On Cayley graphs of algebraic structures

Didier Caucal - CNRS, LIGM, France

Abstract

We present simple graph-theoretic characterizations of Cayley graphs for left-cancellative and cancellative monoids, groups, left-quasigroups and quasigroups. We show that these characterizations are effective for the suffix graphs of word rewriting systems.

To describe the structure of a group, Cayley introduced in 1878 [3] the concept of graph for any group (G, \cdot) according to any generating subset S. This is simply the set of labeled oriented edges $g \xrightarrow{s} g \cdot s$ for every g of G and s of S. Such a graph, called Cayley graph, is directed and labeled in S (or an encoding of S by symbols called letters or colors). The study of groups by their Cayley graphs is a main topic of algebraic graph theory $[2,4,1]$. A characterization of unlabeled and undirected Cayley graphs was given by Sabidussi in 1958 [7]: an unlabeled and undirected graph is a Cayley graph if and only if we can find a group with a free and transitive action on the graph. However, this algebraic characterization is not well suited for deciding whether a possibly infinite graph is a Cayley graph. It is pertinent to look for characterizations by graph-theoretic conditions. This approach was clearly stated by Hamkins in 2010: Which graphs are Cayley graphs? [5]. In this paper, we present simple graph-theoretic characterizations of Cayley graphs for firstly left-cancellative and cancellative monoids, and then for groups. These characterizations are then extended to any subset S of left-cancellative magmas, left-quasigroups, quasigroups, and groups. Finally, we show that these characterizations are effective for the suffix transition graphs of labeled word rewriting systems.

Generalized Cayley graphs of left-cancellative magmas

Cayley graphs are directed labeled graphs without isolated vertex. Precisely let A be an arbitrary (finite or infinite) set. A directed A-graph (V, G) is defined by a set V of vertices and a subset $G \subseteq V \times A \times V$ of edges. Any edge $(s, a, t) \in G$ is from the source s to the target t with label a, and is also written by the transition $s \xrightarrow{a} G$ or directly $s \xrightarrow{a} t$ if G is clear from the context. The sources and targets of edges form the set $V_{G}=\{s \mid \exists a, t(s \xrightarrow{a} t \vee t \xrightarrow{a} s)\}$ of non-isolated vertices of G, and $A_{G}=\{a \mid \exists s, t(s \xrightarrow{a} t)\}$ is the set of its edge labels. We assume that any graph (V, G) is without isolated vertex: $V=V_{G}$ hence the graph can be identified with its edge set G. For instance $\Upsilon=\{s \xrightarrow{n} s-n \mid s \in \mathbb{R} \wedge n \in \mathbb{Z}\}$ is a graph of vertex set \mathbb{R} and of label set \mathbb{Z}. For any graph G, we denote by $G_{\mid P}=\{(s, a, t) \in G \mid s, t \in P\}$ its vertex-restriction to $P \subseteq V_{G}$, and by $G^{\mid Q}=\{(s, a, t) \in G \mid a \in Q\}$ its label-restriction to $Q \subseteq A$. Let \longrightarrow_{G} be the unlabeled edge relation i.e. $s \longrightarrow_{G} t$ if $s{ }_{G}^{a} t$ for some $a \in A$. The image of a vertex s by \longrightarrow_{G} is the set $\longrightarrow_{G}(s)=\left\{t \mid s \longrightarrow_{G} t\right\}$ of successors of s. The accessibility relation \longrightarrow_{G}^{*} is the reflexive and transitive closure under composition of \longrightarrow_{G}. We denote by $G_{\downarrow s}$ the restriction of G to the set $\longrightarrow{ }_{G}^{*}(s)$ of vertices accessible from a vertex s. For instance $\Upsilon_{\downarrow 0}=\{m \xrightarrow{n} m-n \mid m, n \in \mathbb{Z}\}$. A root s is a vertex from which any vertex is accessible: $G_{\downarrow s}=G$.
Recall that a magma (or groupoid) is a set M equipped with a binary operation $\cdot: M \times M \longrightarrow M$ that sends any two elements $p, q \in M$ to the element $p \cdot q$. Given a subset $Q \subseteq M$ and an injective mapping 【】: $Q \longrightarrow A$, we define the following generalized Cayley graph:

$$
\mathcal{C} \llbracket M, Q \rrbracket=\{p \xrightarrow{\llbracket q \rrbracket} p \cdot q \mid p \in M \wedge q \in Q\} .
$$

