Algorithms and Bioinformatics

Part Il — Comparative Genomics

Laurent Bulteau

Algorithms and Bioinformatics

Part Il — Comparative Genomics

1.1 — Models and Distances

Laurent Bulteau
Slides from Anthony Labarre

Introduction Context and motivations
Permutations

Context and motivations

» Deoxyribonucleic acid: double helix of
nucleotides (A, C, G, T);

» Complementarity (A-T, C-G): one strip
is enough;

» Gene = sequence of nucleotides (that
codes for a specific protein);

» Chromosome = ordered set of genes;

» Genome = set of chromosomes;

Phosphale
Backbone

» Goal: compare genomes;

Introduction Context and motivations
Permutations

Context and motivations

» Biologists are interested in comparing species, for example:

> in order to classify them;
> in order to explain evolution by reconstructing scenarios;

» (Dis)similarity measures are needed;

» Usually based on the sequenced genomes;

Introduction Context and motivations
Permutations Comparing genomes

At the nucleotide level

» Most comparisons take place at the nucleotide level;

Example (sequence alignment)

S1: C C A — — T

T C G C CTA
| | | | |
OF T C GG C c A

A T G G

» Matches, substitutions, insertions and deletions;

» Correspond to mutations;

Introduction
Permutations Comparing genomes

At the “gene” level

» Some mutations act on segments of nucleotides;
» Those large-scale mutations are called genome rearrangements;

» Sequence alignment becomes unfit;

Introduction Context and motivations
Permutations Comparing genomes

At the “gene” level

» Some mutations act on segments of nucleotides;
> Those large-scale mutations are called genome rearrangements;
» Sequence alignment becomes unfit;

Example (genomes as sequences of segments)

I e (A)

Introduction Context and motivations
Permutations Comparing genomes

At the “gene” level

» Some mutations act on segments of nucleotides;
> Those large-scale mutations are called genome rearrangements;

» Sequence alignment becomes unfit;

Example (genomes as sequences of segments)

(A)

genome rearrangements

(B)

Introduction
Permutations Comparing genomes

Genome rearrangements

» Our problem:

Problem (PAIRWISE GENOME REARRANGEMENT)

Input: genomes Gy, Gy, a set S of mutations;
Goal: find a shortest sequence of elements of S that transforms Gy
into Go.

> Related, simpler problem: compute the evolutionary distance
ds(Gi, Go) (i.e. just the length of a shortest sequence);

» Many variants, depending on how genomes are modelled, what
(and how) mutations are taken into account, etc.;

The model
Introduction
Permutations

Modelling genomes as permutations

» Genomes are seen as permutations if:

1. they form ordered sequences of genes (or other segments), and
2. they only differ by order (no duplications or deletions).

The model
Introduction Exchanges

Permutations Larger-scale transformations

The directed breakpoint graph

Modelling genomes as permutations

» Genomes are seen as permutations if:

1. they form ordered sequences of genes (or other segments), and
2. they only differ by order (no duplications or deletions).

Example (genomes — permutations)

NG

10

The model
Introduction Exchanges

Permutations Larger-scale transformations

The directed breakpoint graph

Modelling genomes as permutations

» Genomes are seen as permutations if:

1. they form ordered sequences of genes (or other segments), and
2. they only differ by order (no duplications or deletions).

Example (genomes — permutations)

NG

11

The model
Introduction Exchanges

Permutations Larger-scale transformations

The directed breakpoint graph

Modelling genomes as permutations

» Genomes are seen as permutations if:

1. they form ordered sequences of genes (or other segments), and
2. they only differ by order (no duplications or deletions).

Example (genomes — permutations)

5 1 p) 4 7 3 6 (A)

12

The model
Introduction Exchanges

Permutations Larger-scale transformations

The directed breakpoint graph

Modelling genomes as permutations

» Genomes are seen as permutations if:

1. they form ordered sequences of genes (or other segments), and
2. they only differ by order (no duplications or deletions).

Example (genomes — permutations)

5 1 2 4 7 3 6 (A)

genome rearrangements

13

The model
Introduction
Permutations

Genome rearrangements for permutations

» Segments can be numbered as we wish, so we assume either
genome is the identity permutation : = (12 --- n) and we wish
to sort the other genome:

Problem (GENOME REARRANGEMENT (PERMUTATIONS))

Input: a permutation 7 in S, a set S C S, of (per)mutations;
Goal: find a shortest sorting sequence of elements of S for w.

