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Abstract

We present simple graph-theoretic characterizations of Cayley graphs for left-cancellative
and cancellative monoids, groups, left-quasigroups and quasigroups. We show that these char-
acterizations are effective for the suffix graphs of word rewriting systems.

To describe the structure of a group, Cayley introduced in 1878 [3] the concept of graph for
any group (G, ·) according to any generating subset S. This is simply the set of labeled oriented
edges g

s
−→ g·s for every g of G and s of S. Such a graph, called Cayley graph, is directed and

labeled in S (or an encoding of S by symbols called letters or colors). The study of groups by their
Cayley graphs is a main topic of algebraic graph theory [2, 4, 1]. A characterization of unlabeled
and undirected Cayley graphs was given by Sabidussi in 1958 [7] : an unlabeled and undirected
graph is a Cayley graph if and only if we can find a group with a free and transitive action on the
graph. However, this algebraic characterization is not well suited for deciding whether a possibly
infinite graph is a Cayley graph. It is pertinent to look for characterizations by graph-theoretic
conditions. This approach was clearly stated by Hamkins in 2010: Which graphs are Cayley graphs?
[5]. In this paper, we present simple graph-theoretic characterizations of Cayley graphs for firstly
left-cancellative and cancellative monoids, and then for groups. These characterizations are then
extended to any subset S of left-cancellative magmas, left-quasigroups, quasigroups, and groups.
Finally, we show that these characterizations are effective for the suffix transition graphs of labeled
word rewriting systems.

Generalized Cayley graphs of left-cancellative magmas

Cayley graphs are directed labeled graphs without isolated vertex. Precisely let A be an
arbitrary (finite or infinite) set. A directed A-graph (V,G) is defined by a set V of vertices and
a subset G ⊆ V ×A×V of edges. Any edge (s, a, t) ∈ G is from the source s to the target t with
label a, and is also written by the transition s

a
−→G t or directly s

a
−→ t if G is clear from the

context. The sources and targets of edges form the set VG = { s | ∃ a, t (s
a

−→ t ∨ t
a

−→ s) }
of non-isolated vertices of G, and AG = { a | ∃ s, t (s

a
−→ t) } is the set of its edge labels.

We assume that any graph (V,G) is without isolated vertex: V = VG hence the graph can be
identified with its edge set G. For instance Υ = { s

n
−→ s − n | s ∈ R ∧ n ∈ Z } is a graph of

vertex set R and of label set Z. For any graph G, we denote by G|P = { (s, a, t) ∈ G | s, t ∈ P }

its vertex-restriction to P ⊆ VG, and by G|Q = { (s, a, t) ∈ G | a ∈ Q } its label-restriction to
Q ⊆ A. Let −→G be the unlabeled edge relation i.e. s −→G t if s

a
−→G t for some a ∈ A.

The image of a vertex s by −→G is the set −→G(s) = { t | s −→G t } of successors of s. The
accessibility relation −→∗

G is the reflexive and transitive closure under composition of −→G . We
denote by G↓s the restriction of G to the set −→∗

G(s) of vertices accessible from a vertex s. For

instance Υ↓0 = { m
n

−→ m − n | m,n ∈ Z }. A root s is a vertex from which any vertex is
accessible: G↓s = G.

Recall that a magma (or groupoid) is a set M equipped with a binary operation · : M×M −→ M

that sends any two elements p, q ∈ M to the element p ·q. Given a subset Q ⊆ M and an injective
mapping [[ ]] : Q −→ A, we define the following generalized Cayley graph :



C[[M,Q]] = { p
[[q]]
−→ p · q | p ∈ M ∧ q ∈ Q }.

It is of vertex set M and of label set [[Q]] = { [[q]] | q ∈ Q }. We denote C[[M,Q]] by C(M,Q)
when [[ ]] is the identity. For instance Υ = C(R,Z) for the magma (R,−).
Among many properties of these graphs, we retain only three basic ones. First and by definition, any
generalized Cayley graph is deterministic : there are no two edges of the same source and label i.e.
(r

a
−→ s ∧ r

a
−→ t) =⇒ s = t. Furthermore any generalized Cayley graph G is source-complete :

for all vertex s and label a, there is an a-edge from s i.e. ∀ s ∈ VG ∀ a ∈ AG ∃ t (s
a

−→ t).
Recall that a magma (M, ·) is left-cancellative if r · p = r · q =⇒ p = q for any p, q, r ∈ M . Any
generalized Cayley graph of a left-cancellative magma is simple : there are no two edges with the

same source and target: (s
a

−→ t ∧ s
b

−→ t) =⇒ a = b. Under the assumption of the axiom of choice,
these three properties characterize the generalized Cayley graphs of left-cancellative magmas.

