Algorithms and Bioinformatics

Part Il — Comparative Genomics

[1.3 — More on FPT Algorithms

(some of them in Bioinformatics)

Laurent Bulteau

Dynamic Programming

» Not specific to FPT, but often used in this context
» aka. “table-filling”

» Enumerate polynomialy many subproblems, solve each one by
combining results from other (sub-)subproblems

» Other point of view: write a simple recursive program, use a
cache to store and re-use intermediate results

Dynamic Programming
MAXIMUM AGREEMENT SUBTREE

MAXIMUM AGREEMENT SUBTREE

Input: Two trees T1, T, with leaf labels
Output: Subtrees T, of Ty and T, of T,, with max. number of leaves,
such that T{ = T} up to degree-2 vertex contraction.

Dynamic Programming
MAXIMUM AGREEMENT SUBTREE

MAXIMUM AGREEMENT SUBTREE

Input: Two trees T1, T, with leaf labels
Output: Subtrees T, of Ty and T, of T,, with max. number of leaves,
such that T{ = T} up to degree-2 vertex contraction.

» D.P. table: MAS(u, v) = size of Maximum Agreement
Subtree of Ty[u], T2[v]

Dynamic Programming
MAXIMUM AGREEMENT SUBTREE

MAXIMUM AGREEMENT SUBTREE

Input: Two trees T1, T, with leaf labels
Output: Subtrees T, of Ty and T, of T,, with max. number of leaves,
such that T{ = T} up to degree-2 vertex contraction.

» D.P. table: MAS(u, v) = size of Maximum Agreement
Subtree of Ty[u], T2[v]

12. Give the recursive relation in the Dynamic Programming
algorithm of MAXIMUM AGREEMENT SUBTREES.

Color Coding

» General use: find size-k subsets with specific properties in a
large set of elements

» Randomized technique, can be de-randomized

» Best-known use case: find a length-k simple path in a graph

Color Coding

MiNniMUM WEIGHT PATH

MiniMuM WEIGHT PATH

Input: A (directed) graph G = (V/, E), edge weights w : E — N,
integer k
Param.: k
Output: A length-k simple path of G with maximum weight

» NP-hard...

» Motivation: find signaling pathways in protein-protein
interaction networks

Color Coding

PPI NETWORK

@®c
L] o @Aadorat ’pr
@rors
Erbo4 «
e @ci3
.
b @ Loart
.
3
o
@ricco ®
.
@snc3
@ Jund Limk1
A P ®
. ‘.Mcnu
.
\‘Fus
L . .
L . ® ..
[J &Rhoh °
=

- =@ Bubid

A Protein-Protein Interaction Network. !

Icredits: Fan et al., Nature Scientific Reports 8:351, 2018

Color Coding

Principle

» Extra knowledge can help: what if you know how to split the
graph into k classes (colors), and know that a solution must
use exactly one vertex in each class?

Color Coding

Principle

» Extra knowledge can help: what if you know how to split the
graph into k classes (colors), and know that a solution must
use exactly one vertex in each class?

> Plus: you know in which order the colors are visited!

Color Coding

Principle

» Extra knowledge can help: what if you know how to split the
graph into k classes (colors), and know that a solution must
use exactly one vertex in each class?

> Plus: you know in which order the colors are visited!

» Exactly how we get this information we shall see later: for
now just assume we know this.

With color order

With color order

With color order

With color order

Color Coding

Dynamic Programming with color order

Dynamic programming table

For each u € V, what is the maximum weight of a color-consistent
path up to u? — WI{u] (n entries)

Filling the table

If u has color-rank i,

Wlul= max (W[v] + w(v — u))

v of rank i—1

Border cases:
W{u] =0 if u has rank 0

Color Coding

Dynamic Programming without color order

Dynamic programming table

For each u € V, and each subset X C [k] of colors, what is the
maximum weight of a path ending in u using once each color in
X7? — W[u, X] (2%n entries)

Filling the table

W u, X] = max W'lv, X\] + w(v — u)

Border cases:
W’[u,X] =0if X = {col(u)}

Running time: O(2%n?))

