L(G) ⊆ L(H) and G′ −→ H ′ for any G′ ⊆ G and H ⊆ H ′.

Let us give uniqueness conditions of a morphism between automata.

◮ Lemma 2. There is at most one morphism from a trimmed automaton into an unam-

biguous automaton.

Proof.

Let G
g

−→ H and G
h

−→ H with G trimmed and H unambiguous.

Let s be any vertex of G.

As G is trimmed, there exists u, v ∈ T ∗ such that ι
u

−→G s
v

−→G o. As g and h are

morphisms, we have

ι
u

−→H g(s)
v

−→H o and ι
u

−→H h(s)
v

−→H o .

As H is unambiguous, g(s) = h(s). ◭

For families F of automata, we want to get Boolean subalgebras of

L(F) = { L(G) | G ∈ F }.

Recall that a language family L is a Boolean algebra relative to a language L ∈ L if

P ⊆ L and L − P, P ∩ Q ∈ L for any P, Q ∈ L.

A first approach is to take an automata family F and a recognizer H ∈ F to define the set

of languages accepted by all possible automata of F which are reducible to H :

RecF (H) = { L(G) | G ∈ F ∧ G −→ H }.

XX:4 Boolean algebras

For any finite subset A ⊂ T , we define the trimmed and deterministic automaton LoopA

with a unique vertex κ and the loops labeled by each letter of A :

LoopA = { κ
a

−→ κ | a ∈ A } ∪ {ι κ , o κ}.

For any family F of automata labeled in A, each automaton is reducible to LoopA hence

RecF (LoopA) = L(F).

Thus for the family Fin of finite automata, RecFin(LoopA) is the set Reg(A∗) of regular

languages over A which is a Boolean algebra. This can be extended replacing LoopA by

any finite automaton.

◮ Proposition 3. For any finite automaton H, RecFin(H) = { L ⊆ L(H) | L regular }

is a Boolean algebra relative to L(H).

However L(F) is not in general a Boolean algebra. To get Boolean algebras by recogniz-

ability, we introduce simple conditions on the morphisms.

In order to preserve by inverse the determinism, we say that a morphism G
f

−→ H is a

deterministic morphism and we write G
f

−→d H if

ι s , ι t ∈ G ∧ f(s) = f(t) =⇒ s = t

r
a

−→G s ∧ r
a

−→G t ∧ f(s) = f(t) =⇒ s = t.

Note that any morphism from a deterministic automaton is a deterministic morphism:

G
f

−→ H ∧ G deterministic =⇒ G
f

−→d H. (1)

Any deterministic morphism preserves by inverse determinism and unambiguity.

◮ Lemma 4. Let G
f

−→d H with H unambiguous (resp. deterministic).

Then G is unambiguous (resp. deterministic) and

(ι
u

−→G s ∧ u ∈ L(G) ∧ o f(s) ∈ H) =⇒ o s ∈ G.

Proof.

Let G
f

−→d H with H unambiguous.

i) Let us check that G is unambiguous.

Let s0
a1−→G s1 . . . sn−1

an−→G sn and t0
a1−→G t1 . . . tn−1

an−→G tn with ι s0 , ι t0 , o sn , o tn ∈ G.

As f is a morphism, f(s0)
a1−→H f(s1) . . . f(sn−1)

an−→H f(sn) with ι f(s0) o f(sn) ∈ H.

And f(t0)
a1−→H f(t1) . . . f(tn−1)

an−→H f(tn) with ι f(t0) , o f(tn) ∈ H.

As H is unambiguous, we have f(s0) = f(t0), . . . , f(sn) = f(tn).

As f is a deterministic morphism, we get si = ti by induction on 0 ≤ i ≤ n.

ii) Assume that H is deterministic. Let us check that G is deterministic.

Case 1 : let ι s , ι t ∈ G.

As f is a morphism, ι f(s) , ι f(t) ∈ H. As H is deterministic, f(s) = f(t).

As f is a deterministic morphism, s = t.

Case 2 : let r
a

−→G s and r
a

−→G t.

As f is a morphism, f(r)
a

−→G f(s) and f(r)
a

−→G f(t).

As H is deterministic, f(s) = f(t). As f is a deterministic morphism, s = t.

iii) Let s0
a1−→G s1 . . .

an−→G sn with ι s0 ∈ G, o f(sn) ∈ H and a1. . .an ∈ L(G).

Let us check that o sn ∈ G.

As a1. . .an ∈ L(G), there exists t0
a1−→G t1 . . .

an−→G tn with ι t0 , o tn ∈ G.

Thus f(s0)
a1−→H f(s1) . . .

an−→H f(sn) and f(t0)
a1−→H f(t1) . . .

an−→H f(tn)

with ι f(s0), ι f(t0), o f(sn), o f(tn) ∈ H.

As H is unambiguous, we have f(si) = f(ti) for every 0 ≤ i ≤ n.

D. Caucal and C. Rispal XX:5

As f is deterministic, we get si = ti for every 0 ≤ i ≤ n. Thus o sn = o tn ∈ G. ◭

When restricting to deterministic morphisms in RecF (H), we get the subfamily

dRecF (H) = { L(G) | G ∈ F ∧ G −→d H }.

Let Fdet = { G ∈ F | G deterministic } and Funa = { G ∈ F | G unambiguous }.

By (1) and Lemma 4, we have

dRecF (H) = RecFdet
(H) for any H ∈ Fdet

dRecF (H) ⊆ RecFuna (H) for any H ∈ Funa .

Thus dRecF (LoopA) = L(Fdet) is not in general a Boolean algebra. We now specialize

the previous notions by vertex length restriction.

4 Recognizability by length

To get Boolean algebras, the recognizability for infinite automata has been used with a struc-

tural condition [4]. In the following, we replace it by a length-preserving condition. When

the morphisms are deterministic and under simple conditions on the automata family, this

gives less restrictive Boolean subalgebras.

A word automaton G is length-deterministic if it satisfies the following two conditions:

ι s , ι t ∈ G ∧ |s| = |t| =⇒ s = t

r
a

−→G s ∧ r
a

−→G t ∧ |s| = |t| =⇒ s = t.

