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Abstract. In the early seventies, Shelah proposed a model-theoretic construction, nowa-
days called "iteration". This construction is an infinite replication in a tree-like manner
where every vertex possesses its own copy of the original structure. Stupp proved that
the decidability of the monadic second-order (MSO) theory is transferred from the orig-
inal structure onto the iterated one. In its extended version discovered by Muchnik and
introduced by Semenov, the iteration became popular in computer science logic thanks
to a paper by Walukiewicz. Compared to the basic iteration, Muchnik’s iteration has an
additional unary predicate which, in every copy, marks the vertex that is the clone of the
possessor of the copy. A widely spread belief that this extension is crucial is formally
confirmed in the paper. Two hierarchies of relational structures generated from finite
structures by MSO interpretations and either Shelah-Stupp’s iteration or Muchnik’s it-
eration are compared. It turns out that the two hierarchies coincide at level 1. Every
level of the latter hierarchy is closed under Shelah-Stupp’s interation. In particular, the
former hierarchy collapses at level 1.
Keywords: infinite-state systems, structure-building operations, Shelah-Stupp’s itera-

tion, Muchnik’s iteration.

1. Introduction
Monadic second-order (MSO) logic is a restriction of second-order logic which generalises a
number of temporal and program logics. Since many relevant properties can be expressed
in MSO logic [1], looking for structures with decidable MSO theories has been an active
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research area. Its foundations have been laid by Büchi [2] (weak MSO) and independently
by Trakhtenbrot [3] and Elgot [4] who in 1957-1962 established the decidability of the MSO
theory of one successor over IN and then by Rabin who in 1969 [5] established the decidability
of the MSO theory of the infinite complete binary tree.

In 1975 Shelah [6] proposed a generalisation of Rabin’s result where an infinite tree-
like structure is built as output from any input structure and Stupp [7] proved that this
construction, which we shall call Shelah-Stupp’s iteration or the basic iteration, preserves the
decidability of MSO theories. This result has been an important step in the development of
MSO-compatible operations, viz., the transformations of structures that preserve decidability
of its MSO theories. Other prominent MSO-compatible operations are generalised unions of
Shelah [6] and MSO transductions of Courcelle [8] together with their restricted versions that
are MSO interpretations. In 1979 Muchnik (Andrei Albertovich) introduced an extension
of the basic iteration with a unary predicate and proved its MSO compatibility. Muchnik’s
unpublished proof is sketched in an invited lecture by Semenov [9]. Finally, the missing full
proof has been written by Walukiewicz [10].

On top of above-mentioned Rabin’s work, Muller and Shupp obtained several important
results. In particular, they proved that transition graphs of pushdown automata have decid-
able MSO theories [11]. As established in [12], those graphs are precisely the simple graphs
of finite degree among HR-equational hypergraphs of Courcelle [13] which belong to an even
larger class of VR-equational hypergraphs [14] that also have decidable MSO theories. The lat-
ter class is closed under MSO-transductions as it is established by Barthelmann in [15] where
he also shows that VR-equational graphs coincide up to isomorphism with prefix-recognisable
graphs introduced by the first author [16].

Because isolated examples of graphs with a decidable MSO theory have been known since
the end of sixties [17, 18, 19], it has been suggested that combining Shelah-Stupp’s or Much-
nik’s iteration with MSO interpretations would lead to a larger family of structures with
decidable MSO theories [20]. In [21] Courcelle and Walukiewicz prove that the unfolding is
MSO-compatible. It is therefore suggested to seek for new classes of structures with decidable
MSO theories by combining the unfolding and MSO interpretations. The first such class with
an independent characterisation appears from [22, 23] as being the class of ranked infinite
trees formerly introduced (with no relation to MSO theories) by Englefriet and Schmidt [24]
and later studied by Damm [25] who have established that these form an infinite and strict
hierarchy. Finally, a more general hierarchy is built [26] through the unfolding which allows
one to climb up the hierarchy and through a restricted form of MSO interpretations which
yields, from the trees of a given level, a variety of graphs of the same level. However, besides
isolated examples, an even larger hierarchy may be obtained via MSO interpretation from the
hierarchy of trees considered in [27, 28].

The MSO-compatible operations play an essential role in establishing the decidability of
MSO theories. Both the unfolding and Muchnik’s iteration allow one to climb up the hierarchy
of [26] and have been used in many proofs. It has been observed by several authors that the
unfolding is MSO-interpretable within Muchnik’s iteration. Shelah-Stupp’s iteration is also
very useful when one needs an arbitrary number of copies of the original structure. It only
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differs from Muchnik’s iteration by the lack of a unary predicated often called «clone». There
is a widely spread belief that this unary predicate plays a crucial role in the expressive power
of Muchnik’s iteration. In the present paper we closely examine this belief which is further
confirmed by the main result.

Inspired by the hierarchy of graphs introduced by the first author [26], we consider an
analogous hierarchy of (directed) hypergraphs or relational structures. Within this hierarchy
one climbs from level n to level n + 1 via Muchnik’s iteration and expands on a given level
using MSO interpretation, starting from level 0 which consists of finite relational structures.
We also consider a similarly defined hierarchy where instead of Muchnik’s iteration, one uses
Shelah-Stupp’s iteration. We show that the two hierarchies coincide at level 1 but not beyond.
Whereas the first hierarchy is strict, we show that the second hierarchy collapses at level 1.

In order to show the collapse, we need first an insight into level 1. After some reminders
on MSO logic in Sect. 2 and definitions of the two hierarchies in Sect. 3, we review suffix-
regular expressions and we show that these characterise the structures of level 1. Suffix-
regular expressions extend regular expressions and may be considered as standard syntactic
description of structures at this level. We then focus in Sect. 4 on the main result which
says that, except level 0, every level of the first hierarchy is closed under Shelah-Stupp’s
iteration. This is established by induction. The induction basis follows from our syntactic
characterisation of level 1. For the induction step, we consider a structure of level n, with
n ≥ 2, on which Shelah-Stupp’s iteration is applied. As any level n structure is obtained from a
structure of level n−1 through Muchnik’s iteration and MSO interpretation, the essential part
of the proof consists in pushing the application of Shelah-Stupp’s iteration down to level n−1 so
that it is applied before Muchnik’s iteration. This is possible by performing several additional
MSO interpretations. Since the latter do not affect the level of the resulting structure, while
Shelah-Stupp’s iteration applies on level n − 1, we may use induction hypothesis to close the
proof. The collapse of Shelah-Stupp’s iteration entails, inter alia, the impossibility of defining
the unfolding by combining that iteration with MSO interpretations.

2. Monadic second-order logic

Iteration in the restricted or general version is an MSO-compatible operation that acts on
relational structures. We are therefore interested in MSO logic over such structures. These
are (directed) hypergraphs or, if there is no relation of arity greater than 2, (directed) graphs.
Two choices are possible for the latter. One may define a 2-sorted structure with a set of
vertices, a set of edges and the incidence relation. One may also define (labelled) edges as
relation on the set of vertices. The two definitions lead often to different results (see e.g.
[8]). For relational structures considered here as directed hypergraphs, we adopt the simpler,
namely the second view.

Let Σ be a ranked signature where each relation symbol a ∈ Σ has its arity α(a) ∈ IN. A
relational structure A over Σ, also called Σ-structure, is a set of hyperedges. Each hyper-
edge has its label in a ∈ Σ. A hyperedge a(s) ∈ A with s = (s1, . . . , sα(a)) links its vertices
s1, . . . , sα(a) which need not to be all pairwise distinct. A hyperedge of arity 2 is an edge and
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instead of a(s, s′), we write s aÐ→ s′. We write A(a) for the set of hyperedges of A labelled by
a ∈ Σ and VA for the set of vertices of A:

VA ∶= ⋃
a(s1,...,sα(a))∈A

{s1, . . . , sα(a)} .

The reader may observe that according to the above definition no relational structure may
have isolated vertices. To overcome this drawback, it is enough to add to the signature a
distinguished unary predicate symbol, say ρ, for labelling isolated vertices.

A path s w-⇢ t in A from s ∈ VA to t ∈ VA, labelled by a word w over a set of symbols from
Σ of arity 2 and possibly 1, is defined inductively by

s
ε-⇢ t, if s = t,

s
cu- -⇢ t, if c(s) and s u-⇢ t,

s
bu- -⇢ t, if there exists r ∈ VA s.t. s bÐ→ r and r u-⇢ t

The syntax of MSO logic over relational structures is defined like for first-order (FO)
logic but has, in addition to FO variables written in lower-case x, y, z, x′, x1, . . ., set variables
X,Y,Z,X ′,X1, . . . written in capitals. Beyond the usual atomic FO formulae a(x) for a ∈ Σ,
there are membership formulae x ∈ X each of which involve one FO variable and one MSO
variable. More general formulae are constructed in the standard way using connectives and
quantifiers which may be FO e.g. ∀x,∃x or MSO e.g. ∀X,∃X. Note that the equality symbol
is unnecessary since the identity relation is MSO definable:

x = y ∶⇔ ∀X (x ∈X⇔ y ∈X) .

In formulae, we shall sometimes use true, where

true ∶⇔ ∀x x = x .

The semantics of MSO logic is defined like for FO, except that set variables range over
subsets of the structure. A relational structure A satisfies ∃Xϕ(X) if there exists a subset V
of VA such that (A, V ) ⊧ ϕ(X), viz. ϕ(X) holds in A when X is interpreted as subset V .