Without color order

Without color order

Without color order

Without color order

Without color order

Color Coding

How do we pick colors?

Color Coding

How do we pick colors?

» Randomly!

Color Coding

How do we pick colors?

» Randomly!
» Number of colorings of k vertices with k colors: k*

Color Coding
How do we pick colors?
» Randomly!
» Number of colorings of k vertices with k colors: k*

» Number of colorful colorings of k vertices with k colors: k!

Color Coding

How do we pick colors?

v

Randomly!

v

Number of colorings of k vertices with k colors: k¥

v

Number of colorful colorings of k vertices with k colors: k!

Probability to be colorful on the solution: % ~ ek

v

Color Coding

How do we pick colors?

v

Randomly!

v

Number of colorings of k vertices with k colors: k¥

v

Number of colorful colorings of k vertices with k colors: k!

Probability to be colorful on the solution: % ~ ek
k

Number of tries to get constant probability: ~ e

v

v

Color Coding
How do we pick colors?
» Randomly!
» Number of colorings of k vertices with k colors: k*
» Number of colorful colorings of k vertices with k colors: k!
» Probability to be colorful on the solution: % ~ ek
» Number of tries to get constant probability: ~ e¥

» Key point: this value does not depend on n

Color Coding
How do we pick colors?
» Randomly!
» Number of colorings of k vertices with k colors: k*
» Number of colorful colorings of k vertices with k colors: k!
» Probability to be colorful on the solution: % ~ ek
» Number of tries to get constant probability: ~ e¥

» Key point: this value does not depend on n

Randomized FPT algorithm

e Draw C.e¥ random colorings of the graph.
e For each one, run the dynamic programming algorithm.

= Running time O(ek2kn?)

Color Coding
How do we pick colors?
» Randomly!
» Number of colorings of k vertices with k colors: k*
» Number of colorful colorings of k vertices with k colors: k!
» Probability to be colorful on the solution: % ~ ek
» Number of tries to get constant probability: ~ e¥

» Key point: this value does not depend on n

Randomized FPT algorithm

e Draw C.e¥ random colorings of the graph.
(enumerate k! relative orders on the colors)

e For each one, run the dynamic programming algorithm.

= Running time O(ek2kn?)

Color Coding
How do we pick colors?
» Randomly!
» Number of colorings of k vertices with k colors: k*
» Number of colorful colorings of k vertices with k colors: k!
» Probability to be colorful on the solution: % ~ ek
» Number of tries to get constant probability: ~ e¥

» Key point: this value does not depend on n

Randomized FPT algorithm

e Draw C.e¥ random colorings of the graph.
(enumerate k! relative orders on the colors)

e For each one, run the dynamic programming algorithm.

= Running time O(eX2kn?) (or O(k*n)).

Color Coding

How do we pick colors deterministically?

» Smart enumeration of some colorings:

Color Coding

How do we pick colors deterministically?

» Smart enumeration of some colorings:
> Any size-k subset of V is separated at least once into k colors.

Color Coding

How do we pick colors deterministically?

» Smart enumeration of some colorings:

> Any size-k subset of V is separated at least once into k colors.
» k" colorings is too many.

Color Coding

How do we pick colors deterministically?

» Smart enumeration of some colorings:
> Any size-k subset of V is separated at least once into k colors.
» k" colorings is too many.
» Such a list of colorings is called perfect family of hash
functions

Color Coding

How do we pick colors deterministically?

» Smart enumeration of some colorings:

> Any size-k subset of V is separated at least once into k colors.
» k" colorings is too many.

» Such a list of colorings is called perfect family of hash
functions
Theorem

There exists a perfect family of hash functions of size 2°(%) log(n)
computable in time 2°9() nlog(n).

Color Coding

How do we pick colors deterministically?

» Smart enumeration of some colorings:

> Any size-k subset of V is separated at least once into k colors.
» k" colorings is too many.