» Again, we can also focus on merely computing ds(m) — the length
of an optimal sorting sequence;

» S must generate S, for any pair of permutations to be a finite
distance apart;

The model
Introduction
Permutations

Notation and definitions pertaining to permutations

» Permutations can be written in one- or two-row notation:

_<123456

s 16 o e 3>:<416253>.

The model
Introduction
Permutations

Notation and definitions pertaining to permutations

» Permutations can be written in one- or two-row notation:

_<123456

(41 e o 3>:<416253>.

» We deal exclusively with [n] = {1,2,...,n};

The model
Introduction
Permutations

Notation and definitions pertaining to permutations

» Permutations can be written in one- or two-row notation:

_<123456

s 16 o e 3>:<416253>.

» We deal exclusively with [n] = {1,2,...,n};
» All permutations of [n] with composition form the symmetric
group Sp;

The model
Introduction
Permutations

Notation and definitions pertaining to permutations

Permutations can be written in one- or two-row notation:

v

<123456

s 16 2 s 3>:<416253>.

v

We deal exclusively with [n] = {1,2,...,n};

v

All permutations of [n] with composition form the symmetric
group Sp;

v

Composition: the usual o, which means that in 7o o, o is applied
first;

The model

Introduction Exchanges
Permutations Larger-scale transformations
The directed breakpoint graph

Sorting permutations by adjacent exchanges

» Simple operation : exchange any two adjacent elements:

X

1 4 6 2 5 3

Example

» So we want to sort a permutation by performing as few such
exchanges as possible;

10

Introduction Exchanges
Permutations

Sorting permutations by adjacent exchanges

» Simple operation : exchange any two adjacent elements:

X

1 4 6 2 5 3

Example

> So we want to sort a permutation by performing as few such
exchanges as possible;
» Solution:
» sorting: use Bubble Sort;

70

Introduction Exchanges
Permutations

Sorting permutations by adjacent exchanges

» Simple operation : exchange any two adjacent elements:

X

1 4 6 2 5 3

Example

> So we want to sort a permutation by performing as few such
exchanges as possible;
» Solution:

» sorting: use Bubble Sort;
» distance: the number of swaps used by Bubble Sort;

71

The model

Introduction Exchanges

Permutations Larger-scale transformations
The directed breakpoint graph

A closed formula for the adjacent exchange distance

> An inversion in a permutation is a pair of misplaced elements: (m;, ;)
with i < j and m; > 7j;

> The permutation graph of 7 has [n] as vertex set and the inversions of
T as edges;

Example (the permutation graph of (416 25 3))

79

The model

Introduction Exchanges
Permutations Larger-scale transformations
The directed breakpoint graph

A closed formula for the adjacent exchange distance

Theorem
The adjacent exchange distance of m is |Inv(7)| = |E(PG(7))|.

Proof sketch.

Each adjacent swap “fixes” at most one inversion, which is
equivalent to removing an edge from PG, and we can always find
such a move at every step if ™ # ¢.

O

4

bl

The model

Introduction Exchanges

Permutations Larger-scale transformations
The directed breakpoint graph

Sorting permutations by exchanges

» Simple operation : exchange any two elements:

Example

4 1 6 2 5 3

» So we want to sort a permutation by performing as few such
exchanges as possible;

54

The model

Exchanges

Larger-scale transformations
The directed breakpoint graph

Sorting permutations by exchanges

Introduction
Permutations

> Here's a more complete example:

Example (a sorting sequence for (41625 3))
4 1 6 2 5 3

The model

Exchanges

Larger-scale transformations
The directed breakpoint graph

Sorting permutations by exchanges

Introduction
Permutations

> Here's a more complete example:

Example (a sorting sequence for (41625 3))
4 1 6 2 5 3

The model
Introduction Exchanges
Permutations Larger-scale transformations
The directed breakpoint graph

Sorting permutations by exchanges

> Here's a more complete example:

Example (a sorting sequence for (41625 3))
4 1 6 2 5 3

57

The model
Introduction Exchanges
Permutations Larger-scale transformations
The directed breakpoint graph

Sorting permutations by exchanges

> Here's a more complete example:

Example (a sorting sequence for (41625 3))
4 1 6 2 5 3

78

The model

Introduction Exchanges

Permutations Larger-scale transformations
The directed breakpoint graph

Sorting permutations by exchanges

> Here's a more complete example:

Example (a sorting sequence for (41625 3))
4 1 6 2 5 3

» It works... but can we do better?