It is of vertex set M and of label set $\llbracket Q \rrbracket=\{\llbracket q \rrbracket \mid q \in Q\}$. We denote $\mathcal{C} \llbracket M, Q \rrbracket$ by $\mathcal{C}(M, Q)$ when $\llbracket \rrbracket$ is the identity. For instance $\Upsilon=\mathcal{C}(\mathbb{R}, \mathbb{Z})$ for the magma $(\mathbb{R},-)$.
Among many properties of these graphs, we retain only three basic ones. First and by definition, any generalized Cayley graph is deterministic: there are no two edges of the same source and label i.e. $(r \xrightarrow{a} s \wedge r \xrightarrow{a} t) \Longrightarrow s=t$. Furthermore any generalized Cayley graph G is source-complete: for all vertex s and label a, there is an a-edge from s i.e. $\forall s \in V_{G} \forall a \in A_{G} \exists t(s \xrightarrow{a} t)$.
Recall that a magma ($M, \cdot \cdot$) is left-cancellative if $r \cdot p=r \cdot q \Longrightarrow p=q$ for any $p, q, r \in M$. Any generalized Cayley graph of a left-cancellative magma is simple: there are no two edges with the same source and target: $(s \xrightarrow{a} t \wedge s \xrightarrow{b} t) \Longrightarrow a=b$. Under the assumption of the axiom of choice, these three properties characterize the generalized Cayley graphs of left-cancellative magmas.

Theorem 1. In ZFC set theory, a graph is a generalized Cayley graph of a left-cancellative magma if and only if it is simple, deterministic and source-complete.

We can remove the assumption of the axiom of choice by restricting to finitely labeled graphs.

Cayley graphs of left-cancellative and cancellative monoids

Recall that a magma (M, \cdot) is a semigroup if \cdot is associative: $(p \cdot q) \cdot r=p \cdot(q \cdot r)$ for any $p, q, r \in M$. A monoid (M, \cdot) is a semigroup with an identity element 1: $1 \cdot p=p \cdot 1=p$ for all $p \in M$. The submonoid generated by $Q \subseteq M$ is $Q^{*}=\left\{q_{1} \cdot \ldots \cdot q_{n} \mid n \geq 0 \wedge q_{1}, \ldots, q_{n} \in Q\right\}$ the least submonoid containing Q. A monoid Cayley graph is a generalized Cayley graph $\mathcal{C} \llbracket M, Q \rrbracket$ for some monoid M generated by Q which means that 1 is a root of $\mathcal{C} \llbracket M, Q \rrbracket$.
Let us strengthen Theorem 1 to get a graph-theoretic characterization of the Cayley graphs of left-cancellative monoids. We need to introduce a structural property to describe their symmetry. Recall that an isomorphism from a graph G to a graph H (an automorphism of G for $G=H$) is a bijection h from V_{G} to V_{H} such that $s \xrightarrow{a}{ }_{G} t \Longleftrightarrow h(s) \xrightarrow{a}{ }_{H} h(t)$. Two vertices s, t of a graph G are accessible-isomorphic and we write $s \downarrow_{G} t$ if $t=h(s)$ for some isomorphism h from $G_{\downarrow s}$ to $G_{\downarrow t}$. A graph G is arc-symmetric if all its vertices are accessible-isomorphic: $s \downarrow_{G} t$ for every $s, t \in V_{G}$. For instance $\Upsilon_{\mid \mathbb{N}}^{\{\{-1\}}=\{n \xrightarrow{-1} n+1 \mid n \in \mathbb{N}\}$ is arc-symmetric but $\Upsilon_{\mid \mathbb{N}}^{\{\{1\}}=\{n \xrightarrow{1} n-1 \mid n \in \mathbb{N}\}$ is not arc-symmetric. Any arc-symmetric graph is source-complete. By adding in Theorem 1 the arc-symmetry and the existence of a root, we get a graph-theoretic characterization of the Cayley graphs of left-cancellative monoids.

Theorem 2. A graph is a Cayley graph of a left-cancellative monoid if and only if it is simple, deterministic, rooted and arc-symmetric.