For instance, the structure (N, 0, <) is described by the length-deterministic automaton:

| || |||ε

aaa

a
a

ι

More generally any automaton without two vertices of the same length is length-deterministic.

Similarly a word automaton is length-unambiguous if it satisfies the following condition:
(

s0
a1−→ s1 . . . sn−1

an−→ sn ∧ t0
a1−→ t1 . . . tn−1

an−→ tn ∧ ι s0 , ι t0 , o sn , o tn ∈ G

∧ |s0| = |t0| ∧ . . . ∧ |sn| = |tn|
)

=⇒ s0 = t0 ∧ . . . ∧ sn = tn .

We have the following implications:

G length-deterministic
=⇒

⇐
=

G deterministic G length-unambiguous.

⇐
= =⇒

G unambiguous

Finally a length-morphism G
f

−→ H is a morphism which is length-preserving: |f(u)| = |u|

for any u ∈ VG ; we write G
f

−→ℓ H and we say that G is length-reducible to H.

Let us restrict Lemma 2 to length-morphisms.

◮ Lemma 5. There is at most one length-morphism from a trimmed automaton into a

length-unambiguous automaton.

Any deterministic length-morphism preserves by inverse the length-determinism and the

length-nonambiguity.

◮ Lemma 6. Let G −→ℓd H with H length-unambiguous (resp. length-deterministic).

Then G is length-unambiguous (resp. length-deterministic).

XX:6 Boolean algebras

Let us particularize the subfamilies RecF (H) and dRecF (H) by restriction to length-

morphisms: for any automata family F and any H ∈ F , we define

ℓRecF (H) = { L(G) | G ∈ F ∧ G −→ℓ H }

ℓdRecF (H) = { L(G) | G ∈ F ∧ G −→ℓd H }.

We have the following inclusions:

dRecF (H)
⊇

⊇
ℓdRecF (H) RecF (H)

⊇
⊇

ℓRecF (H)

As ∅ −→ℓd H and H −→ℓd H, we have ∅, L(H) ∈ ℓdRecF (H).

We prove that ℓdRecF (H) is a Boolean algebra relative to L(H) for H unambiguous and

F closed under two simple operations that we introduce now, namely the synchronization

by length for the closure under intersection and the superposition by length for the closure

under difference.

5 Synchronization by length

We define a binary parallelization operation ‖ on word automata according to the vertex

length. We show that ℓRecF (H) is closed under intersection when H is unambiguous and

F is closed under ‖ (cf. Proposition 9). To get the closure of ℓdRecF (H) under inter-

section, F has to be closed under restriction by accessibility from the initial vertices and

co-accessibility from the final vertices (cf. Proposition 11).

Let ∆N = { (u, v) ∈ N∗ | |u| = |v| } be the set of couples of words over N of same length.

The length synchronization is the bijection ‖ : ∆N −→ (N×N)∗ defined by

a1. . .an ‖ b1. . .bn = (a1, b1). . .(an, bn) for any n ≥ 0 and a1, b1, . . . , an, bn ∈ N .

We also consider the first projection π1 and the second projection π2 as the surjective

mappings (N×N)∗ −→ N∗ defined for any u, v ∈ N∗ by π1(u, v) = u and π2(u, v) = v.

Given word automata G and G′ with an injection φ : NG×NG′ −→ N , we define their

length synchronization G ‖φ G′ as the following word automaton:

G ‖φ G′ = { φ(u ‖ u′)
a

−→ φ(v ‖ v′) | u
a

−→G v ∧ u′ a
−→G′ v′ }

∪ { c φ(u ‖ u′) | c u ∈ G ∧ c u′ ∈ G′ }.

Since the coding φ is not essential, it will usually be omitted. Note that

G, G′ deterministic =⇒ G ‖ G′ deterministic

VG, VG′ regular =⇒ VG ‖ VG′ regular.

As an example, consider the following respective two graphs G and G′ :

||p|pp q |q ||q

ι ooo aa

b, c b, c b, c

ι ooo b b

a, c a, c a, c

Their length synchronization G ‖ G′ is the following graph:

(p, q) (|, |)2(p, q)(|, |)(p, q)

ι ooo
c c c

The length synchronization gives the closure under intersection.

D. Caucal and C. Rispal XX:7

◮ Lemma 7. For any automata G, G′, H, we have the following properties:

a) G ‖ G′ π1−→ℓ G and G ‖ G′ π2−→ℓ G′,

b) L(G ‖ G′) ⊆ L(G) ∩ L(G′),

c) if G −→ℓ H and G′ −→ℓ H and H unambiguous then L(G ‖ G′) = L(G) ∩ L(G′).

Proof.

i) Let us check that G ‖ G′ π1−→ℓ G.

Let u ‖ u′ a
−→G‖G′ v ‖ v′. Thus π1(u ‖ u′) = u

a
−→G v = π1(v ‖ v′).

Let c (u ‖ u′) ∈ G ‖ G′. Thus c π1(u ‖ u′) = c u ∈ G.

Finally |u ‖ u′| = |u|. Similarly we check that G ‖ G′ π2−→ℓ G′.

ii) Let us check that L(G ‖ G′) ⊆ L(G) ∩ L(G′).

Let a1. . .an ∈ L(G ‖ G′) for some n ≥ 0 and a1, . . . , an ∈ T .

There exists s0, . . . , sn such that s0
a1−→G‖G′ s1 . . . sn−1

an−→G‖G′ sn with ι s0 , o sn ∈ G ‖ G′.

There exists u0, u′
0, . . . , un, u′

n ∈ N∗ such that si = ui ‖ u′
i for every 0 ≤ i ≤ n.

Thus u0
a1−→G u1 . . . un−1

an−→G un and u′
0

a1−→G′ u′
1 . . . u′

n−1
an−→G′ u′

n with ι u0 , o un ∈ G

and ι u′
0 , o u′

n ∈ G′. Hence a1. . .an ∈ L(G) ∩ L(G′).

iii) Let G
f

−→ℓ H and G′ f ′

−→ℓ H with H unambiguous.