A well known fact already mentioned in the introduction is that reachability is not FO-
definable. More generally, except in particular cases, one cannot define in FO a transitive
closure of an FO-definable relation. On the other hand, for any MSO formula ϕ(x, y), the
following formula Trϕ(x, y) defines the reflexive-transitive closure of the binary relation defined
by ϕ(x, y):

Trϕ(x, y) ∶⇔ ∀X ((x ∈X ∧ ∀x′∀ y′((x′ ∈X ∧ ϕ(x′, y′))⇒ y′ ∈X))⇒ y ∈X) .

Using the latter, for any regular expression E over a set of symbols of arity 2, one may write
an MSO formula pathE(x, y) suitable for graphs saying that there is a path from one vertex
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to another labelled by word in the regular language denoted by E . The formula is defined
inductively according to the structure of E :

path∅(x, y) ∶⇔ ¬true,
patha(x, y) ∶⇔ x

aÐ→ y,

pathr(x, y) ∶⇔ r(x) ∧ x = y, for a unary symbol r
pathE1+E2(x, y) ∶⇔ pathE1(x, y) ∨ pathE2(x, y),
pathE1E2(x, y) ∶⇔ ∃ z (pathE1(x, z) ∧ pathE2(z, y)),

pathE∗(x, y) ∶⇔ TrpathE (x, y).

The reader may consult [8] for more examples of MSO-definable relations or properties.
An MSO interpretation is a structure-building operation that defines a Ω-structure B

within a given Σ-structure A by means of MSO formulae over Σ. Formally, an MSO inter-
pretation h is given as a definition scheme which is a tuple ⟨δ, (θb)b∈Ω⟩ where δ is an MSO
formula with one free FO variable and each θb is an MSO formula with α(b) free FO variables.
Then B = h(A) is defined as follows:

VB ∶= {d ∈ VA ∣ (A, d) ⊧ δ(x)}
B(b) ∶= {b(d) ∣ (A, d) ⊧ θb(x)} for each b ∈ Ω.

We also say that θb defines the relation b within A. More generally, an n-ary relation % is
MSO-definable within a structure A, if there exists an MSO formula θ(x) with n free FO
variables x such that % = {d ∣ (A, d) ⊧ θ(x)}.

Example 2.1. Consider an infinite complete binary tree T{0,1} as a structure over a signature
Γ ∶= {0,1} with α(0) = α(1) = 2 where 0 (resp. 1) is the left (resp. right) successor relation.
We interpret within T{0,1} a graph over Ω ∶= {a, b, c} which is a sort of ladder:

●

●

●

●

●

●

●

●

a a a

c c c c

b b b

An interpretation is given by the definition scheme ⟨δ(x), θa(x, y), θb(x, y), θc(x, y)⟩ where

δ(x) ∶⇔ ∃ r (¬∃ z (z 0Ð→ r ∨ z 1Ð→ r) ∧ path0∗(ε+1)(r, x)),

θa(x, y) ∶⇔ x
0Ð→ y,

θb(x, y) ∶⇔ ∃ z1 ∃ z2 (z1
0Ð→ z2 ∧ z1

1Ð→ y ∧ z2
1Ð→ x),

θc(x, y) ∶⇔ x
1Ð→ y.

Observe that θa(x, y), θb(x, y), θc(x, y) are FO and that δ(x) which is MSO selects the nodes
of the leftmost branch of the tree as well as the immediate right successors of the nodes of
this branch.



6 D. Caucal, T. Knapik / Shelah-Stupp’s iteration and Muchnik’s iteration

3. Iteration hierarchy

We introduce in this section a hierarchy of relational structures which is built using iteration
and MSO interpretations. We also review level-n pushdown automata since these are closely
related to the hierarchy. Finally we study level-1 structures. We show that the two iterations
lead to the same level-1 class of structures. We also give an algebraic characterisation of level-
1 concrete structures following prefix-recognisable graphs introduced in [16]. By concrete, we
mean that the elements of the structure are encoded as words over a finite alphabet.

3.1. Shelah-Stupp’s iteration and Muchnik’s iteration

We now recall the definition of the iteration introduced by Shelah and the extension by
Muchnik.

Definition 3.1. (Iteration)
Given a relational structure A over Σ and a new binary relation symbol ♯ ∉ Σ, the basic (or
Shelah-Stupp’s) iteration of A, written A♯, is the following relational structure over Σ ∪ {♯}:

A♯ ∶= {a(ws1, . . . ,wsα(a)) ∣ a ∈ Σ ∧w ∈ V ∗
A ∧ a(s1, . . . , sα(a)) ∈ A}

∪ {w ♯Ð→ ws ∣ w ∈ V +
A ∧ s ∈ VA} .

Muchnik’s iteration of A is defined like the basic iteration A♯ extended with a unary predicate
& ∉ Σ ∪ {♯}:

A♯,& ∶= A♯ ∪ {&(wss) ∣ w ∈ V ∗
A ∧ s ∈ VA} .

The iteration may be understood as an operation which builds a structure made of a countable
number of copies of the original structure. The vertices of each copy are encoded by words over
the alphabet that is precisely the set of the vertices of the original structure. Within a given
copy all encoding words have the same length and differ only by the last letter that indicates
the original vertex. Every vertex possesses its own private copy of the original structure.
Within each copy, the common prefix of words encoding vertices is precisely the encoding of
the vertex in another copy (or in the original) that «owns» the copy. Walukiewicz [10] made
popular the name of «son» for the relation

{(w,ws) ∣ w ∈ V +
A ∧ s ∈ VA}

which may be represented by edges from a vertex to all vertices of the private copy of the
original structure owned by the vertex. Instead of «son» we use an arbitrary symbol to label
this relation, mostly ♯ or $. Similarly we use an arbitrary label, mostly &, for the vertices
of the form wss with w ∈ V +

A instead of the popular name «clone». Note that there is only
one so marked vertex in each copy which is precisely the image of the «owner» ws under an
isomorphism f(wt) = wst where t ∈ VA. The marked vertex wss is a sort of exact copy of the
owner ws.
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Example 3.2. We consider a graph G with 3 vertices {0,1,2} and 3 edges with labels in
{a, b} depicted as follows:

0

1

2

b
a a

Muchnik’s iteration G♯,& of the above graph is an infinite structure, a portion of each is
depicted below.

0

1

2

b
a a

&00

01

02

b
a a

♯
♯

♯

10

&
11

12

b
a a

♯♯ ♯
20

21

&22

b
a a

♯
♯ ♯

&000

001

002

b
a a

♯
♯

♯

010

&
011

012

b
a a

♯♯
♯

020

021

&022

b
a a

♯♯

♯

The basic iteration G♯ of G is depicted similarly. It only lacks &-labels.

3.2. The hierarchy

In [26] a hierarchy of infinite graphs is defined in terms of two graph operations: the unfolding
and the inverse regular mapping. In [29], Carayol and Wöhrle show that this hierarchy
can be alternatively defined in terms of Muchnik’s iteration and MSO-interpretation. By
allowing symbols of arity higher than 2, the latter definition is extended to arbitrary relational
structures.

Definition 3.3. (Iteration hierarchy)
For every n ∈ IN we define a family Hgrn of relational structures (or hypergraphs) of level n as
follows

Hgr0 is the family of finite relational structures,
Hgrn+1 ∶= {f(A♯,&) ∣ A ∈ Hgrn ∧ f is an MSO interpretation}.

Example 3.4. The ladder from Example 2.1, say L, is in Hgr1. The next construction shows
that the following triangle on the left
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●

● ●

● ● ●

● ● ● ●

c

c

c

b

b b

b b b

a

a

a

●

●

●

●

●

●

●

●

a a a

c c c c

b b b

●

●

●

●

●

●

●

●

a a a

c c c c

b b b

# c a

●

●

●

●

●

●

●

●

a a a

c c c c

b b b

#c a

●

●

●

●

●

●

●

●

a a a

c c c c

b b b

#c a

#c a

belongs to Hgr2. Indeed, this triangle may be interpreted within L#,& (depicted on the right
with the triangle superimposed on it) via the scheme

⟨δ(x), θa(x, y), θb(x, y), θc(x, y)⟩

where

δ(x) ∶⇔ ∃y (¬∃z (z
#
Ð→ y ∨ y bÐ→ z ∨ y cÐ→ z) ∧ ∃z (Trθa(y, z) ∧ pathb∗(z, x))),

θa(x, y) ∶⇔ ∃z (&(z) ∧ x
#
Ð→ z ∧ y bÐ→ z),

θb(x, y) ∶⇔ x
bÐ→ y,

θc(x, y) ∶⇔ ¬∃z (x bÐ→ z ∨ x cÐ→ z) ∧ ¬∃z (y bÐ→ z ∨ y cÐ→ z)
∧ ∃z (path#&b∗(z, x) ∧ pathb∗(z, y)) .

On a simplified picture of L#,& we only represent copies possessing vertices selected by δ(x)
and relevant #-labelled edges, namely those with &-labelled target (label & omitted). In
the original ladder L, δ(x) selects the unique vertex with no outgoing edges as “input” for
the reflexive-transitive closure collecting vertices of an a∗-labelled path (cf. Trθa(y, z)) of the
resulting graph. From this collection, vertices accessible by b∗-labelled paths are selected.
New edges x aÐ→y correspond to the pattern depicted on the right. Although
these edges involve both relevant and irrelevant copies, the latter are eliminated
as only the vertices reachable from the unique sink of L by new a∗b∗-labelled
paths are selected for the resulting structure by δ.