We can adapt Theorem 2 to characterize the Cayley graphs of cancellative monoids. Recall that a magma M is cancellative if it is left-cancellative, and right-cancellative: $p \cdot r=q \cdot r \Longrightarrow p=q$ for all $p, q, r \in M$. Any generalized Cayley graph of a right-cancellative magma is co-deterministic meaning that the inverse $G^{-1}=\{(t, a, s) \mid(s, a, t) \in G\}$ of G is deterministic: there are no two edges with the same target and label i.e. $(s \xrightarrow{a} r \wedge t \xrightarrow{a} r) \Longrightarrow s=t$. By adding in Theorem 2 the co-determinism, we get a characterization of the Cayley graphs of cancellative monoids.

Theorem 3. A graph is a Cayley graph of a cancellative monoid if and only if it is simple, deterministic, co-deterministic, rooted and arc-symmetric.

Cayley graphs of groups

Recall that a group (M, \cdot) is a monoid whose each element $p \in M$ has an inverse p^{-1} : $p \cdot p^{-1}=1=p^{-1} \cdot p$. Any Cayley graph $\mathcal{C} \llbracket M, Q \rrbracket$ of a group $M=Q^{*}$ is strongly connected: any vertex is a root. We get a graph-theoretic characterization of these monoid Cayley graphs of groups just by strengthening in Theorem 2 the existence of a root by the strong connectivity.

Theorem 4. A graph is a monoid Cayley graph of a group if and only if it simple, deterministic, strongly connected and arc-symmetric.

We can now consider a group Cayley graph as a generalized Cayley graph $\mathcal{C} \llbracket M, Q \rrbracket$ such that M is a group equal to the subgroup generated by Q which is the least subgroup $\left(Q \cup Q^{-1}\right)^{*}$ containing Q where $Q^{-1}=\left\{q^{-1} \mid q \in Q\right\}$ is the set of inverses of the elements in Q. Any monoid Cayley graph of a group M is a (group) Cayley graph of M. Note that the unrooted graph $\Upsilon_{\mid \mathbb{Z}}^{\mid\{-1\}}=\{n \xrightarrow{-1} n+1 \mid n \in \mathbb{Z}\}$ is equal to $\mathcal{C} \llbracket \mathbb{Z},\{1\} \rrbracket$ for the group $(\mathbb{Z},+)$ with $\llbracket 1 \rrbracket=-1$. To characterize the Cayley graphs of groups, we need to extend the arc-symmetry by no longer restricting by accessibility. Two vertices s, t of a graph G are isomorphic and we write $s \simeq_{G} t$ if $t=h(s)$ for some automorphism h of G. A graph G is symmetric (or vertex-transitive) if all its vertices are isomorphic: $s \simeq_{G} t$ for every $s, t \in V_{G}$. Any symmetric graph is arc-symmetric, and $\Upsilon_{\mid \mathbb{N}}^{\{\{-1\}}$ is arc-symmetric but not symmetric. We can present a graph-theoretic characterization of the Cayley graphs (of groups).

Theorem 5. A graph is a Cayley graph of a group if and only if it is simple, deterministic, co-deterministic, connected and symmetric.

By removing the connectivity, we get all the generalized Cayley graphs of groups.
Theorem 6. In ZFC set theory, a graph is a generalized Cayley graph of a group if and only if it is simple, deterministic, co-deterministic, symmetric.

Generalized Cayley graphs of left-quasigroups

A magma (M, \cdot) is a left-quasigroup if for each $p, q \in \mathrm{M}$, there is a unique $r \in M$ such that $p \cdot r=q$. This property ensures that each element of M occurs exactly once in each row of the Cayley table. Any simple, deterministic and source-complete graph G is an out-regular graph: all its vertices have the same out-degree i.e. $\left|\longrightarrow_{G}(s)\right|=\left|\longrightarrow_{G}(t)\right|$ for any $s, t \in V_{G}$. This remains true with respect to non-successor vertices for any generalized Cayley graph G of a left-quasigroup: it is co-out-regular in the sense that $\left|V_{G}-\longrightarrow \longrightarrow_{G}(s)\right|=\left|V_{G}-\longrightarrow_{G}(t)\right|$ for any $s, t \in V_{G}$. It suffices to add this condition to Theorem 1 to characterize the generalized Cayley graphs of left-quasigroups.
Theorem 7. In ZFC set theory, a graph is a generalized Cayley graph of a left-quasigroup if and only if it is simple, deterministic, source-complete and co-out regular.