Theorem 1. In ZFC set theory, a graph is a generalized Cayley graph of a left-cancellative magma

if and only if it is simple, deterministic and source-complete.

We can remove the assumption of the axiom of choice by restricting to finitely labeled graphs.

Cayley graphs of left-cancellative and cancellative monoids

Recall that a magma (M, ·) is a semigroup if · is associative: (p · q) · r = p · (q · r) for any
p, q, r ∈ M . A monoid (M, ·) is a semigroup with an identity element 1 : 1·p = p·1 = p for all
p ∈ M . The submonoid generated by Q ⊆ M is Q∗ = { q1· . . . ·qn | n ≥ 0 ∧ q1, . . . , qn ∈ Q } the
least submonoid containing Q. A monoid Cayley graph is a generalized Cayley graph C[[M,Q]] for
some monoid M generated by Q which means that 1 is a root of C[[M,Q]].
Let us strengthen Theorem 1 to get a graph-theoretic characterization of the Cayley graphs of
left-cancellative monoids. We need to introduce a structural property to describe their symmetry.
Recall that an isomorphism from a graph G to a graph H (an automorphism of G for G = H)
is a bijection h from VG to VH such that s

a
−→G t ⇐⇒ h(s)

a
−→H h(t). Two vertices s, t

of a graph G are accessible-isomorphic and we write s ↓G t if t = h(s) for some isomorphism
h from G↓s to G↓t . A graph G is arc-symmetric if all its vertices are accessible-isomorphic:

s ↓G t for every s, t ∈ VG . For instance Υ
|{−1}
|IN = { n

−1
−→ n+ 1 | n ∈ N } is arc-symmetric but

Υ
|{1}
|IN = { n

1
−→ n−1 | n ∈ N } is not arc-symmetric. Any arc-symmetric graph is source-complete.

By adding in Theorem 1 the arc-symmetry and the existence of a root, we get a graph-theoretic
characterization of the Cayley graphs of left-cancellative monoids.

Theorem 2. A graph is a Cayley graph of a left-cancellative monoid if and only if it is simple,

deterministic, rooted and arc-symmetric.

We can adapt Theorem 2 to characterize the Cayley graphs of cancellative monoids. Recall that
a magma M is cancellative if it is left-cancellative, and right-cancellative : p · r = q · r =⇒ p = q

for all p, q, r ∈ M . Any generalized Cayley graph of a right-cancellative magma is co-deterministic

meaning that the inverse G−1 = { (t, a, s) | (s, a, t) ∈ G } of G is deterministic: there are no two
edges with the same target and label i.e. (s

a
−→ r ∧ t

a
−→ r) =⇒ s = t. By adding in Theorem 2

the co-determinism, we get a characterization of the Cayley graphs of cancellative monoids.

Theorem 3. A graph is a Cayley graph of a cancellative monoid if and only if it is simple,

deterministic, co-deterministic, rooted and arc-symmetric.



Cayley graphs of groups

Recall that a group (M, ·) is a monoid whose each element p ∈ M has an inverse p−1 :
p·p−1 = 1 = p−1·p. Any Cayley graph C[[M,Q]] of a group M = Q∗ is strongly connected : any
vertex is a root. We get a graph-theoretic characterization of these monoid Cayley graphs of groups
just by strengthening in Theorem 2 the existence of a root by the strong connectivity.

Theorem 4. A graph is a monoid Cayley graph of a group if and only if it simple, deterministic,

strongly connected and arc-symmetric.

We can now consider a group Cayley graph as a generalized Cayley graph C[[M,Q]] such that
M is a group equal to the subgroup generated by Q which is the least subgroup (Q ∪ Q−1)∗

containing Q where Q−1 = { q−1 | q ∈ Q } is the set of inverses of the elements in Q. Any
monoid Cayley graph of a group M is a (group) Cayley graph of M . Note that the unrooted

graph Υ
|{−1}
|ZZ = { n

−1
−→ n+1 | n ∈ Z } is equal to C[[Z, {1}]] for the group (Z,+) with [[1]] = −1.