&
z y

x

#

b

b

Every new edge x cÐ→y goes from the sink of a copy to the sink of its owner but similarly to
new a-labelled edges, only relevant copies will be finally concerned due to selection by δ.
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3.3. Level-n pushdown automata

In [29], Carayol and Wöhrle show that, up to an ε-closure,1 the hierarchy of graphs of [26],
may be characterised via transition graphs of level-n pushdown automata (n-pda for short). A
1-pda, is a standard pushdown automaton. Instead of a usual pushdown store (pds for short),
a 2-pda has a level-2 pds, each element of which is a usual (level-1) pds. Within a level-2 pds,
the topmost level-1 pds may be accessed by means of standard pushdown operations but in
addition it may be removed or duplicated. An n-pda is obtained by generalising this idea to
any level n.

Formally, level-n (resp. non empty level-n) pds, written Γn∗ (resp. Γn+) over Γ is defined by

Γ0
∗ ∶= Γ, Γ0

+ ∶= Γ,
Γk+1
∗ ∶= (Γk∗)∗, Γk+1

+ ∶= (Γk∗)+.

Note that if V ⊆ Γn∗ then V m
∗ ⊆ Γm+n∗ . If u ∈ Γk∗ and s ∈ Γk−1

∗ then u⌟s ∈ Γk+ stands for the pds
u with s added on top of it. The set of level-n pds operations, written Opsn, consists of

top0∶ Γn+ → Γn−1
∗ , top0(u⌟s) = s,

top−k∶ Γn+ → Γn−k−1
∗ , top−k(u⌟s) = top1−k(s), for 1 ≤ k < n,

pop0∶ Γn+ → Γn∗ , pop0(u⌟s) = u,

pop−k∶ Γn+ → Γn+, pop−k(u⌟s) = u⌟pop1−k(s), for 1 ≤ k < n,
push0∶ Γn+ → Γn+, push0(u⌟s) = (u⌟s)⌟s for n > 1,

push−k∶ Γn+ → Γn+, push−k(u⌟s) = u⌟push1−k(s), for 2 ≤ k < n,
pushc∶ Γ∗ → Γ+, pushc(u) = u⌟c, for c ∈ Γ,
pushc∶ Γn+ → Γn+, pushc(u⌟s) = u⌟pushc(s), for 2 ≤ n and c ∈ Γ.2

An n-pda P is a tuple (Q,Σ,Γ, q0, ι,∆, f), where Q is a finite set of states, Σ is the input
alphabet, Γ is the pds alphabet, q0 ∈ Q is the initial state, ι ∈ Γn+ is the initial pds, f ∈ Q is
the final state and ∆ ⊆ Γ ×Q × (Σ ∪ ε) ×Opsn ×Q is the set of transition rules of the form
(c, p) bÐ→ (op, q) with c ∈ Γ, p ∈ Q, b ∈ Σ ∪ {ε}, op ∈ Opsn and q ∈ Q.

The transition graph GP of P is a subset of (Γn+ ×Q) × (Σ ∪ {ε}) × (Γn∗ ×Q) defined by

GP ∶= {(s, p) bÐ→ (op(s), q) ∣ (top1−n(s), p)
bÐ→ (op, q) ∈ ∆} .

A word w ∈ Σ∗ is accepted by P and belongs to its language, written L (P), if it labels a path
in GP from (ι, q0) to (s, f) for some s ∈ Γn∗ :

L (P) ∶= {w ∈ Σ∗ ∣ ∃ s ∈ Γn∗ (ι, q0)
w- --⇢
GP

(s, f)} .

1In a transition graph of an automaton or machine, ε-labelled edges correspond to silent moves. An ε-closure
consist in replacing, for each letter a of the input alphabet, every path x

ε∗aε∗- -- -⇢ y by an edge x
a
Ð→ y.

2Note that the name pushc is overloaded.
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Note that in an unconventional way pds operations are indexed here by negative integers
saying how deeply in the nesting level, starting from level n, the operation applies. In such a
way we do not need to care about the exact level of pds operations. It just has to be strictly
greater than the absolute value of the indexing integer.

Example 3.5. Consider a 2-pda Psqr = ({0,1,2,3, f},{a, b},{�, a, b},0, [�][�],∆, f) accept-
ing the square language on {a, b}, Lsqr ∶= {ww ∣ w ∈ {a, b}∗}. The set of transition rules ∆
is
(�,0) aÐ→ (pusha,0),
(�,0) bÐ→ (pushb,0),
(�,0) εÐ→ (pop−1, f),
(�,2) εÐ→ (pop−1,3),
(�,3) εÐ→ (pop0, f),

(a,0) aÐ→ (pusha,0),
(a,0) bÐ→ (pushb,0),
(a,0) εÐ→ (push−1,1),
(a,1) εÐ→ (pop0,2),
(a,2) εÐ→ (push−1,1),
(a,3) aÐ→ (pop−1,3),

(b,0) aÐ→ (pusha,0),
(b,0) bÐ→ (pushb,0),
(b,0) εÐ→ (push−1,1),
(b,1) εÐ→ (pop0,2),
(b,2) εÐ→ (push−1,1),
(b,3) bÐ→ (pop−1,3).

The automaton pushes the letters as these are read on top of the topmost pds. Then it guesses
the middle of the word and performs a sequence of ε-transitions which alternatively copy the
topmost pds and pop its topmost letter. When � is detected, Psqr pops the whole topmost
pds and starts reading the input again. The letter read has to agree with the letter on the
top of the topmost pds whereas, the whole topmost pds is popped. When � is detected, Psqr
switches to its final state.
Here is a path in GPsqr accepting abbabb where each configuration is written as a sequence of
level-1 pds enclosed in brackets and followed by the current state.
[�][�]0 aÐ→ [�][�a]0 bÐ→ [�][�ab]0 bÐ→ [�][�abb]0 εÐ→ [�][�abb][�abb]1
εÐ→ [�][�abb][�ab]2 εÐ→ [�][�abb][�ab][�ab]1 εÐ→ ∣�][�abb][�ab][�a]2
εÐ→ [�][�abb][�ab][�a][�a]1 εÐ→ [�][�abb][�ab][�a][�]2 εÐ→ ∣�][�abb][�ab][�a]3
aÐ→ [�][�abb][�ab]3 bÐ→ [�][�abb]3 bÐ→ [�]3 εÐ→ [�]f

We shall use pds operations for proving several essential lemmas in the sequel.

3.4. Suffix-recognisable structures and level 1

By definition, level 0 of the iteration hierarchy corresponds to all finite structures. In the
case of graphs, the level-1 of the iteration hierarchy consist, up to graph isomorphism, of
prefix-recognisable (resp. suffix-recognisable) graphs defined as follows in [16]:

A = ⋃mi=1(Ui
aiÐ→ Vi)Wi

(resp. A = ⋃mi=1Wi(Ui
aiÐ→ Vi) )

for somem ∈ IN and some Ui, Vi,Wi ∈ Reg(Γ∗) that are non empty regular sets, and a1, . . . , am ∈ Σ.
In the above, the operation (Ui

aiÐ→ Vi)Wi (resp. Wi(Ui
aiÐ→ Vi)) defines the edge relation for
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label ai as follows:

(Ui
aiÐ→ Vi)Wi ∶= {(uw, vw) ∣ u ∈ Ui, v ∈ Vi,w ∈Wi}

(resp. Wi(Ui
aiÐ→ Vi) ∶= {(wu,wv) ∣ u ∈ Ui, v ∈ Vi,w ∈Wi} )

In fact, these consist of two operations, namely Cartesian product and one sided multipli-
cation. Because prefixes of pairs of words related by an edge form a recognisable relation,
Damian Niwiński suggested to name those graphs prefix-recognisable.

Prefix-recognisable graphs may be considered as a syntactic characterisation of the fam-
ily of graphs that are MSO-interpretable within the complete infinite binary tree [15, 30].
Although the term prefix-recognisable became common, it turns out that suffix-recognisable
graphs are more consistent for this characterisation. Otherwise, a prefix-recognisable graph
has to be transformed into its isomorphic suffix-recognisable twin by mirroring its vertices.
The choice between prefix or suffix depends on the side of the multiplication: left for suffix
and right for prefix. If both are combined we get bifix graphs [31, 32] which do not enjoy, in
general, the decidability of their MSO theories.

The first prefix-recognisable-like characterisation of relations which are MSO-interpretable
within the complete infinite binary tree T{0,1} is done by Angluin and Hoover [33]3. Other
such characterisations are given by Läuchli and Savioz [34], Carayol and Colcombet [35], and
Blumensath [30]. The two latter papers consider, more generally, relational structures.

In the next definition, we review suffix-regular expressions and suffix-recognisable relations
of arbitrary arity as defined in [35]. The latter use the generalisation of left multiplication of
a relation R ⊆ (Γ∗)m by a set W ⊆ Γ∗:

WR ∶= {(wu1, . . . ,wum) ∣ w ∈W ∧ (u1, . . . um) ∈R} .

Since a relational structure is assimilated to a set of labelled hyperedges, the above operation
is extended in the usual way to relational structures:

WA ∶= {a(wu1, . . . ,wum) ∣ a ∈ Σ ∧w ∈W ∧ a(u1, . . . um) ∈ A} .

For introducing suffix-recognisable relations, we also need permutations. An n-permutation
σ is a bijection of [n] into itself extended to ∏n

i=1Ei in the usual way:

for (e1, . . . , en) ∈
n

∏
i=1
Ei σ(e1, . . . , en) = (eσ(1), . . . , eσ(n)) .