Let a1. . .an ∈ L(G) ∩ L(G′) for some n ≥ 0 and a1, . . . , an ∈ T .

There exists u0 . . . , un ∈ N∗ such that u0
a1−→G u1, . . . , un−1

an−→G un with ι u0 , o un ∈ G.

There exists u′
0 . . . , u′

n ∈ N∗ such that u′
0

a1−→G′ u′
1, . . . , u′

n−1
an−→G′ u′

n with ι u′
0 , o u′

n ∈ G′.

Thus f(u0)
a1−→H f(u1), . . . , f(un−1)

an−→H f(un) with ι f(u0) , o f(un) ∈ H.

Furthermore f ′(u′
0)

a1−→H f ′(u′
1), . . . , f ′(u′

n−1)
an−→H f ′(u′

n) with ι f ′(u′
0) , o f ′(u′

n) ∈ H.

As H is unambiguous, f(u0) = f ′(u′
0), . . . , f(un) = f ′(u′

n).

As f, f ′ are length-preserving, |u0| = |u′
0|, . . . , |un| = |u′

n|.

So u0 ‖ u′
0

a1−→G‖G′ u1 ‖ u′
1 . . . un−1 ‖ u′

n−1
an−→G‖G′ un ‖ u′

n with ι u0 ‖ u′
0 , o un ‖ u′

n ∈ G ‖ G′.

Finally a1. . .an ∈ L(G ‖ G′). ◭

Let us give basic properties on the vertices of length synchronized automata.

◮ Lemma 8. Let G
f

−→ℓ H and G′ f ′

−→ℓ H. We have

a) (u ‖ u′ vertex of (G ‖ G′)ι and H length-deterministic) =⇒ f(u) = f ′(u′)

b) (u ‖ u′ vertex of (G ‖ G′)ι,o and H length-unambiguous) =⇒ f(u) = f ′(u′).

Proof.

i) Let u ‖ u′ be a vertex of (G ‖ G′)ι with H length-deterministic.

Let us show that f(u) = f ′(u′).

There exists (u0 ‖ u′
0)

a1−→G‖G′ (u1 ‖ u′
1) . . .

an−→G‖G′ (un ‖ u′
n) such that ι (u0 ‖ u′

0) ∈ G ‖ G′

and (u, u′) = (un, u′
n) .

So u0
a1−→G u1 . . .

an−→G un and u′
0

a1−→G′ u′
1 . . .

an−→G′ u′
n such that ι u0 ∈ G and ι u′

0 ∈ G′

with |u0| = |u′
0|, . . . , |un| = |u′

n|.

Thus f(u0)
a1−→H f(u1) . . .

an−→H f(un) and ι f(u0) ∈ H.

Furthermore f ′(u′
0)

a1−→H f ′(u′
1) . . .

an−→H f ′(u′
n) and ι f ′(u′

0) ∈ H.

For any 0 ≤ i ≤ n, we have |f(ui)| = |ui| = |u′
i| = |f ′(u′

i)|.

As H is length-deterministic and by induction on 0 ≤ i ≤ n, we get that f(ui) = f ′(u′
i).

In particular f(u) = f(un) = f ′(u′
n) = f ′(u′).

ii) Let u ‖ u′ be a vertex of (G ‖ G′)ι,o with H length-unambiguous.

Let us show that f(u) = f ′(u′).

There exists (u0 ‖ u′
0)

a1−→G‖G′ (u1 ‖ u′
1) . . .

an−→G‖G′ (un ‖ u′
n) and 0 ≤ p ≤ n such that

XX:8 Boolean algebras

ι (u0 ‖ u′
0) , o (un ‖ u′

n) ∈ G ‖ G′ and u ‖ u′ = up ‖ u′
p .

So u0
a1−→G u1 . . .

an−→G un and u′
0

a1−→G′ u′
1 . . .

an−→G′ u′
n such that ι u0 , o un ∈ G and

ι u′
0 , o u′

n ∈ G′ with |u0| = |u′
0|, . . . , |un| = |u′

n|.

Thus f(u0)
a1−→H f(u1) . . .

an−→H f(un) and ι f(u0) , o f(un) ∈ H.

Furthermore f ′(u′
0)

a1−→H f ′(u′
1) . . .

an−→H f ′(u′
n) and ι f ′(u′

0) , o f ′(u′
n) ∈ H.

For any 0 ≤ i ≤ n, we have |f(ui)| = |ui| = |u′
i| = |f ′(u′

i)|.

As H is length-unambiguous, we get f(u0) = f ′(u′
0), . . . , f(un) = f ′(u′

n).

In particular f(u) = f(up) = f ′(u′
p) = f(u′). ◭

Let us apply Lemma 7 (c) to the intersection closure by length recognizability.

◮ Proposition 9. The language family ℓRecF (H) is closed under intersection when H is

unambiguous and F is closed under ‖.

This proposition is not suitable for the family ℓdRecF (H) because Lemma 7 (a) cannot be

extended to deterministic reductions: G = {ε
a

−→ 0 , ε
a

−→ 1 , 1
a

−→ 10 , ι ε , o 0 , o 10} is a

trimmed and unambiguous automaton but G ‖ G /−→d G since

G ‖ G = { ε
a

−→ (0, 0) , ε
a

−→ (0, 1) , ε
a

−→ (1, 0) , ε
a

−→ (1, 1) ,

(1, 1)
a

−→ (1, 1)(0, 0) , ι ε , o (0, 0) , o (1, 1)(0, 0) }.

Nevertheless (G ‖ G)ι,o −→ℓd G. This property can be generalized.

◮ Lemma 10. We have G −→ℓ H ∨ G′ −→ℓ H =⇒ G ‖ G′ −→ℓ H

G −→ℓd H ∧ G′ −→ℓd H ∧ H length-unambiguous =⇒ (G ‖ G′)ι,o −→ℓd H.

Proof.

If G
f

−→ℓ H then by Lemma 7 (a), G ‖ G′ π1−→ℓ G
f

−→ℓ H.

If G′ f ′

−→ℓ H then by Lemma 7 (a), G ‖ G′ π2−→ℓ G′ f
−→ℓ H.