70

Introduction Exchanges
Permutations

Sorting permutations by exchanges

» Our goal: each element should be “at the right place”;
» Some elements are already where they should be, so they won't
move;
» Strategy: read permutation from left to right, and:
» if m; =i, pass;
» otherwise, exchange 7; with /;

20

Introduction Exchanges
Permutations

Sorting permutations by exchanges

v

The algorithm obviously terminates;

v

At every step, we “fix" one or two positions;

v

We use the minimum number of exchanges;

v

On the other hand, we'd like to be able to compute the distance
without sorting;

<1

Introduction Exchanges
Permutations

Cycles

» Computing the distance requires using the cycles of the
permutation;

» Those cycles are obtained by iterating the permutation’s action on
{1,2,...,n}, stopping when all elements have been visited;

Example (cycles of (41625 3))
2 3 4 5 6

R

1 6 2 5 3

<9

Introduction Exchanges
Permutations

Cycles

» Computing the distance requires using the cycles of the
permutation;

» Those cycles are obtained by iterating the permutation’s action on
{1,2,...,n}, stopping when all elements have been visited;

Example (cycles of (41625 3))
1e——2 3 5 6

Ve |

4 6 5 3

el

Introduction Exchanges
Permutations

Cycles

» Computing the distance requires using the cycles of the
permutation;

» Those cycles are obtained by iterating the permutation’s action on
{1,2,...,n}, stopping when all elements have been visited;

Example (cycles of (41625 3))
1e——2 3 5

VY |

4 6 5

ey

Introduction Exchanges
Permutations

Cycles

» Computing the distance requires using the cycles of the
permutation;

» Those cycles are obtained by iterating the permutation’s action on
{1,2,...,n}, stopping when all elements have been visited;

Example (cycles of (41625 3))
2 3 5

ZAN(e

6

2R

The model

Introduction Exchanges

Permutations Larger-scale transformations
The directed breakpoint graph

Disjoint cycle decomposition of permutations

» Each permutation decomposes into disjoint cycles:

W:<i f 2 ‘2‘ g g>:(1,4,2)(3,6)(5).

el

Introduction Exchanges
Permutations

Disjoint cycle decomposition of permutations
» Each permutation decomposes into disjoint cycles:

/123
™\416

» The graph of the permutation 7, denoted by I'(7), pictures this
decomposition:

6

M >: (1,4,2)(3,6)(5).

c1 o1

27

Introduction Exchanges
Permutations

Disjoint cycle decomposition of permutations
» Each permutation decomposes into disjoint cycles:

/123
™\416

» The graph of the permutation 7, denoted by I'(7), pictures this
decomposition:

6

M >: (1,4,2)(3,6)(5).

c1 o1

5

4 1 6 2

» The number of cycles of 7 is written ¢(7);

29

Introduction Exchanges
Permutations

Disjoint cycle decomposition of permutations
» Each permutation decomposes into disjoint cycles:

/123
™\416

» The graph of the permutation 7, denoted by I'(7), pictures this
decomposition:

6

M >: (1,4,2)(3,6)(5).

o1 Ol

5

4 1 6 2
» The number of cycles of 7 is written ¢(7);

> 1-cycles are sometimes omitted;

<0

Introduction Exchanges
Permutations

Cycles and sorting

» Cycles of length 1 correspond to sorted elements; all other cycles
consist of elements that are misplaced;

@ — ¢ s s & > s

4 1 6 2 5 3 1 2 3 4 5 6

» Sorting comes down to splitting cycles until we only have cycles of
length 1;

» Qur algorithm repeatedly splits k-cycles into a 1-cycle and a
(k — 1)-cycle;

A0

Introduction Exchanges
Permutations

Computing the “exchange distance” exc(-)

> At each step, we can always create a new cycle if © # ¢, so:

exc(m) < n— c¢(m)

41

Introduction Exchanges
Permutations

Computing the “exchange distance” exc(-)

> At each step, we can always create a new cycle if © # ¢, so:
exc(m) < n— c¢(m)
» And we can't do better, so:

exc(m) > n— c(n)

A9

Introduction Exchanges
Permutations

Computing the “exchange distance” exc(-)

> At each step, we can always create a new cycle if © # ¢, so:
exc(m) < n— c¢(m)

» And we can't do better, so:
exc(m) > n— c(n)

» Therefore:

A3

Introduction Exchanges
Permutations

Computing the “exchange distance” exc(-)

> At each step, we can always create a new cycle if © # ¢, so:
exc(m) < n— c¢(m)

» And we can't do better, so:
exc(m) > n— c(n)

> Therefore:

Theorem ([Cayley, 1849]) J

The exchange distance of 7 in S, is n — c(m).