We often denote a permutation σ∶ [n]→ [n], by the tuple [σ−1(1), . . . , σ−1(n)]. For instance,
given σ∶ [3] → [3] such that σ(1) = 3, σ(2) = 1, σ(3) = 2, we have σ(a, b, c) = (c, a, b) and we
may also write [3,1,2](a, b, c) = (c, a, b).

3More generally, the complete infinite k-ary tree is considered there.
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Definition 3.6. (Suffix-regular expressions and suffix-recognisable relations)
The set of suffix-regular expressions on Γ of arity m ∈ IN ∖ {0}, written SRegm(Γ∗), is the
smallest set of expressions such that

Reg(Γ∗) ⊆ SReg1(Γ∗),
if R,S ∈ SRegk(Γ∗) then R ∪ S ∈ SRegk(Γ∗).
if R ∈ SRegk(Γ∗) and S ∈ SRegl(Γ∗) then R × S ∈ SRegk+l(Γ∗),
if W ∈ Reg(Γ∗) and R ∈ SRegk(Γ∗) then WR ∈ SRegk(Γ∗),
if R ∈ SRegk(Γ∗) and σ is a k-permutation then σ(R) ∈ SRegk(Γ∗).

The set of prefix-regular expressions is defined likewise, except that, in the fourth case, left
multiplication WR is replaced by right multiplication RW .

Any subset of (Γ∗)m denoted by a suffix-regular (resp. prefix-regular) expression of arity
m on Γ is called a suffix-recognisable (resp. prefix-recognisable) relation on Γ∗ of arity m, and
is written SRecm(Γ∗).

In case the encoding of elements does not matter, we simply write SRecm to denote the
class of m-ary suffix-recognisable relations up to isomorphism.

Here is an example of a suffix-regular expression on {0,1}∗ of arity 3:

[1,3,2](Γ∗(ε × ε) × Γ∗) .

It is easy to see that this relation is also obtained by interpreting in T{0,1} the definition
scheme ⟨δ(x), θa(x, y, z)⟩ where

δ(x) = true,
θa(x, y, z) = (x = z).

For the example of the ladder (see Example 2.1), we write expressions for each labelled
relation: 0∗(ε×0) for a, 0∗(01×1) for b and 0∗(ε×1) for c. In a compact syntax of [16] which
is suitable for graphs, we have 0∗(ε aÐ→ 0 + ε bÐ→ 1 + ε cÐ→ 1).

It is stated in [35] that the family of suffix-recognisable relations on {0,1}∗ is precisely the
family of relations that are MSO-definable in the complete infinite binary tree T{0,1}.

Theorem 3.7. An n-ary relation R ⊆ ({0,1}∗)n is suffix-recognisable, if, and only if, R is
MSO-definable in the complete infinite binary tree T{0,1}.

The proof of this statement is sketched [35]. We give it a complete proof following a different
idea. For that, we need to quickly review a few points about the decidability the MSO theory
of T{0,1} also known as the decidability of the theory of two successors or S2S (see [36] for more
details). The variables occurring in an S2S formula ψ form the set Var(ψ) and ψ uses atomic
formulae of the form x

0Ð→ y and x
1Ð→ y for the two successors. Under some interpretation

ν∶{0,1}∗ → ℘(Var(ψ)), ψ is satisfied by a complete infinite binary tree Tν{0,1} with nodes
labelled by variables of Var(ψ), each node w ∈ {0,1}∗ having possibly several labels forming
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the set ν(w). The standard decision procedure for S2S relies on the construction of a Muller
tree automaton Aψ such that Tν{0,1} ⊧ ψ iff Aψ accepts Tν{0,1}. We call it the automaton
modelling ψ. More precisely Aψ = (Q,℘(Var(ψ)),∆, ι,F) where Q is a finite set of states,
∆ ⊆ Q ×℘(Var(ψ)) ×Q ×Q is a transition relation, ι ∈ Q is an initial state and F ⊆ ℘(Q) is a
set of accepting sets of states. A run of Aψ on Tν{0,1} produces a labelling %∶{0,1}∗ → Q of the
nodes of T{0,1} such that %(ε) = ι and (%(w), ν(w), %(w0), %(w1)) ∈ ∆ for all w ∈ {0,1}∗. Such
a run is accepting if, for every infinite branch of T%{0,1}, the set of states occurring infinitely
often in the branch belongs to F . The latter condition is called Muller acceptance.

An S2S formula ϕ(x) defining an n-ary relation on T{0,1} has exactly n free pairwise
distinct variables x = (x1, . . . , xn) which are FO variables. For Tν{0,1} to be a model of ϕ(x),
every FO variable labels exactly one node of Tν{0,1}. The Muller tree automaton Aϕ modelling
ϕ(x) is such that the relation defined by ϕ(x) in T{0,1} is precisely

{(w1, . . . ,wn) ∈ ({0,1}∗)n ∣ Tν{0,1} ∈ L (Aϕ) ∧ ⋀
i∈[n]

ν(wi) ∩ {x1, . . . , xn} = xi} .

Proof of Theorem 3.7:
⇒
Assume that R is suffix-recognisable. The claim that R is MSO-definable in T{0,1} is estab-
lished by induction on the structure of the expression denoting R.

• case R =W with W ∈ Reg(Γ∗)
Then W is defined by the formula ∃ y (root(y) ∧ pathW (y, x)).

• case R =R1 ∪R2 with R1,R2 ∈ SReck(Γ∗)
By induction hypothesis R1 and R2 are defined by some MSO formulae ϕ1(x) and
ϕ2(x). Then R is defined by ϕ1(x) ∨ ϕ2(x).

• case R =R1 ×R2 with R1 ∈ SReck(Γ∗) and R2 ∈ SRecl(Γ∗)
By induction hypothesis R1 and R2 are defined by some MSO formulae ϕ1(x) and
ϕ2(y) where x and y are tuples of pairwise distinct variables. Then R is defined by
ϕ1(x) ∧ ϕ2(y).

• case R =WS with W ∈ Reg(Γ∗) and S ∈ SReck(Γ∗)
By induction hypothesis S is defined by some MSO formula ψ(x). Let then

Aψ = (Q,℘(Var(ψ)),∆, q0,Ω)

be a Muller tree automaton modelling ψ. Let B = (Q′,Θ, q′0, F ) be a finite deterministic
and complete (word) automaton accepting W . Assuming that Q∩Q′ = ∅, we construct
a Muller tree automaton AWS ∶= (Q ∪Q′,℘(Var(ψ)),∆ ∪∆′, q′0,Ω), where

∆′ ∶= {(p,∅, q, q′) ∣ (p,0, q), (p,1, q′) ∈ Θ} ∪ {(f,P, p, q) ∣ f ∈ F ∧ (q0, P, p, q) ∈ ∆} .

Now, the MSO formula associated to AWS , say ϕ(x), defines WS within T{0,1}.
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• case R = σ(S) with a k-permutation σ and S ∈ SReck(Γ∗)
By induction hypothesis S is defined by some MSO formulae ϕ(x1, . . . , xk). Then R is
defined by ϕ(xσ(1), . . . , xσ(k)).

⇐
Assume that R is defined within T{0,1} by an S2S formula ϕ(x) where x = (x1, . . . , xn) is the
tuple of (pairwise distinct) free variables of ϕ. For a tuple, t = (t1, . . . , tm), set(t) stands for
{ti ∣ i ∈ [m]}. For k ≤m, Ak(t) denotes the set of k-arrangements of t:

Ak(t) ∶= {(tf(1), . . . , tf(k)) ∣ f ∶ [k]→ [m] injective} .

Let Aϕ = (Q,℘(Var(ϕ)),∆, ι,F) be a Muller tree automaton modelling ϕ(x). We denote
by Aϕ,q the automaton resulting from replacing in Aϕ its initial state ι by some state q ∈
Q. The first projection is written π1. An interpreting run of Aϕ,q on T{0,1} is a labelling
µ∶{0,1}∗ → Q × ℘(Var(ϕ)) such that π1 ○ µ is an accepting run of Aϕ,q on Tπ2○µ

{0,1}. The set of
all interpreting runs of Aϕ,q is written ir(Aϕ,q). We set freeµ(u) ∶= π2(µ(u)) ∩ set(x) for any
u ∈ {0,1}∗. We say that an interpreting run µ of Aϕ,q is consistent at with a k-arrangement
t = (t1, . . . , tk) ∈ Ak(x), if the depth-first ordered tuple of all nodes wt = (w1, . . . ,wk) of Tµ{0,1},
repetitions allowed, with labels in {x1, . . . , xn} (i.e. freeµ(wi) ≠ ∅ for every i ∈ [k]) is such
that,

• freeµ(wi) ⊆ set(t), for all i ∈ [k],

• freeµ(w) = ∅ for all w ∈ {0,1}∗ ∖ set(wt),

• ti ∈ freeµ(wi), for all i ∈ [k].

Since every variable of {x1, . . . , xn} occurs exactly once in an interpreting run µ of Aϕ and
at most once in an interpreting run µ of Aϕ,q, every node u of Tµ{0,1} appears ∣freeµ(u)∣ times
in wt. Up to such repetitions, the order of wt is the order in which nodes of set(wt) would
be visited in a depth first search of Tµ{0,1} (left branch first, nodes appearing in infix order)
limited to the depth of the deepest node carrying a label in {x1, . . . , xn}. For example, an
interpreting run putting variables {x, y, z, s, t} as follows

u1
z

u2
y u3

x s

u4
t u5

is consistent with (y, z, t, x, s) (and with (y, z, t, s, x)). The corresponding depth-first ordered
tuple of nodes is (u2, u1, u4, u3, u3).