Suppose that G
f

−→ℓd H and G′ f ′

−→ℓd H with H length-unambiguous.

Let K = (G ‖ G′)ι,o . Let us prove that K −→ℓd H. We define

∆f,f ′ = { u ‖ u′ | f(u) = f ′(u′) }

and the mapping

f×f ′ : ∆f,f ′ −→ N∗ by (f×f ′)(u ‖ u′) = f(u) for any u ‖ u′ ∈ ∆f,f ′ .

By Lemma 8 (b), we get K
f×f ′

−→ ℓ H. Let us check that K
f×f ′

−→ d H.

Case 1 : Let ι (u ‖ u′) , ι (v ‖ v′) ∈ K with (f×f ′)(u ‖ u′) = (f×f ′)(v ‖ v′).

Thus ι u , ι v ∈ G and f(u) = f(v). As G
f

−→d H, we get u = v.

Furthermore ι u′ , ι v′ ∈ H and f ′(u′) = f(u) = f(v) = f ′(v′).

As G′ f ′

−→d H, we get u′ = v′. So u ‖ u′ = v ‖ v′.

Case 2 : Let (u ‖ u′)
a

−→K (v ‖ v′) and (u ‖ u′)
a

−→K (w ‖ w′) such that

(f×f ′)(v ‖ v′) = (f×f ′)(w ‖ w′).

So u
a

−→G v and u
a

−→G w with f(v) = f(w). As G
f

−→d H, we get v = w.

Furthermore u′ a
−→G′ v′ and u′ a

−→G′ w′ with f ′(v′) = f(v) = f(w) = f ′(w′).

As G′ f ′

−→d H, we get v′ = w′. So v ‖ v′ = w ‖ w′. ◭

We say that an automata family F is closed under ιo -restriction if Gι,o ∈ F for any

G ∈ F . Let us apply Lemmas 7 and 10.

◮ Proposition 11. The language family ℓdRecF (H) is closed under intersection when H

is unambiguous and F is closed under ‖ and ιo -restriction.

D. Caucal and C. Rispal XX:9

Now we study the closure of ℓdRecF (H) under the difference operation.

6 Superposition by length

We define a binary superposition operation // on word automata according to vertex lengths.

When F is an automata family closed under //, we obtain simple conditions for ℓdRecF (H)

to be closed under difference (cf. Proposition 15). Then we obtain two general ways to get

ℓdRecF (H) as a Boolean algebra relative to L(H) (Theorems 16 and 17).

We say that a word automaton G is ε-free if ε is not a vertex of G : ε 6∈ VG .

For L ⊆ N∗, we write u ≤ L if u is prefix of a word of L : ∃ v (uv ∈ L). Given ε-free

automata G and H with an injection φ : NG×NH −→ N and a non-terminal # ∈ N −NG,

we define the length superposition G /φ,# H of G on H as the following word automaton:

G /φ,# H

= { φ(u‖x)
a

−→ φ(v‖y) | u
a

−→G v ∧ x
a

−→H y }

∪ { ι φ(u‖x) | ι u ∈ G ∧ ι x ∈ H } ∪ { o φ(u‖x) | u ∈ VG ∧ o u 6∈ G ∧ o x ∈ H }

∪ { φ(u‖x)
a

−→ φ(v#‖y) | x
a

−→H y ∧ u ∈ VG ∧ ¬ ∃ w (u
a

−→G w ∧ |w| = |y|) ∧ v ≤ u #∗ }

∪ { φ(u#n‖x)
a

−→ φ(v#‖y) | x
a

−→H y ∧ n > 0 ∧ u ≤ VG ∧ v ≤ u #∗ }

∪ { o φ(u#n‖x) | n > 0 ∧ u ≤ VG ∧ o x ∈ H } ∪ { ι φ(#|x| ‖ x) | ι x ∈ H ∧ ∀ ι u ∈ G, |u| 6= |x| }.

Since the coding φ is not essential, it will usually be omitted. Moreover, we will assume

that # is always a new non-terminal.

The definition of G/H is done in order to follow in parallel and by length the paths of G

and H. When a transition of H can not be length synchronized by G, a transition of G/H

leads to a copy of H by marking the vertices by #. Note that

G, H deterministic =⇒ G/H deterministic.

As an example, we have G
f

−→ℓd H for the following ε-free deterministic automaton G :

κ
aκ bκ

aaκ baκ

abκ bbκ

oι
caca

b d b d

a b

c d

for the morphism f(uκ) = ||u|κ for any u ∈ {a, b}∗ and for the following automaton H :

|κ ||κ |||κκ

a, b

c, d

a, b

c, d

a, b

c, d

ι
o

We represent below (G/H)ι,o where any vertex u stands for the word u ‖ ||u|−1κ.

XX:10 Boolean algebras

baκ

bκ

κ

aκ

a2κ a# b#

#

a2bκ a#
2a2

abaκ ab#
3ab2κ ba#ba2κ b#

2babκ b2aκ b2
b3κa3κ

#
2abκ b2κ

c

ι

cd

d

ca

c d d c d c

cd c

a

o

c d b

d

c, d

a, b a, b

c, d

c, dc, d

c d da b b

a c d b a c d b a c d b a c d ba, b

a, b

c, d

c, d

c, d c, d

c, d c, d

In order to avoid crossing edges, one can also represent this automaton by the following

fractal picture:

c, da, b

a

a
b

b

cd a
b

d
c

c d
c

c

c

d d

d

ι

o

c, d

c, dc, d

c, d

c, dc, d

c, da, b

The length superposition gives the closure under difference.

◮ Lemma 12. For any ε-free automata G, H, (G/H)
π2−→ℓ H and L(H)−L(G) ⊆ L(G/H).

If G −→ℓ H and (G/H)
π2−→d H with H unambiguous then L(G/H) ⊆ L(H) − L(G).

Proof.

i) Let us check that (G/H)
π2−→ H. Let s

a
−→G/H t.

So s = u ‖ x and t = v ‖ y with x
a

−→H y. Thus π2(s) = x
a

−→H y = π2(t).