A4

Introduction Exchanges
Permutations

Lessons from sorting by exchanges

» Note that ¢ is the only permutation with n cycles;
» The formula exc(m) = n — c(m) expresses:

> the difference between the number of cycles we have and the
number of cycles we want;
» and the fact that at each step, we can obtain exactly one new cycle.

» This point of view will be crucial to sorting problems;

it

Practice

For the algorithms below, a permutation is represented as a size-n array
with values and indices ranging from 1 to n.

1. Give a linear-time algorithm computing the inverse of a
permutation.

2. Give a linear-time algorithm computing an optimal sequence
of swaps sorting a permutation.

3. Give a linear-time algorithm computing the decomposition of
a permutation into disjoint cycles

4. Let S be a set of permutations defining distance ds over S,
such that S is stable by inversion (1 € S = 771 € S).

» Prove that ds(7) = ds(m~!) for every permutation 7.
» The stability by inversion is a sufficient condition to have the
above property, but is it necessary?

Introduction
Permutations Larger-scale transformations

Block-interchanges and transpositions

» The mutations we observe in evolution (may) act on intervals;
» We'll now look at two generalisations of exchanges:

1. block-interchanges;
2. transpositions;

AR

Introduction
Permutations Larger-scale transformations

Block-interchanges and transpositions

» The mutations we observe in evolution (may) act on intervals;

» We'll now look at two generalisations of exchanges:
1. block-interchanges;
2. transpositions;

» Block-interchanges exchange two disjoint intervals in a
permutation;

123456789 — 167523489

A7

Introduction
Permutations Larger-scale transformations

Block-interchanges and transpositions

v

The mutations we observe in evolution (may) act on intervals;

v

We'll now look at two generalisations of exchanges:

1. block-interchanges;
2. transpositions;

v

Block-interchanges exchange two disjoint intervals in a
permutation;

123456789 — 167523489

» Transpositions displace an interval of the permutation;
112345678910 — 1 5678234910

A8

The model

Introduction Exchanges

Permutations Larger-scale transformations
The directed breakpoint graph

Computing the associated distances

» Does the disjoint cycle technique “work”?

40

Introduction
Permutations Larger-scale transformations

Computing the associated distances

» Does the disjoint cycle technique “work”?

» Unlikely: the following permutation has n/2 cycles of length two,
but bid(m) = td(w) = 1:

O
O
O
O

NIS
+
—_
NIs
+
N
NIs
+
w
=
N
w
NIS O

50

Introduction
Permutations Larger-scale transformations

Computing the associated distances

» Does the disjoint cycle technique “work”?

» Unlikely: the following permutation has n/2 cycles of length two,
but bid(m) = td(w) = 1:

o o [¢] [¢] [e] o

o]
24+1 242 243 n 1 2 3

NIS O

> We'll need something else since we cannot bound the effect of an
operation in that setting;

51

Introduction
Permutations
The directed breakpoint graph

The “directed breakpoint graph”

> (the term “breakpoint” will be explained later);

» Let's build the directed breakpoint graph of 7= (416257 3):

1N

Introduction
Permutations
The directed breakpoint graph

The “directed breakpoint graph”

> (the term “breakpoint” will be explained later);
» Let's build the directed breakpoint graph of 7= (416257 3):

3 4 1. build the ordered vertex set
(7'('0 = 077T1a T2y ,7T,,);

N O

1Ne’

Introduction
Permutations
The directed breakpoint graph

The “directed breakpoint graph”

> (the term “breakpoint” will be explained later);
» Let's build the directed breakpoint graph of 7= (416257 3):

1. build the ordered vertex set
(mo = 0,71, 72y ..., T0);

2. add black arcs for every ordered
pair (T&',‘,ﬂ',’,l (mod n+1));

KA

Introduction
Permutations
The directed breakpoint graph

The “directed breakpoint graph”

> (the term “breakpoint” will be explained later);
» Let's build the directed breakpoint graph of 7= (416257 3):

1. build the ordered vertex set
(mo = 0,71, 72y ..., T0);

2. add black arcs for every ordered
pair (T&',‘,ﬂ',’,l (mod n+1));