Claim T t ∶= {Tµ{0,1} ∣ µ ∈ ir(Aϕ,q) is consistent with t} is regular for every arrangement t of
x.
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Proof of the claim It is easy to design a Muller tree automaton At which checks for consis-
tency. It keeps a list of labels to encounter starting at the root with t and, while visiting
nodes without label in {x1, . . . , xn}, it nondeterministically breaks the current list into
two sublists. It remembers the first sublist for the left subtree and second sublist for the
right subtree. When At visits a node with labels in {x1, . . . , xn}, these must form a fac-
tor, say (xlj , xlj+1 , . . . , xlj+k−1), of the current list, say (xl1 , . . . , xlm) for some k ≤m ≤ n.
It then remembers (xl1 , . . . , xlj−1) for the left subtree and (xlj+k , . . . , xlm) for the right
subtree. When the current list, say s, matches freeµ(u) of the current node, say u (i.e.
freeµ(u) = set(s)), the whole subtree rooted at u is labelled with a designated state f .
The set of accepting sets of states realising Muller condition for At is {{f}}.
Now, the automaton accepting Tt is obtained as the product of automata Aϕ ×At. ◁

Let m ≥ 1. We call a 3-split of a tuple (t1, . . . , tm) a triple

((t1, . . . , tj−1), (tj , tj+1, . . . , tj+k−1), (tj+k, . . . , tm)) .

such that, if k = 0, then j ≥ 2 and m ≥ j + k (if the middle tuple has length 0, then both
remaining tuples have non-zero length). The set of all 3-splits of a tuple t is written 3sp(t). We
say that an interpreting run µ ∈ ir(Aϕ,q) is consistent with a 3-split (y, z, s) of an arrangement
of x, if there is a node u ∈ {0,1}∗ such that

• freeµ(u) = set(z),

• µ restricted to the left subtree under u is consistent with y,

• µ restricted to the right subtree under u is consistent with s.

Similarly to the above claim about Tt, it is easy to show that

T(y,z,s),q ∶= {Tµ{0,1} ∣ µ ∈ ir(Aϕ,q) is consistent with (y, z, s)}

is regular for every 3-split (y, z, s) of an arrangement of x.

Claim For every regular set of complete binary trees T with node labels in some finite set,
any set of nodes LT,ψ of trees of T defined by an MSO formula ψ(x), namely

LT,ψ ∶= {w ∈ {0,1}∗ ∣ Tν{0,1} ∈ T ∧ (T ν{0,1},w) ⊧ ψ(x)},

is a regular set of words.
Proof of the claim Let A = (Q,P,∆, ι,F) be the product AT ×Aψ of a Muller tree automa-

ton AT such that L (AT ) = T with a Muller tree automaton Aψ modelling an MSO
formula ψ(x) defining some set of nodes of trees of T . We consider the finite (word)
automaton B = (Q ×P,Θ, I, F ) on {0,1} with set of states Q ×P, transition relation

Θ ∶= {((q,P ),0, (q1, P1)) ∣ (q,P, q1, q2) ∈ ∆ ∧ (q1, P1) ∈ π1,2(∆)} ∪
{((q,P ),1, (q2, P2)) ∣ (q,P, q1, q2) ∈ ∆ ∧ (q2, P2) ∈ π1,2(∆)},
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set of initial states I ∶= {(ι, P ) ∣ (ι, P, q1, q2) ∈ ∆} and set of final states F defined as
follows

(q,P ) ∈ F ∶⇔ x occurs in P and
there exists a path (q,P ) --⇢

B
(p1, P1)Ð→

B
(p2, P2)Ð→

B
⋯Ð→

B
(pk, Pk)Ð→

B
(p1, P1)

such that ⋃
i∈[k]

{pi} ∈ F .

It follows that L (B) = LT,ψ. ◁

We are ready to give an inductive construction of a suffix-regular expression Eϕ for the relation
defined by ϕ(x). For y ∈ An(x), let σy,x∶ [n] → [n] be a permutation such that σ(y) = x. For
z ∈ Ak(x), we define ∆z ∶= {(q,Y, q1, q2) ∈ ∆ ∣ Y ∩ set(x) = set(z)}. The expression is given by

Eϕ ∶= ⋃
y∈An(x)

σy,x E(ι, y)

where, for p ∈ Q and s ∈ Ak(x) with k ≥ 1,

E(p, s) ∶= ⋃
(y,z,t) ∈3sp(s)

⋃
(q,Y,q1,q2) ∈∆z

LT(y,z,t),p,ψ[q,Y,q1,q2](0E(q1, y) ×∏
∣z∣
ε × 1E(q2, t))

and where ψ[q,Y, q1, q2](x) is a formula satisfied at every node u of a tree of T(y,z,t),p such
that u is labelled (q,Y) and q1 (resp. q2) occurs in the label of u0 (resp. u1). The expression
for E(p, s) is completed with the case of zero-length tuple of variables: E(p, ()) ∶= 1l where 1l
denotes the neutral element for the Cartesian product. r ⊓⊔

The following corollary is immediate as the set of MSO-definable k-ary relations within a
given structure forms a Boolean algebra.

Corollary 3.8. For every k ∈ IN, SReck(Γ∗) is a Boolean algebra.

As expected, suffix-recognisable relations are components of suffix-recognisable structures.

Definition 3.9. (Suffix-recognisable structures)
A Σ-structure A is suffix-recognisable if A(a) ∈ SRecm for each a ∈ Σ with α(a) = m. The
class of suffix-recognisable Σ-structures is written SRec(Σ).

Theorem 3.7 adapted to the latter definition is stated as the following corollary.

Corollary 3.10. A Σ-structure is suffix-recognisable, if, and only if, it is MSO-interpretable
in the complete infinite binary tree T{0,1}.

Since the composition of two MSO interpretations is again an MSO interpretation [8],
from Theorem 3.7 we get the following corollary.

Corollary 3.11. The family of suffix-recognisable structures is closed under MSO-interpre-
tations.
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In order to show that level 1 of the iteration hierarchy consists, up to isomorphism, of
suffix-recognisable structures we start with the following lemma.

Lemma 3.12. Muchnik’s and the basic iteration of every finite structure is, up to isomor-
phism, suffix-recognisable.

Proof:
Let A be a finite structure. We set Γ ∶= VA. Let ♯,& ∉ Σ. The relation corresponding to a ∈ Σ
in both A♯,& and A♯ is a finite union

⋃
a(s1,...,sα(a))∈A

Γ∗a(s1, . . . , sα(a)) .

For ♯ we have ⋃s∈Γ Γ+(ε ♯Ð→ s) and for & we have ⋃s∈Γ Γ∗&(ss). ⊓⊔

Starting from a 2-element structure A B over 2 unary labels {A,B} by Muchnik’s
iteration and even by basic iteration, we get a structure (see below) where a complete infinite
binary tree T{0,1} is readily interpreted.

A B

A B A B

A B A B A B A B

♯ ♯ ♯ ♯

♯ ♯ ♯ ♯ ♯ ♯ ♯ ♯

A B

A B A B

A B A B A B A B

♯ ♯ ♯ ♯

♯ ♯ ♯ ♯ ♯ ♯ ♯ ♯

This leads to the following corollary.

Corollary 3.13.

1. Hgr1 ≡ SRec,

2. Hgr1 ≡ {f(A♯) ∣ A ∈ Hgr0 ∧ f is an MSO interpretation}.

Proof:
Set Hgrbasic

1 ∶= {f(A♯) ∣ A ∈ Hgr0 ∧ f is an MSO interpretation}. From Lemma 3.12 and Corol-
lary 3.11 it follows that (up to isomorphism) Hgr1 ⊆ SRec and Hgrbasic

1 ⊆ SRec. Both Hgr1 ⊇ SRec
and Hgrbasic

1 ⊇ SRec (up to isomorphism) follow from the fact that T{0,1} is MSO-interpretable
within a structure that is obtained as basic or Muchnik’s iteration of a two-element structure
and the fact that every suffix-recognisable structure is MSO-interpretable within T{0,1} (The-
orem 3.7). Since the composition of two MSO interpretations is again an MSO interpretation,
we are done. ⊓⊔

The above corollary suggests that similarly to the iteration hierarchy Hgrn, one might define
the basic iteration hierarchy, say Hgrbasic

n . However, as we shall see in the next section, the
latter hierarchy collapses at level 1.
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4. Closure under basic iteration
This section starts by the statement of the main theorem which is established by induction.
After showing the induction basis, the proof of the induction step is split into two lemmas.
While the proof of Lemma 4.2 is concise, Lemma 4.3 is based on a more subtle construction.
We explain this construction step by step following a simple example. Each step uses an MSO
interpretation.

Theorem 4.1. For any n ≥ 1, the family of structures Hgrn is closed under basic iteration.

Proof:
Let n ∈ IN ∖ {0} and A be a structure in Hgrn. The claim that A♯ ∈ Hgrn is established by
induction on n.

• n = 1
According to Corollary 3.13 w.l.o.g. we may assume that A is a suffix-recognisable struc-
ture. By definition

A♯ = {a(s1 . . . sku1, . . . , s1 . . . skuα(a)) ∣ k ∈ IN ∧ s1, . . . , sk ∈ VA
∧ a(u1 . . . , uα(a)) ∈ A}

∪ {s1 . . . sk
♯Ð→ s1 . . . skt ∣ k ∈ IN ∧ s1, . . . , sk, t ∈ VA} .

