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Dynamic Programming

I Not specific to FPT, but often used in this context

I aka. “table-filling”

I Enumerate polynomialy many subproblems, solve each one by
combining results from other (sub-)subproblems

I Other point of view: write a simple recursive program, use a
cache to store and re-use intermediate results



Dynamic Programming
Maximum Agreement Subtree

Maximum Agreement Subtree

Input: Two trees T1, T2, with leaf labels
Output: Subtrees T ′

1 of T1 and T ′
2 of T2, with max. number of leaves,

such that T ′
1 = T ′

2 up to degree-2 vertex contraction.

I D.P. table: MAS(u, v) = size of Maximum Agreement
Subtree of T1[u],T2[v ]

12. Give the recursive relation in the Dynamic Programming
algorithm of Maximum Agreement Subtrees.
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Color Coding

I General use: find size-k subsets with specific properties in a
large set of elements

I Randomized technique, can be de-randomized

I Best-known use case: find a length-k simple path in a graph



Color Coding
Minimum Weight Path

Minimum Weight Path

Input: A (directed) graph G = (V ,E ), edge weights w : E → N,
integer k

Param.: k
Output: A length-k simple path of G with maximum weight

I NP-hard...

I Motivation: find signaling pathways in protein-protein
interaction networks



Color Coding
PPI Network

A Protein-Protein Interaction Network. 1

1credits: Fan et al., Nature Scientific Reports 8:351, 2018



Color Coding
Principle

I Extra knowledge can help: what if you know how to split the
graph into k classes (colors), and know that a solution must
use exactly one vertex in each class?

I Plus: you know in which order the colors are visited!

I Exactly how we get this information we shall see later: for
now just assume we know this.
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Color Coding
Dynamic Programming with color order

Dynamic programming table

For each u ∈ V , what is the maximum weight of a color-consistent
path up to u? →W [u] (n entries)

Filling the table

If u has color-rank i ,

W [u] = max
v of rank i−1

(W [v ] + w(v → u))

Border cases:
W [u] = 0 if u has rank 0



Color Coding
Dynamic Programming without color order

Dynamic programming table

For each u ∈ V , and each subset X ⊆ [k] of colors, what is the
maximum weight of a path ending in u using once each color in
X? →W ′[u,X ] (2kn entries)

Filling the table

W ′[u,X ] = max
v

W ′[v ,X\] + w(v → u)

Border cases:
W ′[u,X ] = 0 if X = {col(u)}

Running time: O(2kn2))
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Color Coding
How do we pick colors?

I Randomly!

I Number of colorings of k vertices with k colors: kk

I Number of colorful colorings of k vertices with k colors: k!

I Probability to be colorful on the solution: k!
kk ' e−k

I Number of tries to get constant probability: ' ek

I Key point: this value does not depend on n

Randomized FPT algorithm

• Draw C .ek random colorings of the graph.

(enumerate k! relative orders on the colors)

• For each one, run the dynamic programming algorithm.

⇒ Running time O(ek2kn2)

(or O(kkn))

.
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Color Coding
How do we pick colors deterministically?

I Smart enumeration of some colorings:

I Any size-k subset of V is separated at least once into k colors.
I kn colorings is too many.

I Such a list of colorings is called perfect family of hash
functions

Theorem

There exists a perfect family of hash functions of size 2O(k) log(n)
computable in time 2O(k)n log(n).

Cons: Additional factor 2O(k) log(n) in the running time

Pros: Deterministic

Anyway: Two algorithms in one; let the user choose.
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Practice
13. Give an FPT algorithm based on color-coding for the problem

below. Bonus: show that it is NP-complete.

Cheap Subtree

Input: A complete binary tree T with a set L of leaves,
a graph G = (V ,E ),
a cost function c : V × L→ N

Param.: k = |L|
Output: A subset V ′ ⊆ V such that:

• G [V ′] is isomorphic to T ,
• the total cost of the mapping betwen V and L is minimal.

14. Same question:

Polychrome Matching

Input: A graph G with an r -edge coloring
Param.: r
Output: A maximum-size set of independent edges of G with

pairwise-distinct colors.



Practice

15. Same question:

Disjoint r-Subsets

Input: Size-r subsets X1, . . .Xm of [n], integer k
Param.: k + r
Output: k pairwise disjoint subsets Xi1 , . . .Xik



Color Coding
Final remarks

I Color coding cannot help W[1]-hard problems.

Multi-Color Clique

Input: A k-partite graph G = (V ,E ), with V = V1 ] · · · ] Vk

Param.: k
Output: A size-k clique K , such that |K ∩ Vi | = 1 for all i .

I Use more colors in randomized algorithms: optimal close to
1.3k for Minimum Weight Path (fewer trials, but longer
dynamic programming)
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Iterative Compression
Principle

I Other “heavy” approach, mostly for graphs
I Idea:

I Start with an empty graph and an empty solution
I Add vertices (or edges) one by one
I Each time: update the solution
I If the solution is too large: compress it by one

I Core algorithm: Given a graph, a target solution size of k , and
a solution of size k + 1, find a solution of size k (if any).



Iterative Compression
Vertex Cover

I Start with empty graph, empty solution (X )

I Add vertex v (and connecting edges) to G and to X
I If |X | = k + 1:

I Partition X into K (“Keep”) and D (“Discard”)
I Create X ′ = K ∪N(D). If |X ′| ≤ k , continue with next vertex.
I Try with every 2k+1 branches: reject if no good X ′.

I Total running time: O(2kn2)



Iterative Compression
Odd Cycle Transversal

Odd Cycle Transversal

Input: A graph G = (V ,E ), an integer k
Param.: k
Output: A subset X of G such that G [V \ X ] is bipartite.

I Start with empty graph, empty solution (X )

I Add vertex v (and connecting edges) to G and to X
I If |X | = k + 1:

I Partition X into 3 parts (K , L,R)
I Create X ′ using Min-Cut. If |X ′| ≤ k , continue with next

vertex.
I Try with every 3k+1 branches: reject if no good X ′.

16. Fill-in the missing steps of the Iterative Compression
algorithm of Odd Cycle Transversal.