3. add grey arcs for every ordered pair
(i,i+1 (mod n+ 1)),

54~

Introduction
Permutations
The directed breakpoint graph

The “directed breakpoint graph”

> (the term “breakpoint” will be explained later);
» Let's build the directed breakpoint graph of 7= (416257 3):

1. build the ordered vertex set
(mo = 0,71, 72y ..., T0);

2. add black arcs for every ordered
pair (7T,‘,7T,',1 (mod n+1));

3. add grey arcs for every ordered pair
(i,i+1 (mod n+ 1)),

DBG(7) decomposes in a unique way into alternating cycles

KA

Introduction
Permutations

The directed breakpoint graph

Formal definition of the directed breakpoint graph

Definition ([Bafna and Pevzner, 1998])
The directed breakpoint graph of (7 m ---
1. an ordered vertex set V = (w9 = 0,71, 72, .

2. a bicoloured arc set A = Ag U Ag, where:

2.1 AB = {(ﬂ_i»’/Ti—l (mod n+1)) :0 S i § n};
22 A ={(i,i+1 (mod n+1)):0<i < n};

7n) is defined by:

C T

R7

Introduction
Permutations
The directed breakpoint graph

Circular vs. linear layout

> One can also represent the directed breakpoint graph using a linear
layout without affecting the cycle structure:

» Circular — linear: split 0 into 0 and n+ 1;
» Linear — circular: merge 0 and n+ 1 into 0;

> (in both cases: adapt arcs accordingly);

1

Introduction
Permutations
The directed breakpoint graph

Intuitions behind DBG(7) — 1

» Both “monochromatic” cycles represent an ordering:

1. the black one represents the one we have (“reality”);
2. the grey one represents the one we want to obtain (“desire”);

0

1N

Introduction
Permutations
The directed breakpoint graph

Intuitions behind DBG(7) — 2

» The alternating cycles are a blend of “reality” and “desire”, and
we must act on those cycles to turn “reality” into “desire”;

» When we are done, we have the largest number of cycles;

A0

Introduction
Permutations

The directed breakpoint graph

Proving lower bounds

» One way of proving lower bounds on distances: be optimistic:
1. find out the “best case”;
2. pretend we're always in that case;

» Techniques based on breakpoint graphs follow the same spirit as

those based on the disjoint cycle decomposition, but less freedom
is allowed (details later);

> Usually: case analysis to determine by how much a parameter of
the graph can change with one operation;

A1

The model
Introduction Exchanges

Permutations Larger-scale transformations

The directed breakpoint graph

Lower bounding the block-interchange distance

A block-interchange 3(i,J, k, £) increases the number of cycles in
DBG by at most 2:

LLLLY] LLLLT
PRl “gll.. e,

. &~ -
o* annetay, Lenfya,, AN
. «* e 32 s e .
. . - O LN .
hd . - . - "Ny "Ny ."'. ."'.
o 0 O X 0 — S 3 o2 3
i Tk—1 | Tk Te—1| T¢

Theorem ([Christie, 1996])

For all 7w in S,: bid(w) > w_

Iy,

The model
Introduction Exchanges
Permutations Larger-scale transformations
The directed breakpoint graph

Lower bounding the transposition distance

A transposition 7(i, j, k) increases the number of odd cycles in DBG by
at most 2:

H2

Introduction
Permutations

The model

Exchanges

Larger-scale transformations
The directed breakpoint graph

Lower bounding the transposition distance

A transposition 7(i, j, k) increases the number of odd cycles in DBG by

at most 2:

asEEgpELgeEE,
et s a0t
. .

)
0“‘0

A4

Introduction
Permutations

The model

Exchanges

Larger-scale transformations
The directed breakpoint graph

Lower bounding the transposition distance

A transposition 7(i, j, k) increases the number of odd cycles in DBG by

at most 2:

esTEyeETNeETE,
. el : .
", . .

O a3 . .

Theorem ([Bafna and Pevzner, 1998))
For all m in S,: td(w) > M%ﬂl.

AR

Practice

5. Give sorting sequences for the following permutations, and
prove they are optimal

» (654321), using block-interchanges

» (3254761), using transpositions

Permutations
Signed permutations

Proving upper bounds

» One way of proving upper bounds on distances: be pessimistic:
1. find out the “worst case”;
2. pretend we're always in that case;

» For better upper bounds: be less pessimistic:

» case analyses of varying difficulty;
» look at sequences of moves;

Permutations Breakpoints
Signed permutations The undirected breakpoint graph

Upper bounds

> For block-interchanges, we have:

Theorem ([Christie, 1996])

For all 7 in S,: bid(r) < H=<(DBG(m)

» Which equals the lower bound and therefore the exact distance;

Permutations Breakpoints
Signed permutations The undirected breakpoint graph

Upper bounds

» For transpositions:

Theorem ([Bafna and Pevzner, 1998])
For all w in Sy: td(m) < 2(n+ 1 — coad(DBG(m))) = 30PT.