In order to keep track of original vertices (words) that would be lost under concatenation,
we introduce a separator † ∉ Γ :

A♯ = {a(s1† . . . †sk†u1, . . . , s1† . . . †sk†uα(a)) ∣ k ∈ IN ∧ s1, . . . , sk ∈ VA
∧ a(u1 . . . , uα(a)) ∈ A}

∪ {s1† . . . †sk
♯Ð→ s1† . . . †sk†t ∣ k ∈ IN ∧ s1, . . . , sk, t ∈ VA}

= {a(wu1, . . . ,wuα(a)) ∣ w ∈ (VA†)∗ ∧ a(u1 . . . , uα(a)) ∈ A}

∪ {w ♯Ð→ w†t ∣ w ∈ (VA†)∗VA ∧ t ∈ VA}
= {w.a(u1 . . . uα(a)) ∣ w ∈ (VA†)∗ ∧ a(u1 . . . , uα(a)) ∈ A}

∪ {w.(ε ♯Ð→ t) ∣ w ∈ (VA†)∗ ∧ t ∈ VA}

= (VA†)∗.A ∪ (VA†)∗VA.(ε
♯Ð→ VA) .

Thus A♯ is suffix-recognisable. Consequently A♯ ∈ Hgr1.

• n > 1 (induction step)

According to the definition of the hierarchy, A ∈ Hgrn is obtained from a structure in
Hgrn−1, say B, through Muchnik’s iteration followed by an MSO interpretation, say f :

A = f(B♯,&)
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Consider a basic iteration A$ of A for a new binary symbol $ ∉ Σ ∪ {♯,&}. Then
A$ = f(B♯,&)$.
We establish in subsequent lemmas that there exist MSO interpretations f$, g and h
such that

(f(B♯,&))$ ≡ f$(g((h(B)$)♯,&)) . (i)

Since h(B) ∈ Hgrn−1, by induction hypothesis we have h(B)$ ∈ Hgrn−1. Then

(h(B)$)♯,& ∈ Hgrn
and also g((h(B)$)♯,&) ∈ Hgrn. Finally

f$(g((h(B)$)♯,&)) ∈ Hgrn .

Equality (i) is established in two steps. First, using Lemma 4.2, the existence of an
MSO interpretation f$ such that

f(B♯,&)$ = f$((B♯,&)$)

is obtained. Second, using Lemma 4.3, the existence of MSO interpretations g and h
such that

(B♯,&)$ ≡ g((h(B)$)♯,&)
is ascertained.

⊓⊔

The above proof relies upon two lemmas. The first one states that basic iteration and MSO
interpretations commute, provided a slight adaptation of the latter.

Lemma 4.2. For every MSO interpretation f and $ ∉ Σ, there exists an MSO interpretation
f$ such that, for every relational structure C over Σ, one has

f(C)$ = f$(C$) .

Proof:
Let f be an MSO interpretation. Observe first that equality

f(C)$ = f(C$)

does not hold because f may add hyperedges across distinct copies of C. Thus definition
scheme ⟨δ, (θa)a∈Σ⟩ of f has to be adapted as follows. Each formula θa(x1, . . . , xα(a)) needs
to be relativised w.r.t. vertices of the same copy (viz., sharing the same $-ancestor) or of the
original (viz., no $-ancestor) C within C$. Therefore θ$

a(x1, . . . , xα(a)) is defined as being the
following formula:

(∃ y (y $Ð→ x1 ∧⋯ ∧ y $Ð→ xα(a)) ∨ ∀ y (¬y $Ð→ x1 ∧⋯ ∧ ¬y $Ð→ xα(a))) ∧ θa(x1, . . . , xα(a)) .

Thus, the definition scheme of f$ is ⟨δ, (θ$
a)a∈Σ⟩. ⊓⊔
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The second lemma involved in the induction step of the proof of the main theorem states that
basic iteration and Muchnik’s iteration commute up to two MSO interpretations. This is the
crux and the remainder of this section aims at providing a clear presentation of a proof this
lemma.

Lemma 4.3. There exists MSO interpretations g and h, such that every relational structure
B satisfies

(B♯,&)$ ≡ g((h(B)$)♯,&) .

The above lemma is the key lemma for the induction step of Theorem 4.1. As the induction
step deals with structures of level n > 1, obtained via n iterations (and MSO interpretations),
we shall adopt the following convention. We consider that the vertices of level-n structure be-
long to Γn∗ where Γ is the set of vertices of the finite structure from which A has been obtained
through n steps. This is consistent with the definition of iteration since a level-n pds is a word
over Γn−1

∗ . Moreover, in a basic iteration C♯ or Muchnik’s iteration C♯,& of some C ∈ Hgrn−1, the
inverse of ♯Ð→ corresponds to pop0 whereas push0 may be identified in C♯,& with those edges ♯Ð→
that point to &-labelled vertices. In fact, as observed in [29], the reader may notice that all
level-n pds operations are first-order definable within an n-fold Muchnik-iterated structure
provided that iterations symbols ♯1, . . . , ♯n are pairwise distinct. With this idea in mind, we
begin a discussion that will lead to the proof the above key lemma. In this lemma, we con-
sider a structure B and its iterations possibly combined with MSO interpretations: (B♯,&)$

and g((h(B)$)♯,&). At some stage, we shall also deal with a Muchnik’s iteration B♯,& and
a basic iteration h(B)$. According to our convention, the vertices of the latter structures
are pds over VB. The vertices of (B♯,&)$ and g((h(B)$)♯,&) are level-2 pds over VB. Such a
level-2 pds, say v, is written [t1,1 . . . t1,l1][t2,1 . . . t2,l2] . . . [tk,1 . . . tk,lk] where all ti,j are in VB
and tk,1 . . . tk,lk is the topmost level-1 pds, viz. top0(v) = tk,1 . . . tk,lk and top−1(v) = tk,lk .

In order to define a mapping between the vertices of (B♯,&)$ on one hand and, provided
MSO interpretations h and g, those of g((h(B)$)♯,&) on the other hand, and establish that
this is an isomorphism, we need a way to point at a vertex. For this reason, we shall decorate
iteration labels ♯ and $ with top−1 of the target vertex according to the following definition.

Definition 4.4. (Decorated label)
Given an edge u £Ð→ v with £ ∈ {♯,$}, of a doubly iterated structure, its decorated label, written
£(s), is the corresponding iteration label £ decorated with s = top−1(v) of the target v of the
edge.

For structures considered in the sequel, we assume that iteration edges have its labels
implicitly decorated. We write u ♯(s)ÐÐ→ v or u

$(s)
ÐÐ→ v in order to emphasise that s = top−1(v)

although we may still write u ♯Ð→ v or u $Ð→ v in the case the decoration does not matter.
We denote by Λ, the set of decorated labels of (B♯,&)$, (B$)♯,& and its interpreted variants:

Λ ∶= {♯(s) ∣ s ∈ VB} ∪ {$(s) ∣ s ∈ VB} .
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Before addressing the proof of the above lemma, let us consider an example of a structure
D with two vertices and no relation as well as its iterations D♯,&, D$, (D♯,&)$, (D$)♯,&. In
order to trim the picture, we omit labels over edges. We use colours instead: for ♯-labelled
edges and for $-labelled edges. Moreover, &-labelled vertices are circled and its labels are
omitted.

. .

. . . .

. . . . . . . .

⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

As the example is developed, we explain the construction, the proof of Lemma 4.3 is based
upon.

. .

. . . .

. . . . . . . .

. .

. . . .

. . . . . . . .

. .

. . . .

. . . . . . . .

. .

. . . .

. . . . . . . .

. .

. . . .

. . . . . . . .

. .

. . . .

. . . . . . . .

. .

. . . .

. . . . . . . .

This construction will end, up to isomorphism, with iteration (D♯,&)$ depicted above, starting
from iteration (D$)♯,& depicted as follows.
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⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

More precisely a structure isomorphic to (D♯,&)$ shall be interpreted within (D$)♯,& through
three steps. While addressing the construction of this interpretation, we wish to point out
two noticeable substructures of (D♯,&)$ and of (D$)♯,& that are isomorphic. The first one,
depicted on Fig. 1, is a substructure D1 of (D♯,&)$ obtained by forgetting every $-labelled
edge, when the target of which is also the target of a ♯-labelled edge. Thus, every vertex v of
substructure D1 has outgoing $-labelled edges exactly to every vertex of the «topmost» copy
of D within v’s private copy of D♯,&. Analogously, we may associate to every structure B and
its double iteration (B♯,&)$, a substructure B1. A useful fact that may be generalised from
the example of D1 is that for each word κ ∈ Λ∗ over the set of decorated labels Λ, a path in
a structure like D1 labelled by κ is unique from a given vertex u. Moreover, every vertex of
D1 is accessible from D via a path with label in Λ∗.

Lemma 4.5. LetB1 be the substructure obtained from (B♯,&)$ by forgetting every $-labelled
edge, the target of which is also the target of a ♯-labelled edge.