Let c s ∈ G/H. So s = u ‖ x with c x ∈ H. In particular c π2(s) = c x ∈ H.

ii) Let a1. . .an ∈ L(H) − L(G) for some n ≥ 0 and a1, . . . , an ∈ T .

Let us show that a1. . .an ∈ L(G/H).

There exists x0
a1−→H x1 . . .

an−→H xn with ι x0 , o xn ∈ H.

Let zi = (#|xi|, xi) for any 0 ≤ i ≤ n.

By definition of G/H, z0
a1−→G/H z1 . . .

an−→G/H zn with o zn ∈ G/H.

D. Caucal and C. Rispal XX:11

We distinguish the two complementary cases below.

Case 1 : ¬ ∃ u0 (ι u0 ∈ G ∧ |u0| = |x0|). So ι z0 ∈ G/H hence a1. . .an ∈ L(G/H).

Case 2 : ∃ u0 (ι u0 ∈ G ∧ |u0| = |x0|). Let 0 ≤ m ≤ n maximal such that

u0
a1−→G u1 . . .

am−→G um with |u1| = |x1|, . . . , |um| = |xm|.

By definition of G/H, u0 ‖ x0
a1−→G/H u1 ‖ x1 . . .

am−→G/H um ‖ xm and ι (u0 ‖ x0) ∈ G/H.

Case 2.1 : m = n. As a1. . .an 6∈ L(G), o un 6∈ G.

Thus o(un ‖ xn) ∈ G/H hence a1. . .an ∈ L(G/H).

Case 2.2 : m < n.

Thus um ‖ xm
am+1
−→ G/H u′

m+1# ‖ xm+1 . . .
am−→G/H u′

n# ‖ xn for some u′
m+1, . . . , u′

n .

As o xn ∈ H, we have o (u′
n# ‖ xn) ∈ G/H hence a1. . .an ∈ L(G/H).

iii) Assume that G
f

−→ℓ H and (G/H)
π2−→d H with H unambiguous.

Let w ∈ L(G/H). Let us check that w ∈ L(H) − L(G).

By Lemma 1, w ∈ L(H). Assume that w ∈ L(G).

There is a path u
w

−→G v with ι u, o v ∈ G. Thus f(u)
w

−→H f(v) with ι f(u) , o f(v) ∈ H.

As f is length-preserving, u ‖ f(u)
w

−→G ‖ H v ‖ f(v) with ι (u ‖ f(u)) , o (v ‖ f(v)) ∈ G ‖ H.

Thus u ‖ f(u)
w

−→G/H v ‖ f(v) with ι (u ‖ f(u)) ∈ G/H.

Furthermore o π2(v ‖ f(v)) = o f(v) ∈ H.

By Lemma 4, o (v ‖ f(v)) ∈ G/H. Thus o v 6∈ G which is a contradiction. ◭

Let us apply Lemma 12 restricted to deterministic automata with Proposition 9.

◮ Proposition 13. The language family ℓdRecF (H) = ℓRecFdet
(H) is closed under differ-

ence when H is deterministic and ε-free, and F is closed under ‖ and /.

In general, the condition (G/H)
π2−→d H is necessary in Lemma 12. For instance, let us

consider the following ε-free unambigous automaton H :

⊥ ⊥1 ⊥10⊥0

o oι a aa

Here is the length superposition (H/H)ι where any vertex u, v represents ⊥u ‖ ⊥v.

1, 1

0, 1 0#, 10

10, 10

ε, ε

0, 0

1, 0

ι

oa

ao

a

a

a

a

Thus H/H is not deterministically reducible into H and L(H/H) = L(H) = {a, aa}. In

order to accept L(H) − L(G) by length superposition when G −→ℓd H, we have to restrict

to vertices of the trimmed automaton G ‖ H and to vertices of the copies of H. We define

the restricted length superposition G//H by

G//H = (G/H)|P for P = V(G ‖ H)ι,o
∪ { u#|x|−|u| ‖ x | |x| > |u| ∧ u ≤ VG ∧ x ∈ VH }.

For the previous automaton H, the automaton (H//H)ι is the following:

1, 1 10, 10ε, ε0, 0

ιa a a

We get that L(H//H) = ∅ = L(H) − L(H). Such an example can be generalized.

◮ Lemma 14. For any ε-free automata G, H such that G −→ℓd H, we have

a) H length-unambiguous =⇒ (G//H) −→ℓd H

b) H unambiguous =⇒ L(G//H) ⊆ L(H) − L(G)

XX:12 Boolean algebras

c) G trimmed and H length-deterministic =⇒ L(H) − L(G) ⊆ L(G//H).

Proof.

Let G
f

−→ℓd H with H length-unambiguous.

i) Let u ‖ x be a vertex of G//H with u a vertex of G.

By definition of G//H, u ‖ x is a vertex of (G ‖ H)ι,o .

Note that H
id

−→ℓd H for the identity mapping id on VH .

By Lemma 8 (b), we have f(u) = id(x) = x.

ii) Let us prove that (G//H)
π2−→ℓd H. By Lemma 12, we have (G//H)

π2−→ℓ H.

It remains to show that the morphism π2 is deterministic.

Let ι s , ι t ∈ G//H with π2(s) = π2(t). We have to check that s = t.

Note that s, t can not be of the form u#n ‖ x for ε 6= u ≤ VG and n > 0.

It remains the complementary cases below.

Case 1 : s, t are vertices of (G ‖ H)ι,o .

By (i), we have s = u ‖ f(u) and t = v ‖ f(v) for some ι u , ι v ∈ G.

Furthermore f(u) = π2(s) = π2(t) = f(v).

As f is deterministic, we get u = v hence s = t.

Case 2 : s is a vertex of (G ‖ H)ι,o and t = (#|x|, x) for some vertex x of H.

By (i), we have s = u ‖ f(u) for some ι u ∈ G.

Furthermore f(u) = π2(s) = π2(t) = x. In particular |u| = |f(u)| = |x|.

By definition of G//H, ι t 6∈ H which is a contradiction, hence Case 2 is impossible.

Case 3 : t is a vertex of (G ‖ H)ι,o and s = (#|x|, x) for some vertex x of H.