To characterize the Cayley graphs of groups, we need to extend the arc-symmetry by no longer
restricting by accessibility. Two vertices s, t of a graph G are isomorphic and we write s ≃G t if
t = h(s) for some automorphism h of G. A graph G is symmetric (or vertex-transitive) if all its
vertices are isomorphic: s ≃G t for every s, t ∈ VG . Any symmetric graph is arc-symmetric, and

Υ
|{−1}
|IN is arc-symmetric but not symmetric. We can present a graph-theoretic characterization of

the Cayley graphs (of groups).

Theorem 5. A graph is a Cayley graph of a group if and only if it is simple, deterministic,

co-deterministic, connected and symmetric.

By removing the connectivity, we get all the generalized Cayley graphs of groups.

Theorem 6. In ZFC set theory, a graph is a generalized Cayley graph of a group if and only if it

is simple, deterministic, co-deterministic, symmetric.

Generalized Cayley graphs of left-quasigroups

A magma (M, ·) is a left-quasigroup if for each p, q ∈ M, there is a unique r ∈ M such that
p·r = q. This property ensures that each element of M occurs exactly once in each row of the
Cayley table. Any simple, deterministic and source-complete graph G is an out-regular graph : all
its vertices have the same out-degree i.e. |−→G(s)| = |−→G(t)| for any s, t ∈ VG . This remains
true with respect to non-successor vertices for any generalized Cayley graph G of a left-quasigroup:
it is co-out-regular in the sense that |VG−−→G(s)| = |VG−−→G(t)| for any s, t ∈ VG . It suffices to
add this condition to Theorem 1 to characterize the generalized Cayley graphs of left-quasigroups.

Theorem 7. In ZFC set theory, a graph is a generalized Cayley graph of a left-quasigroup if and

only if it is simple, deterministic, source-complete and co-out regular.

For the graphs having only a finite number of labels, we can remove the assumption of the axiom of
choice, and also the co-out-regularity which then corresponds to the characterization of Theorem 1.

Theorem 8. A finitely labeled graph is a generalized Cayley graph of a left-quasigroup if and only

if it is simple, deterministic, source-complete if and only if it is a generalized Cayley graph of a

left-cancellative magma.



Generalized Cayley graphs of quasigroups

A magma (M, ·) is a quasigroup if · obeys the Latin square property: for each p, q ∈ M, there
is a unique r ∈ M such that p·r = q and there is a unique s ∈ M such that s·p = q. This property
ensures that each element of M occurs exactly once in each row and exactly once in each column
of the Cayley table. Any generalized Cayley graph G of a quasigroup is simple, deterministic and
source-complete, co-deterministic and target-complete meaning that G−1 is source-complete: for
all vertex t and label a, there is an a-edge of target t i.e. ∀ t ∈ VG ∀ a ∈ AG ∃ s (s

a
−→G t). With

these five properties, G is a regular graph : |−→G(s)| = |−→G−1(t)| for any s, t ∈ VG . We also get
that G is co-regular : |VG − −→G(s)| = |VG − −→G−1(t)| for any s, t ∈ VG . With the axiom of
choice, these properties are sufficient to characterize the generalized Cayley graphs of quasigroups.

Theorem 9. In ZFC set theory, a graph is a generalized Cayley graph of a quasigroup if and only

if it is simple, deterministic, co-deterministic, source-complete, target-complete and co-regular.

We can remove the co-regularity for the finitely labeled graphs.

Decidability results

We show the effectiveness of the previous characterizations for the family of suffix-recognizable
graphs of finite degree which includes the finite graphs and the transition graphs of pushdown
automata [6]. A suffix graph over an alphabet N is of the form

⋃n
i=1

Wi(ui
ai−→ vi) where

n ≥ 0, u1, v1, . . . , un, vn ∈ N∗ and W1, . . . ,Wn are regular languages over N . Such a graph has a
decidable isomorphism problem and a decidable monadic theory.

Theorem 10. We can decide whether a suffix graph G is a Cayley graph of a left-cancellative

monoid, of a cancellative monoid, of a group, and whether G is a generalized Cayley graph of a

left-quasigroup, of a quasigroup, of a group.

In the affirmative, G = C[[VG , −→G(r)]] where [[s]] = a for any r
a

−→G s and with a computable

suitable binary operation on VG and vertex r.

We can consider its generalization to all the suffix-recognizable graphs which form the first level of
a stack hierarchy for which any graph has a decidable monadic second-order theory.

This is only a first approach in the structural description and the effectiveness of Cayley graphs of
algebraic structures. A full version with proofs and examples is available in arxiv.
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