1. For every word κ ∈ Λ∗ and each vertex u ∈ VB1 , there is a unique path in B1 starting at
u and labelled by κ.
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⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

Figure 1. Substructre D1

2. Each vertex of B1 is accessible from B via a path with label in Λ∗.

Proof:

1. We show that there is exactly one edge in B1 with a given source and decorated label.
Consider an edge of B1 with source u ∈ VB1 and decorated label λ ∈ Λ. We know that

u = [t1,1 . . . t1,l1][t2,1 . . . t2,l2] . . . [tk,1 . . . tk,lk], for some ti,j ∈ VB .

• Case λ = ♯(s) for some s ∈ VB.

This case occurs if, and only if, u ♯(s)ÐÐ→ v, where

v = [t1,1 . . . t1,l1][t2,1 . . . t2,l2] . . . [tk,1 . . . tk,lks] .
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• Case λ = $(s) for some s ∈ VB.

This case occurs if, and only if, u
$(s)
ÐÐ→ v, where

v = [t1,1 . . . t1,l1][t2,1 . . . t2,l2] . . . [tk,1 . . . tk,lk][s] .

This is because every $-labelled edge from u to a vertex of the form

[t1,1 . . . t1,l1][t2,1 . . . t2,l2] . . . [tk,1 . . . tk,lk][s0 . . . sns],

with n ∈ IN, that would also have $(s) as decorated does not exist anymore in B1
since it has been removed in the construction of B1 from (B♯,&)$.

2. Let v = [t1,1 . . . t1,l1][t2,1 . . . t2,l2] . . . [tk,1 . . . tk,lk] be a vertex of B1. By induction on the
length of v, ∣v∣ ∶= ∑ki=1 li, we show that there exists a vertex u ∈ VB and a word σ ∈ {♯,$}∗
such that u σ-⇢ v, viz., there exists a σ-labelled path from u to v.

• Case ∣v∣ = 1.
Then v ∈ VB and v ε-⇢ v.

• case ∣v∣ > 1
– Subcase lk = 1.

Then v = [t1,1 . . . t1,l1][t2,1 . . . t2,l2] . . . [tk−1,1 . . . tk−1,lk−1][tk,1] and there is a ver-
tex v′ = [t1,1 . . . t1,l1][t2,1 . . . t2,l2] . . . [tk−1,1 . . . tk−1,lk−1] such that v′ $Ð→ v. In-
deed, v has no ingoing ♯-labelled edges. Consequently its ingoing $-labelled
edge has not been removed. Now ∣v′∣ < ∣v∣ and, by induction hypothesis, there
is a vertex u ∈ VB and a word σ′ ∈ {♯,$}∗ such that u σ′--⇢ v′. Hence u σ′$- - -⇢ v.

– Subcase lk > 1.
Then v = [t1,1 . . . t1,l1][t2,1 . . . t2,l2] . . . [tk,1 . . . tk,lk] and there is a vertex

v′ = [t1,1 . . . t1,l1][t2,1 . . . t2,l2] . . . [tk,1 . . . tk,lk−1]

such that v′ ♯Ð→ v. Now ∣v′∣ < ∣v∣ and, by induction hypothesis, there is a vertex
u ∈ VB and a word σ′ ∈ {♯,$}∗ such that u σ′--⇢ v′. Hence u σ′♯- -⇢ v.

⊓⊔

After defining the substructure D1 of (D♯,&)$, we shall define a structure D2 which is a
substructure of (D$)♯,&. This is the second among the two noticeable substructures mentioned
earlier between which the isomorphism is straightforward to establish. This isomorphism is
helpful in building an isomorphism between (D♯,&)$ and the structure that we are going to
interpret within (D$)♯,& through three steps. After the first two steps, we will obtain D2.

The first step towards D2 consists in eliminating useless ♯-labelled edges. We only keep
such edges from every vertex to a copy of the original structure, here D, possessing an &-
marked vertex. The result is similar to D1 where every vertex has outgoing ♯-labelled edges
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to its own copy of D with &-marked clone of the vertex (by definition of D♯,&). However, such
useless ♯-labelled edges requires an extra care because the equivalence relation saying that
two vertices belong to the same copy is not MSO-definable, except in a particular case where
the Gaifman graph of the original structure is connected. In order to deal with the general
case, we need to add auxiliary ◇-labelled edges (not depicted in subsequent figures), where
◇ ∉ Σ∪ {♯,$} is a new label, between every ordered pair of vertices of the original structure D
via an interpretation h defined in a usual way:

δ(x) ∶⇔ true
θ◇(x, y) ∶⇔ true
θa(x) ∶⇔ a(x) for a ∈ Σ .

Thus in the example, instead of (D$)♯,&, the construction really starts from (h(D)$)♯,&. After
selecting appropriate ♯-labelled edges, ◇-labelled edges may be forgotten. In the example, this
leads to the following structure g1((h(D)$)♯,&):

⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
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The interpretation for g1 is obvious:

δ(x) ∶⇔ true
θ♯(x, y) ∶⇔ x

♯Ð→ y ∧ ∃z (&(z) ∧ y ◇Ð→ z)
θa(x) ∶⇔ a(x) for a ∈ Σ ∪ {&,$} .

(4.1)

At the second step, we restrict the structure to the substructure induced by vertices that
are accessible from the original structure via a {♯,$}∗-labelled path by means of interpretation
g2:

δ(x) ∶⇔ ∃ y (root(y) ∧ path{♯,$}∗(y, x))
θa(x) ∶⇔ a(x) for a ∈ Σ ∪ {♯,&,$}

In the example, this leads to the following structure D2 ∶= g2(g1((h(D)$)♯,&)), depicted in
Fig. 2, which is the second substructure we are looking for.

Like for D1, it may be generalised from the example of D2 that for each word κ ∈ Λ∗ over
the set of decorated labels Λ, a path in a structure like D2 labelled by κ is unique from a
given vertex u.

Lemma 4.6. Let B2 ∶= g2(g1((h(B)$)♯,&)) where g1 and g2 are the MSO interpretations
defined so far. Then the following holds.

1. For every word κ ∈ Λ∗ and each vertex u ∈ VB2 , there is a unique path in B2 starting at
u and labelled by κ.

2. Each vertex of B2 is accessible from B via a path with label in Λ∗.

Proof:

1. We show that there is exactly one edge in B2 with a given source and decorated label.
Consider an edge of B2 with source u ∈ VB2 and decorated label λ ∈ Λ. We know that

u = [t1,1 . . . t1,l1][t2,1 . . . t2,l2] . . . [tk,1 . . . tk,lk], for some ti,j ∈ VB .

• case λ = ♯(s) for some s ∈ VB
We claim that this case occurs if, and only if, u ♯(s)ÐÐ→ v, where

v = [t1,1 . . . t1,l1][t2,1 . . . t2,l2] . . . [tk,1 . . . tk,lk][tk,1 . . . tk,lk−1s] .

Indeed, ♯-labelled edges of B2 form a subset of the second-level iteration edges of
(B$)♯,& and are precisely the ♯-labelled edges of g1((h(B)$)♯,&). According to the
definition scheme of g1 (see Equation (4.1)), all ♯-labelled edges sharing the same
source u target the vertices of the same copy of B, say B′, within a given copy
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⋅ ⋅
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⋅ ⋅

⋅ ⋅ ⋅ ⋅

Figure 2. Substructre D2

of B$. The latter copy of B$ has exactly one &-labelled vertex, say v′, and this
vertex is in B′. According to the definition of Muchnik’s iteration, we have

v′ = [t1,1 . . . t1,l1][t2,1 . . . t2,l2] . . . [tk,1 . . . tk,lk][tk,1 . . . tk,lk]

i.e. top0(v′) = top0(pop0(v′)). Now, within the same copy of B, vertices only differ
by its top−1. Thus

v = [t1,1 . . . t1,l1][t2,1 . . . t2,l2] . . . [tk,1 . . . tk,lk][tk,1 . . . tk,lk−1s]

because v and v′ are both in B′ whereas top−1(v) corresponds to the decorated
label of u ♯(s)ÐÐ→ v.
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• case λ = $(s) for some s ∈ VB
This case occurs if, and only if, u

$(s)
ÐÐ→ v, where

v = [t1,1 . . . t1,l1][t2,1 . . . t2,l2] . . . [tk,1 . . . tk,lks] .

2. Immediate from the definition scheme of g2.
⊓⊔

As the example has been developed, two structures have been distinguished:

• D1 which is a substructure of (D♯,&)$ (see Fig 1),

• D2 which is a substructure of (D$)♯,& (see Fig 2).

The reader may notice that D1 and D2 are isomorphic. This fact is generalised in the following
lemma.

Lemma 4.7. Let B1 be a substructure obtained from (B♯,&)$ by forgetting every $-labelled
edge, the target of which is also the target of a ♯-labelled edge. Let B2 ∶= g2(g1((h(B)$)♯,&))
where g1 and g2 are the MSO interpretations defined so far. Then B1 ≡ B2.

Proof:
Putting together the two statements of Lemma 4.5, we conclude that there is a bijection
between VB1 and VB × Λ∗. Similarly, from Lemma 4.6, we get a bijection between VB × Λ∗

and VB2 . Putting together these bijections, we obtain a bijection µ∶VB1 → VB2 defined by

µ(v1) = v2 ∶⇔ ∃u ∈ VB ∃κ ∈ Λ∗ (u κ- --⇢
B1

v1 ∧ u
κ- --⇢
B2

v2) (i)

for all v1 ∈ VB1 and v2 ∈ VB2 . We establish that this bijection is in fact an isomorphism of
relational structures µ∶B1 →B2.