By symmetry of s, t and by Case 2, this case is also impossible

Case 4 : s = (#|x|, x) and t = (#|y|, y) for some vertices x, y of H.

Thus x = π2(s) = π2(t) = y hence s = t.

Let r
a

−→G//H s and r
a

−→G//H t with π2(s) = π2(t). We have to check that s = t.

We have the complementary cases below knowing that the remaining cases are not possible.

Case 1 : s, t are vertices of (G ‖ H)ι,o .

By (i), we have r = u ‖ f(u), s = v ‖ f(v), t = w ‖ f(w) for u
a

−→G v and u
a

−→G w.

Furthermore f(v) = π2(s) = π2(t) = f(w).

As f is deterministic, we get v = w hence s = t.

Case 2 : s = v# ‖ y and t = w# ‖ z.

So v ≤ u #∗ and w ≤ u #∗ for some u ≤ VG .

Furthermore y = π2(s) = π2(t) = z. So |v#| = |y| = |z| = |w#|.

Thus v = w hence s = t.

iii) Suppose that H is unambiguous. Let us prove that L(G//H) ⊆ L(H) − L(G).

Let w ∈ L(G//H). By Lemma 12 (a) and 1, w ∈ L(H).

Assume that w ∈ L(G). There exists u
w

−→G v with ι u , o v ∈ G.

So u ‖ f(u)
w

−→G//H v ‖ f(v) with ι (u ‖ f(u)) ∈ G//H.

Furthermore o π2(v ‖ f(v)) = o f(v) ∈ H.

By (ii) and Lemma 4, o (v ‖ f(v)) ∈ G//H which is a contradiction.

iv) Suppose that G is trimmed and H is length-deterministic.

Let us prove that L(H) − L(G) ⊆ L(G//H).

Let a1. . .an ∈ L(H) − L(G) for some n ≥ 0 and a1, . . . , an ∈ T .

Let us show that a1. . .an ∈ L(G//H).

There exists x0
a1−→H x1 . . .

an−→H xn with ι x0 , o xn ∈ H.

Let zi = (#|xi|, xi) for any 0 ≤ i ≤ n.

D. Caucal and C. Rispal XX:13

By definition of G//H, z0
a1−→G // H z1 . . .

an−→G // H zn with o zn ∈ G//H.

We distinguish the two complementary cases below.

Case 1 : ¬ ∃ u0 (ι u0 ∈ G ∧ |u0| = |x0|). So ι z0 ∈ G//H hence a1. . .an ∈ L(G//H).

Case 2 : ∃ u0 (ι u0 ∈ G ∧ |u0| = |x0|). Let 0 ≤ m ≤ n maximal such that

u0
a1−→G u1 . . .

am−→G um with |u1| = |x1|, . . . , |um| = |xm|.

Thus u0 ‖ x0
a1−→G ‖ H u1 ‖ x1 . . .

am−→G ‖ H um ‖ xm and ι (u0 ‖ x0) ∈ G ‖ H.

As H is length-deterministic and by Lemma 8 (a), f(ui) = id(xi) = xi for any 0 ≤ i ≤ m.

As G is trimmed, there exists a path um −→∗
G u′ with o u′ ∈ G.

Thus (um ‖ xm) = (um ‖ f(um)) −→∗
G ‖ H (u′ ‖ f(u′)) with o (u′ ‖ f(u′)) ∈ G ‖ H.

It follows that um ‖ xm is a vertex of (G ‖ H)ι,o hence a vertex of G//H.

Case 2.1 : m = n. As a1. . .an 6∈ L(G), o un 6∈ G.

Thus o(un ‖ xn) ∈ G//H hence a1. . .an ∈ L(G//H).

Case 2.2 : m < n.

Thus um ‖ xm
am+1
−→ G // H u′

m+1# ‖ xm+1 . . .
am−→G // H u′

n# ‖ xn for some u′
m+1, . . . , u′

n .

As o xn ∈ H, we have o (u′
n# ‖ xn) ∈ G//H hence a1. . .an ∈ L(G//H). ◭

Let us apply Lemma 14 with Proposition 11.

◮ Proposition 15. The language family ℓdRecF (H) is closed under difference when H is

unambiguous, ε-free and length-deterministic, and F is closed under ιo-restriction, ‖ and

//.

Propositions 11 and 15 give Boolean algebras by length-preserving deterministic recogniz-

ability.

◮ Theorem 16. The language family ℓdRecF (H) is a Boolean algebra relative to L(H) for

any automata family F closed under the operations ‖ and // and ιo-restriction, and for

any automaton H in F which is unambiguous, ε-free and length-deterministic.

The closure under ιo-restriction is not satisfied for general automata families because the

closure under accessibility and co-accessibility is required. This can then be avoided by

restricting to deterministic automata through Propositions 9 and 13.

◮ Theorem 17. The language family ℓdRecF (H) = ℓRecFdet
(H) is a Boolean algebra

relative to L(H) for any automata family F closed under the operations ‖ and /, and for

any automaton H in F which is deterministic and ε-free.

We apply these two theorems for general automata families.

7 Boolean algebras of context-free languages

A general way of accepting context-free languages is through suffix automata. We prove

that this automaton family is closed under previous operations to get Boolean algebras of

context-free languages by Theorem 16.

An elementary suffix automaton is an automaton of the form:

W (u
a

−→ v) = { wu
a

−→ wv | w ∈ W } where W ∈ Reg(N∗), u, v ∈ N∗, a ∈ T ∪ {ι, o}.

A suffix automaton is a finite union of elementary suffix automata. The family Stack of

suffix automata defines the family L(Stack) of context-free languages.

For instance, the previous ’fractal’ automaton Fr is in Stack : Denoting (κ, κ) by κ, (#, κ)

by #κ, and (x, |) by x for any x ∈ {a, b, #}, Fr is the union of the following elementary

suffix automata:

XX:14 Boolean algebras

{a, b}∗(κ
a

−→ aκ) {a, b}∗(κ
b

−→ bκ) {a, b}∗(aκ
c

−→ κ) {a, b}∗(bκ
d

−→ κ)

{a, b}∗(aκ
d

−→ #κ) {a, b}∗(bκ
c

−→ #κ) {a, b}∗(a#κ

c,d
−→ #κ) {a, b}∗(b#κ

c,d
−→ #κ)

{a, b}∗#∗(#κ

a,b
−→ ##κ) {a, b}∗#∗(##κ

c,d
−→ #κ) {ε}(κ

ι
−→ κ) {ε}(#

o
−→ #)

This general form of suffix automata allows to get their closure under the previous opera-

tions.