For the graphs having only a finite number of labels, we can remove the assumption of the axiom of choice, and also the co-out-regularity which then corresponds to the characterization of Theorem 1.

Theorem 8. A finitely labeled graph is a generalized Cayley graph of a left-quasigroup if and only if it is simple, deterministic, source-complete if and only if it is a generalized Cayley graph of a left-cancellative magma.

Generalized Cayley graphs of quasigroups

A magma (M, \cdot) is a quasigroup if - obeys the Latin square property: for each $p, q \in \mathrm{M}$, there is a unique $r \in \mathrm{M}$ such that $p \cdot r=q$ and there is a unique $s \in \mathrm{M}$ such that $s \cdot p=q$. This property ensures that each element of M occurs exactly once in each row and exactly once in each column of the Cayley table. Any generalized Cayley graph G of a quasigroup is simple, deterministic and source-complete, co-deterministic and target-complete meaning that G^{-1} is source-complete: for all vertex t and label a, there is an a-edge of target t i.e. $\forall t \in V_{G} \forall a \in A_{G} \exists s\left(s{ }^{a}{ }_{G} t\right)$. With these five properties, G is a regular graph: $\left|\longrightarrow_{G}(s)\right|=\left|\longrightarrow_{G^{-1}}(t)\right|$ for any $s, t \in V_{G}$. We also get that G is co-regular: $\left|V_{G} \longrightarrow \longrightarrow_{G}(s)\right|=\left|V_{G}-\longrightarrow G_{G^{-1}}(t)\right|$ for any $s, t \in V_{G}$. With the axiom of choice, these properties are sufficient to characterize the generalized Cayley graphs of quasigroups.
Theorem 9. In ZFC set theory, a graph is a generalized Cayley graph of a quasigroup if and only if it is simple, deterministic, co-deterministic, source-complete, target-complete and co-regular.
We can remove the co-regularity for the finitely labeled graphs.

Decidability results

We show the effectiveness of the previous characterizations for the family of suffix-recognizable graphs of finite degree which includes the finite graphs and the transition graphs of pushdown automata [6]. A suffix graph over an alphabet N is of the form $\bigcup_{i=1}^{n} W_{i}\left(u_{i} \xrightarrow{a_{i}} v_{i}\right)$ where $n \geq 0, u_{1}, v_{1}, \ldots, u_{n}, v_{n} \in N^{*}$ and W_{1}, \ldots, W_{n} are regular languages over N. Such a graph has a decidable isomorphism problem and a decidable monadic theory.
Theorem 10. We can decide whether a suffix graph G is a Cayley graph of a left-cancellative monoid, of a cancellative monoid, of a group, and whether G is a generalized Cayley graph of a left-quasigroup, of a quasigroup, of a group.
In the affirmative, $G=\mathcal{C} \llbracket V_{G}, \longrightarrow_{G}(r) \rrbracket$ where $\llbracket s \rrbracket=a$ for any $r \xrightarrow{a}{ }_{G} s$ and with a computable suitable binary operation on V_{G} and vertex r.

We can consider its generalization to all the suffix-recognizable graphs which form the first level of a stack hierarchy for which any graph has a decidable monadic second-order theory.

This is only a first approach in the structural description and the effectiveness of Cayley graphs of algebraic structures. A full version with proofs and examples is available in arxiv.

References

[1] L. Beineke and R. Wilson (Eds.), Topics in algebraic graph theory, Encyclopedia of Mathematics and its Application 102, Cambridge University Press (2004).
[2] N. Biggs, Algebraic graph theory, Cambridge Mathematical Library, Cambridge University Press (1993).
[3] A. Cayley, The theory of groups: graphical representation, American J. Math. 1, 174-76 (1878).
[4] C. Godsil and G. Royle, Algebraic graph theory, Graduate Texts in Mathematics, Springer (2001).
[5] J. Hamkins, Which graphs are Cayley graphs?, http://mathoverflow.net/q/14830 (2010).
[6] D. Muller and P. Schupp, The theory of ends, pushdown automata, and second-order logic, Theoretical Computer Science 37, 51-75 (1985).
[7] G. Sabidussi, On a class of fixed-point-free graphs, Proceedings of the American Mathematical Society 9-5, 800-804 (1958).