» Such a list of colorings is called perfect family of hash
functions

Theorem

There exists a perfect family of hash functions of size 2°(%) log(n)
computable in time 2°9() nlog(n).

Cons: Additional factor 29(K) log(n) in the running time

Color Coding

How do we pick colors deterministically?

» Smart enumeration of some colorings:

> Any size-k subset of V is separated at least once into k colors.
» k" colorings is too many.

» Such a list of colorings is called perfect family of hash
functions
Theorem

There exists a perfect family of hash functions of size 2°(%) log(n)
computable in time 2°9() nlog(n).

Cons: Additional factor 29(K) log(n) in the running time

Pros: Deterministic

Color Coding

How do we pick colors deterministically?

» Smart enumeration of some colorings:

> Any size-k subset of V is separated at least once into k colors.
» k" colorings is too many.

» Such a list of colorings is called perfect family of hash
functions
Theorem

There exists a perfect family of hash functions of size 2°(%) log(n)
computable in time 2°9() nlog(n).

Cons: Additional factor 29(K) log(n) in the running time
Pros: Deterministic

Anyway: Two algorithms in one; let the user choose.

Practice

13. Give an FPT algorithm based on color-coding for the problem
below. Bonus: show that it is NP-complete.

CHEAP SUBTREE

Input: A complete binary tree T with a set L of leaves,
a graph G = (V, E),
a cost functionc: V x L - N
Param.: k = |L]
Output: A subset V' C V such that:
e G[V'] is isomorphic to T,
e the total cost of the mapping betwen V and L is minimal.

14. Same question:

POLYCHROME MATCHING

Input: A graph G with an r-edge coloring
Param.: r
Output: A maximum-size set of independent edges of G with
pairwise-distinct colors.

Practice

15. Same question:
DISJOINT r-SUBSETS

Input: Size-r subsets X, ... X, of [n], integer k
Param.: k+r
Output: k pairwise disjoint subsets X ,... X

ik

Color Coding

Final remarks

» Color coding cannot help W([1]-hard problems.
MuLTI-COLOR CLIQUE

Input: A k-partite graph G = (V,E), with V=V W --- W V,
Param.: k
Output: A size-k clique K, such that |[K N V;| =1 for all i.

Color Coding

Final remarks

» Color coding cannot help W([1]-hard problems.
MuLTI-COLOR CLIQUE

Input: A k-partite graph G = (V,E), with V=V W --- W V,
Param.: k
Output: A size-k clique K, such that |[K N V;| =1 for all i.

» Use more colors in randomized algorithms: optimal close to
1.3k for MINtMmuM WEIGHT PATH (fewer trials, but longer
dynamic programming)

Iterative Compression

Principle

» Other “heavy” approach, mostly for graphs

> Idea:

Start with an empty graph and an empty solution
Add vertices (or edges) one by one

Each time: update the solution

If the solution is too large: compress it by one

vV vy VvVyy

» Core algorithm: Given a graph, a target solution size of k, and
a solution of size k + 1, find a solution of size k (if any).

Iterative Compression
VERTEX COVER

v

Start with empty graph, empty solution (X)

v

Add vertex v (and connecting edges) to G and to X
If | X]=k+1:
» Partition X into K (“Keep”) and D (“Discard”)

» Create X' = KUN(D). If | X’| < k, continue with next vertex.
» Try with every 21 branches: reject if no good X'.

Total running time: O(2kn?)

v

v

Iterative Compression
ObpD CYCLE TRANSVERSAL

ODD CYCLE TRANSVERSAL

Input: A graph G = (V, E), an integer k
Param.: k
Output: A subset X of G such that G[V \ X] is bipartite.

» Start with empty graph, empty solution (X)
» Add vertex v (and connecting edges) to G and to X
» If | X|=k+1:
» Partition X into 3 parts (K, L, R)
» Create X’ using Min-Cut. If |X’| < k, continue with next

vertex.
» Try with every 3¥*1 branches: reject if no good X'.

16. Fill-in the missing steps of the Iterative Compression
algorithm of ODD CYCLE TRANSVERSAL.