◮ Lemma 18. The family Stack is closed under ιo-restriction, ‖ , / and //.

Proof.

i) Stack is closed under regular restriction which is distributive over union and satisfies

W (u
a

−→ v)|P = { wu
a

−→ wv | w ∈ W ∧ wu, wv ∈ P } = (W ∩ Pu−1 ∩ Pv−1)(u
a

−→ v)

where Pu−1 = { v | vu ∈ P } is the right residual of P ⊆ N∗ by u ∈ N∗.

Given an automaton G in Stack and a letter ⋆ in T , the graph { u
⋆

−→ v | u −→∗
G v } is

in Stack (Proposition 3.18 in [2]). In particular −→∗
G is a rational relation: it is recognized

by a finite transducer. Thus, the set of vertices deriving from or to a regular vertex subset

remains regular. Hence Stack is closed under ιo-restriction.

ii) Stack is closed under ‖ since this operation is distributive over union, and we have

W (u
a

−→ v) ‖ Z(x
a

−→ y)

= { (wu ‖ zx)
a

−→ (wv ‖ zy) | w ∈ W ∧ z ∈ Z ∧ (|wu| = |zx| ∧ |wv| = |zy|) }

= { (wu ‖ zx)
a

−→ (wv ‖ zy) | w ∈ W ∧ z ∈ Z ∧ (|u| − |x| = |z| − |w| = |v| − |y|) }.

So W (u
a

−→ v) ‖ Z(x
b

−→ y) = ∅ if a 6= b or |u| − |v| 6= |x| − |y|, and otherwise is equal to
⋃

s∈N |x|−|u|(Ws−1 ‖ Z).
(

(su ‖ x)
a

−→ (sv ‖ y)
)

for |u| ≤ |x|
⋃

s∈N |u|−|x|(W ‖ Zs−1).
(

(u ‖ sx)
a

−→ (v ‖ sy)
)

for |u| > |x|.

Furthermore for G, G′ ∈ Stack, IG‖G′ = IG ‖ IG′ remains regular and is described by the

rule (IG ‖ IG′).(ε
ι

−→ ε). It is the same for OG‖G′ = OG ‖ OG′ .

iii) Let us show that Stack is closed under /. As G/(H ∪ H ′) = G/H ∪ G/H ′, it remains

to consider G / Z(x
a

−→ y) for G =
⋃n

i=1 Wi(ui
ai−→ vi). Let us define the language

L =
⋃

{ Wi.ui | 1 ≤ i ≤ n ∧ ai = a ∧ |ui| − |vi| = |x| − |y| }.

Let us check that

(VG − L) ‖ Zx = { s ‖ zx | s ∈ VG ∧ z ∈ Z ∧ |s| = |zx| ∧ ¬ ∃ t (s
a

−→G t ∧ |t| = |zy|) }.

Let s ∈ VG and z ∈ Z such that |s| = |zx|. We have to show that

s ∈ L ⇐⇒ ∃ t (s
a

−→G t ∧ |t| = |zy|).

=⇒ : Assume that s ∈ L.

There exists 1 ≤ i ≤ n and w ∈ Wi such that s = wui and ai = a and |ui|−|vi| = |x|−|y|.

Hence s
a

−→ wvi with |wvi| = |w| + |ui| + |y| − |x| = |s| + |y| − |x| = |zy|.

⇐= : Suppose there exists t such that s
a

−→G t and |t| = |zy|.

Hence there exists 1 ≤ i ≤ n and w ∈ Wi such that ai = a, s = wui and t = wvi .

As |zx| = |s| and |zy| = |wvi|, we get |wvi| − |y| = |z| = |s| − |x|.

Thus |wvix| = |sy| = |wuiy| i.e. |uiy| = |vix|. So s = wui ∈ L.

Thus the following subgraph of G/H :

{ u‖x
a

−→ v#‖y | x
a

−→H y ∧ u ∈ VG ∧ ¬ ∃ w (u
a

−→G w ∧ |w| = |y|) ∧ v ≤ u #∗ }

corresponding to the ‘stall’ of G w.r.t. H, is equal to the following suffix automaton:

(VG − L).(ε
a

−→ #|y|−|x|) ‖ Z.(x
a

−→ y) for |x| < |y|

otherwise |x| ≥ |y| and by union on 1 ≤ i ≤ n with W = Wi and u ∈ {ui, vi},

D. Caucal and C. Rispal XX:15

if |u| > |x| − |y| we take the suffix automaton:

(W − Lu−1).(u
a

−→ v#) ‖ Z.(x
a

−→ y) for v < u and |u| − |v#| = |x| − |y|

and if |u| ≤ |x| − |y|, having |u| = |x| we get y = ε and we take the suffix automaton:

(W − Lu−1)s−1.(su
a

−→ #) ‖ Z.(x
a

−→ ε) for any suffix letter s of W .

Similarly denoting by PG the set of prefixes of VG , the following subgraph of G/H :

{ u#n‖x
a

−→ v#‖y | x
a

−→H y ∧ n > 0 ∧ u ≤ VG ∧ v ≤ u #∗ }

is equal to the following suffix automaton:

PG #+.(ε
a

−→ #|y|−|x|) ‖ Z.(x
a

−→ y) for |x| ≤ |y|

otherwise |x| > |y| and the automaton is equal to the unions of the following automata:
(

PG #+
)

u−1.(u
a

−→ #) ‖ Z.(x
a

−→ y) for u ∈ N∗
G#+ and |u| = |x| − |y| + 1.

Finally, the other subgraphs of G/H are described as before.

With (i), it follows that Stack is also closed under //. ◭

Let us apply Theorem 16 with Lemma 18.

