Algorithms and Bioinformatics

Part Il — Comparative Genomics

[1.3 — More on FPT Algorithms

(some of them in Bioinformatics)

Laurent Bulteau



Dynamic Programming

» Not specific to FPT, but often used in this context
» aka. “table-filling”

» Enumerate polynomialy many subproblems, solve each one by
combining results from other (sub-)subproblems

» Other point of view: write a simple recursive program, use a
cache to store and re-use intermediate results
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Output: Subtrees T, of Ty and T, of T,, with max. number of leaves,
such that T{ = T} up to degree-2 vertex contraction.



Dynamic Programming
MAXIMUM AGREEMENT SUBTREE

MAXIMUM AGREEMENT SUBTREE

Input: Two trees T1, T, with leaf labels
Output: Subtrees T, of Ty and T, of T,, with max. number of leaves,
such that T{ = T} up to degree-2 vertex contraction.

» D.P. table: MAS(u, v) = size of Maximum Agreement
Subtree of Ty[u], T2[v]



Dynamic Programming
MAXIMUM AGREEMENT SUBTREE

MAXIMUM AGREEMENT SUBTREE

Input: Two trees T1, T, with leaf labels
Output: Subtrees T, of Ty and T, of T,, with max. number of leaves,
such that T{ = T} up to degree-2 vertex contraction.

» D.P. table: MAS(u, v) = size of Maximum Agreement
Subtree of Ty[u], T2[v]

12. Give the recursive relation in the Dynamic Programming
algorithm of MAXIMUM AGREEMENT SUBTREES.



Color Coding

» General use: find size-k subsets with specific properties in a
large set of elements

» Randomized technique, can be de-randomized

» Best-known use case: find a length-k simple path in a graph



Color Coding

MiNniMUM WEIGHT PATH

MiniMuM WEIGHT PATH

Input: A (directed) graph G = (V/, E), edge weights w : E — N,
integer k
Param.: k
Output: A length-k simple path of G with maximum weight

» NP-hard...

» Motivation: find signaling pathways in protein-protein
interaction networks



Color Coding
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Icredits: Fan et al., Nature Scientific Reports 8:351, 2018
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use exactly one vertex in each class?
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Color Coding

Principle

» Extra knowledge can help: what if you know how to split the
graph into k classes (colors), and know that a solution must
use exactly one vertex in each class?

> Plus: you know in which order the colors are visited!

» Exactly how we get this information we shall see later: for
now just assume we know this.
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Color Coding

Dynamic Programming with color order

Dynamic programming table

For each u € V, what is the maximum weight of a color-consistent
path up to u? — WI{u] (n entries)

Filling the table

If u has color-rank i,

Wlul= max  (W[v] + w(v — u))

v of rank i—1

Border cases:
W{u] =0 if u has rank 0



Color Coding

Dynamic Programming without color order

Dynamic programming table

For each u € V, and each subset X C [k] of colors, what is the
maximum weight of a path ending in u using once each color in
X7? — W[u, X] (2%n entries)

Filling the table

W u, X] = max W'lv, X\] + w(v — u)

Border cases:
W’[u,X] =0if X = {col(u)}

Running time: O(2%n?))
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Color Coding
How do we pick colors?
» Randomly!
» Number of colorings of k vertices with k colors: k*
» Number of colorful colorings of k vertices with k colors: k!
» Probability to be colorful on the solution: % ~ ek
» Number of tries to get constant probability: ~ e¥

» Key point: this value does not depend on n

Randomized FPT algorithm

e Draw C.e¥ random colorings of the graph.
(enumerate k! relative orders on the colors)

e For each one, run the dynamic programming algorithm.

= Running time O(eX2kn?) (or O(k*n)).
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Color Coding

How do we pick colors deterministically?

» Smart enumeration of some colorings:

> Any size-k subset of V is separated at least once into k colors.
» k" colorings is too many.

» Such a list of colorings is called perfect family of hash
functions
Theorem

There exists a perfect family of hash functions of size 2°(%) log(n)
computable in time 2°9() nlog(n).

Cons: Additional factor 29(K) log(n) in the running time
Pros: Deterministic

Anyway: Two algorithms in one; let the user choose.



Practice

13. Give an FPT algorithm based on color-coding for the problem
below. Bonus: show that it is NP-complete.

CHEAP SUBTREE

Input: A complete binary tree T with a set L of leaves,
a graph G = (V, E),
a cost functionc: V x L - N
Param.: k = |L]
Output: A subset V' C V such that:
e G[V'] is isomorphic to T,
e the total cost of the mapping betwen V and L is minimal.

14. Same question:

POLYCHROME MATCHING

Input: A graph G with an r-edge coloring
Param.: r
Output: A maximum-size set of independent edges of G with
pairwise-distinct colors.



Practice

15. Same question:
DISJOINT r-SUBSETS

Input: Size-r subsets X, ... X, of [n], integer k
Param.: k+r
Output: k pairwise disjoint subsets X ,... X

ik



Color Coding

Final remarks

» Color coding cannot help W([1]-hard problems.
MuLTI-COLOR CLIQUE

Input: A k-partite graph G = (V,E), with V=V W --- W V,
Param.: k
Output: A size-k clique K, such that |[K N V;| =1 for all i.




Color Coding

Final remarks

» Color coding cannot help W([1]-hard problems.
MuLTI-COLOR CLIQUE

Input: A k-partite graph G = (V,E), with V=V W --- W V,
Param.: k
Output: A size-k clique K, such that |[K N V;| =1 for all i.

» Use more colors in randomized algorithms: optimal close to
1.3k for MINtMmuM WEIGHT PATH (fewer trials, but longer
dynamic programming)



Iterative Compression

Principle

» Other “heavy” approach, mostly for graphs

> Idea:

Start with an empty graph and an empty solution
Add vertices (or edges) one by one

Each time: update the solution

If the solution is too large: compress it by one

vV vy VvVyy

» Core algorithm: Given a graph, a target solution size of k, and
a solution of size k + 1, find a solution of size k (if any).



Iterative Compression
VERTEX COVER

v

Start with empty graph, empty solution (X)

v

Add vertex v (and connecting edges) to G and to X
If | X]=k+1:
» Partition X into K (“Keep”) and D (“Discard”)

» Create X' = KUN(D). If | X’| < k, continue with next vertex.
» Try with every 21 branches: reject if no good X'.

Total running time: O(2kn?)

v

v



Iterative Compression
ObpD CYCLE TRANSVERSAL

ODD CYCLE TRANSVERSAL

Input: A graph G = (V, E), an integer k
Param.: k
Output: A subset X of G such that G[V \ X] is bipartite.

» Start with empty graph, empty solution (X)
» Add vertex v (and connecting edges) to G and to X
» If | X|=k+1:
» Partition X into 3 parts (K, L, R)
» Create X’ using Min-Cut. If |X’| < k, continue with next

vertex.
» Try with every 3¥*1 branches: reject if no good X'.

16. Fill-in the missing steps of the Iterative Compression
algorithm of ODD CYCLE TRANSVERSAL.