• We have u ♯Ð→
B1

v⇔ µ(u) ♯Ð→
B2

µ(v) and u $Ð→
B1

v⇔ µ(u) $Ð→
B2

µ(v), for all u, v ∈ VB1 . This
follows directly from the definition (i) of µ via Λ∗-labelled paths.

• We claim a(v) ∈B1 ⇔ a(µ(v)) ∈B2 for each a ∈ Σ and every v ∈ V α(a)
B1

.
Indeed, a(v) ∈B1,

iff all vertices of v = (v1, . . . , vα(a)) are in the same copy of B and a(s) ∈ B, where
s = (s1, . . . , sα(a)) with si = top−1(vi), for i ∈ [α(a)], viz., there is an original
hyperedge a(s) corresponding to the copy a(v),

iff all vertices of v have the same ancestor for ♯ (resp. $), say u, and a(s) ∈B

iff u
♯(si)ÐÐ→
B1

vi (resp. u
$(si)ÐÐÐ→
B1

vi) for i ∈ [α(a)] and a(s) ∈B
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iff µ(u) ♯(si)ÐÐ→
B2

µ(vi) (resp. µ(u)
$(si)ÐÐÐ→
B2

µ(vi)) for i ∈ [α(a)] and a(s) ∈B

iff all vertices of µ(v) have the same ancestor for ♯ (resp. $), say µ(u), and a(s) ∈B
iff all vertices of µ(v) = (µ(v1), . . . , µ(vα(a))) are in the same copy of B and a(s) ∈B,

where s = (s1, . . . , sα(a)) with si = top−1(µ(vi)), for i ∈ [α(a)],
iff a(µ(v)) ∈B2.

• We claim &(v) ∈B1 ⇔ &(µ(v)) ∈B2 for every v ∈ VB1 .

⇒ Assume &(v) ∈B1. Then

v = [t1,1 . . . t1,l1][t2,1 . . . t2,l2] . . . [tk,1 . . . tk,lkss]

for some ti,j ∈ VB with i ∈ [k], j ∈ [li] and some s ∈ VB, and there exists

u = [t1,1 . . . t1,l1][t2,1 . . . t2,l2] . . . [tk,1 . . . tk,lks]

such that u ♯(s)ÐÐ→
B1

v. There are 3 disjoint cases.

1. u has neither ♯- nor $-ancestor, viz., u = [s], whereas k = 1 and lk = 0. Then
µ(u) = u. In B2, u has an outgoing ♯(s)-labelled edge with target [s][s]. Thus
µ(v) = [s][s] which is, for the second level iteration, the clone of [s]. Hence
&(µ(v)) ∈B2.

2. u has a ♯-ancestor, say w. Then w
♯(s)ÐÐ→
B1

u
♯(s)ÐÐ→
B1

v and µ(w) ♯(s)ÐÐ→
B2

µ(u) ♯(s)ÐÐ→
B2

µ(v)

as already established. Consequently top−1(µ(u)) = top−1(µ(v)) = s and
top0(µ(u)) = s1 . . . sps, viz., µ(u) = ξ⌟[s1 . . . sps] for some ξ ∈ (VB)2

∗ and
s1, . . . , sp ∈ VB. According to the definition scheme of g1 (see Equation (4.1)),
all ♯-labelled edges in B2 sharing the same source u target the vertices of the
same copy of B, say B′, within a given copy of B$. The latter copy of B$ has
exactly one &-labelled vertex. This vertex is in B′ and, according to the defi-
nition of Muchnik’s iteration, it is precisely ξ⌟[s1 . . . sps][s1 . . . sps]. Obviously,
it is the only vertex in B′ such that its top−1 is s. Thus

µ(v) = ξ⌟[s1 . . . sps][s1 . . . sps]

and &(µ(v)) ∈B2.
3. u has a $-ancestor, say w. This means that k > 1 but lk = 0. We have therefore

w = [t1,1 . . . t1,l1][t2,1 . . . t2,l2] . . . [tk−1,1 . . . tk−1,lk−1],
u = [t1,1 . . . t1,l1][t2,1 . . . t2,l2] . . . [tk−1,1 . . . tk−1,lk−1][s],
v = [t1,1 . . . t1,l1][t2,1 . . . t2,l2] . . . [tk−1,1 . . . tk−1,lk−1][ss] .

Then w
$(s)
ÐÐ→
B1

u
♯(s)ÐÐ→
B1

v and µ(w)
$(s)
ÐÐ→
B2

µ(u) ♯(s)ÐÐ→
B2

µ(v) as already established.
Consequently top−1(µ(u)) = top−1(µ(v)) = s and we conclude similarly to
Case 2.



30 D. Caucal, T. Knapik / Shelah-Stupp’s iteration and Muchnik’s iteration

⇐ Assume &(µ(v)) ∈B2. Then

µ(v) = [t1,1 . . . t1,l1][t2,1 . . . t2,l2] . . . [tk,1 . . . tk,lks][tk,1 . . . tk,lks]

for some ti,j ∈ VB with i ∈ [k], j ∈ [li] and some s ∈ VB, and there exists

µ(u) = [t1,1 . . . t1,l1][t2,1 . . . t2,l2] . . . [tk,1 . . . tk,lks]

such that µ(u) ♯(s)ÐÐ→
B1

µ(v). There are three disjoint cases.

1. µ(u) has neither ♯- nor $-ancestor, viz., µ(u) = [s], whereas k = 0.
Then µ(u) = u. In B1, u has an outgoing ♯(s)-labelled edge. Its target is
therefore [ss]. Thus v = [ss] which is the clone of [s]. Hence &(v) ∈B1.

2. µ(u) has a ♯-ancestor, say µ(w).
Then µ(w) ♯(s)ÐÐ→

B2
µ(u) ♯(s)ÐÐ→

B2
µ(v) and w

♯(s)ÐÐ→
B1

u
♯(s)ÐÐ→
B1

v as already established.
Consequently top−1(u) = top−1(v) = s and top0(u) = [s1 . . . sns], viz.,

u = ξ⌟[s1 . . . sps]

for some ξ ∈ (VB)2
∗ and s1, . . . , sp ∈ VB. Now v = ξ⌟[s1 . . . spss], because

u
♯(s)ÐÐ→
B1

v .

Hence &(v) ∈B1.
3. µ(u) has a $-ancestor, say µ(w).

Then µ(w)
$(s)
ÐÐ→
B2

µ(u) ♯(s)ÐÐ→
B2

µ(v) and w
$(s)
ÐÐ→
B1

u
♯(s)ÐÐ→
B1

v as already estab-
lished. Consequently top−1(u) = top−1(v) = s and we conclude like in the
latter case.

⊓⊔

According to the above lemma D1 and D2 are isomorphic. Remember that D1 is a sub-
structure obtained from (D♯,&)$ by forgetting every $-labelled edge, the target of which is
also the target of a ♯-labelled edge. Thus, from D1 we obtain (D♯,&)$, by putting back the
forgotten edges. We put a $-labelled edge from a vertex x to a vertex y, whenever there is
a $ ♯+-labelled path from x to y or we keep an existing edge x $Ð→ y. This is defined by the
following interpretation g3:

δ(x) ∶⇔ true
θ$(x, y) ∶⇔ path$ ♯∗(x, y)
θa(x) ∶⇔ a(x) for a ∈ Σ ∪ {♯,&}
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But since D1 ≡D2, we have

(D♯,&)$ = g3(D1) ≡ g3(D2) = g3(g2(g1((h(D)$)♯,&))) .

Thus interpretation g3 is the third and the final step in building from (D$)♯,& a structure
isomorphic to (D♯,&)$. The constructions developed around this example are generalised in a
straightforward way. These generalisations let us complete the pending proof of Lemma 4.3.

Proof of Lemma 4.3:
Let B1 be a substructure obtained from (B♯,&)$ by forgetting every $-labelled edge, the target
of which is also the target of a ♯-labelled edge. We have

(B♯,&)$ = g3(B1)

since interpretation g3 adds formerly forgotten $-labelled edges.
Let B2 ∶= g2(g1((h(B)$)♯,&)). According to Lemma 4.7

B1 ≡ B2 .

Hence
(B♯,&)$ = g3(B1) ≡ g3(B2) = g3(g2(g1((h(B)$)♯,&))) .

Therefore, there exist MSO interpretations g ∶= g3 ○ g2 ○ g1 and h, such that

(B♯,&)$ ≡ g((h(B)$)♯,&) .

⊓⊔

By closing the proof of Lemma 4.3 we have just established the main result of this paper,
namely Theorem 4.1. This theorem states that every level of the iteration hierarchy of rela-
tional structures is closed under basic iteration.

5. Final remarks
From the proof of the main result we may wish to extract a «normal form» for building a
relational structure of level n from a finite structure by combining MSO-interpretations with
n or n − 1 Muchnik’s iterations and 0 or more of basic iterations. In this normal form all
basic iterations are pushed onto level 1 except, possibly one basic iteration applied at level 0.
The induction basis shows how the former may be eliminated in a representation of level 1
structures as suffix-recognisable structures. However, instead of this concrete representation,
one may wish a more abstract representation where a level 1 structure is obtained by MSO-
interpretation from the infinite complete binary tree. This raises the question how to eliminate
basic iterations using an MSO-interpretation.

Although the hierarchy based on Shelah-Stupp’s iteration collapses at level 1, one may
wonder if within level 1, one may define a finer strict hierarchy where one climbs up from one
layer to the next layer via basic iteration. If so one may expect that such a layer structuring
is transferred to every level of Muchnik’s iteration.
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