◮ Proposition 19. The family ℓdRecStack(H) is a Boolean algebra relative to L(H)

for any unambiguous, ε-free and length-deterministic automaton H.

In particular, we obtain again that ℓdRecStackdet
(H) for H deterministic, is a relative

Boolean algebra [7].

A well-known relative Boolean algebra is the family ℓdRecStack(Inp(T−1, T0, T1)) of input-

driven languages according to the triple (T−1, T0, T1) of finite disjoint subsets of T [6].

Adding the loops labeled in T−1 on the initial vertex κ of Inp(T−1, T0, T1), we get the

visibly automaton Vis(T−1, T0, T1) = Inp(T−1, T0, T1) ∪ { κ
a

−→ κ | a ∈ T−1 } accepting

L(Vis(T−1, T0, T1)) = (T−1 ∪ T0 ∪ T1)∗, and ℓdRecStack(Vis(T−1, T0, T1)) is the Boolean

algebra of visibly pushdown languages according to (T−1, T0, T1) [1].

Note that we can enhance the visibility of pushdown automata by taking a mapping ‖ ‖

from a finite subset T‖ ‖ ⊂ T to Z, by taking |, κ ∈ N , and by defining the automaton

Vis‖ ‖ = { |nκ
a

−→ |max(0,n+‖a‖) | n ≥ 0 ∧ a ∈ T‖ ‖ } ∪ { ι κ } ∪ { o |nκ | n ≥ 0 }

In particular Vis(T−1, T0, T1) = Vis‖ ‖ for T‖ ‖ = T−1 ∪ T0 ∪ T1 with ‖ a ‖ = i for

any a ∈ Ti and i ∈ {−1, 0, 1}. For any ‖ ‖, L(Vis‖ ‖) = T ∗
‖ ‖ and ℓdRecStack(Vis‖ ‖) =

ℓRecStackdet
(Vis‖ ‖) is a Boolean algebra.

We further increase the pushdown visibility by taking |, †, κ ∈ N and the recognizer

2Vis‖ ‖ = { |nκ
a

−→ |n+‖a‖ | n ∈ Z ∧ a ∈ T‖ ‖ } ∪ { ι κ } ∪ { o |nκ | n ∈ Z }

where |−n = †n for any n > 0. Thus ℓdRecStack(Vis‖ ‖) is still a Boolean algebra.

Note that Proposition 19 also applies to non-deterministic recognizers like the previous

unambiguous automaton Un which is also ε-free and length-deterministic.

Proposition 19 may also be restricted to the family of counter automata.

8 Boolean algebras of context-sensitive languages

A simple way to define context-sensitive languages is through the synchronized relations of

bounded length difference.

An elementary bounded synchronized automaton is an automaton of the form:

R(u
a

−→ v) = { xu
a

−→ yv | (x, y) ∈ R } for R ∈ Reg((N×N)∗), u, v ∈ N∗, a ∈ T ∪ {ι, o}.

A bounded synchronized automaton is a finite union of elementary bounded synchonized

automata. The family Sync of bounded synchronized automata accepts the family L(Sync)

XX:16 Boolean algebras

of context-sensitive languages [8].

Similarly to the proof of Lemma 18, we get that Sync is closed under ‖ and /. However,

Sync is not closed under ιo-restriction, nor closed under // because the set of vertices

accessible from a given vertex for a bounded synchronized automaton is not necessarily

regular (and also not effective). Nevertheless and by restricting to deterministic recognizers,

we can apply Theorem 17.

◮ Proposition 20. The family ℓdRecSync(H) = ℓRecSyncdet
(H) is a Boolean algebra rela-

tive to L(H) for any deterministic and ε-free automaton H.

Thus ℓdRecSync(Inp(T−1, T0, T1)) defines the Boolean algebra relative to L(Inp(T−1, T0, T1))

of bounded synchronized input-driven languages w.r.t. to (T−1, T0, T1). Likewise we have

the Boolean algebra ℓdRecSync(Vis‖ ‖) of bounded synchronized visibly languages w.r.t. ‖ ‖.

Theorem 17 can be applied to many other automata families, as for example the family of

vector addition systems (or Petri nets) with regular contexts.

In conclusion, the deterministic length recognizability allows to obtain Boolean algebras us-

ing automata families and recognizers. We have applied it to suffix automata and bounded

synchronized automata but one can use it on any automata family closed under length syn-

chronization, length superposition and trimmed restriction.

References

1 R. Alur and P. Madhusudan, Visibly pushdown languages, 36th STOC, ACM Proceedings,

L. Babai (Ed.), 202–211 (2004).

2 D. Caucal, On infinite transition graphs having a decidable monadic theory, 23rd ICALP,

LNCS 1099, F. Meyer auf der Heide, B. Monien (Eds.), 194–205 (1996).

3 D. Caucal Boolean algebras of unambiguous context-free languages, 28th FSTTCS,

Dagstuhl Research Server, R. Hariharan, M. Mukund, V. Vinay (Eds.) (2008).

4 D. Caucal and C. Rispal, Recognizability for automata, 22nd DLT, to appear in LNCS,

M. Hoshi, S. Seki (Eds.) (2018).

5 S. Eilenberg, Algèbre catégorique et théorie des automates, Institut H. Poincaré (1967),

and Automata, languages and machines, Vol. A, Academic Press, New-York (1974).

6 K. Mehlhorn, Pebbling mountain ranges and its application to DCFL recognition,

7th ICALP, LNCS 85, J. de Bakker, J. van Leeuwen (Eds.), 422–432 (1980).

7 D. Nowotka and J. Srba, Height-deterministic pushdown automata, 32nd MFCS,

LNCS 4708, L. Kucera, A. Kucera (Eds.), 125–134 (2007).

8 C. Rispal, The synchronized graphs trace the context-sensitive languages. Electr. Notes

Theor. Comput. Sci. 68(6), 55–70 (2002).

9 W. Thomas, Uniform and nonuniform recognizability, Theoretical Computer Science 292,

299–316 (2003).

	Introduction
	Word automata
	Recognizability
	Recognizability by length
	Synchronization by length
	Superposition by length
	Boolean algebras of context-free languages
	Boolean algebras of context-sensitive languages