» Current best approximation: 11/8 [Elias and Hartman, 2006]

Practice

6. Show that td(7w) < n— LIS(w), where LIS denotes the length
of the longest increasing subsequence.

7. Give a polynomial-time 2-approximation algorithm for the
Transposition Distance problem.

Practice

6. Show that td(7w) < n— LIS(w), where LIS denotes the length
of the longest increasing subsequence.

7. Give a polynomial-time 2-approximation algorithm for the
Transposition Distance problem.

Hint 1: Use the lower bound based on the number of cycles:
td(ﬂ') > n+1—C(2DBG(Tr))

Practice

6. Show that td(7w) < n— LIS(w), where LIS denotes the length
of the longest increasing subsequence.

7. Give a polynomial-time 2-approximation algorithm for the
Transposition Distance problem.
Hint 1: Use the lower bound based on the number of cycles:
td(ﬂ') > n+1—C(2DBG(Tr))

Hint 2: If = displays a cycle of the right form, give a transposition
creating two cycles. Otherwise, turn a cycle into the right form
with one transposition.

Permutations Breakpoints
Signed permutations The undirected breakpoint graph

Reversals

» Another type of mutation occurs frequently: reversals, which
reverse the order of elements on an interval of the permutation;

Example

4 1 6 2 5 3

Permutations Breakpoints
Signed permutations

Reversals

» Here's an optimal sorting sequence!:

Example (optimal sorting sequence of reversals)

6 genes 6 singletons, 0 2-strips Unsigned Reversal Distance: 4

One optimal reversal scenario
Step Description

0 (Source) 416253
1 Reversal 4126 53
2 Reversal 456 213
3 Reversal 1265 43
4 Reversal 123456

(Destination)

» Bad news: stuff seen so far doesn't work;

!Obtained using GRIMM: http://grimm.ucsd.edu/cgi-bin/grimm.cgi

Permutations Breakpoints
Signed permutations The undirected breakpoint graph

Breakpoints

Definition ([Watterson et al., 1982])

A breakpoint in a permutation 7 is an ordered pair (7, mj41) with
|mit1 — mi| # 1 (otherwise it's an adjacency).

Permutations Breakpoints
Signed permutations The undirected breakpoint graph

Breakpoints

Definition ([Watterson et al., 1982])

A breakpoint in a permutation 7 is an ordered pair (7, mj41) with
|mit1 — mi| # 1 (otherwise it's an adjacency).

Example (breakpoints of (3154286 7))
3ele5 4e2e3ef 7

Permutations Breakpoints
Signed permutations The undirected breakpoint graph

Breakpoints

Definition ([Watterson et al., 1982])

A breakpoint in a permutation 7 is an ordered pair (7, mj41) with
|mit1 — mi| # 1 (otherwise it's an adjacency).

Example (breakpoints of (3154286 7))
3ele5 4e2e3ef 7

> This notion characterises elements that are “relatively misplaced”:
they're not consecutive in ¢, norin (nn—1 --- 2 1)

Breakpoints

» Note that ¢t = (1 2

Permutations Breakpoints
Signed permutations

-++ n) has no breakpoint;

Permutations Breakpoints
Signed permutations

Breakpoints

» Note that ¢ = (1 2 --- n) has no breakpoint;
» That's also the case of (n n—1 --- 2 1);

Permutations Breakpoints
Signed permutations

Breakpoints

» Note that ¢t = (1 2 --- n) has no breakpoint
» That's also the case of (n n—1 --- 2 1);

» To distinguish them, we frame permutations

(my 7o o+)y > (0w M -

Tn N+ 1)

Permutations Breakpoints
Signed permutations

Breakpoints

» Note that ¢ = (1 2 --- n) has no breakpoint;
» That's also the case of (n n—1 --- 2 1);
» To distinguish them, we frame permutations:

(my 7o -+)y (0w mp oo myn+ 1)

» Those artificial elements are denoted by 79 and 7,41;

Permutations Breakpoints
Signed permutations

Breakpoints

v

Note that ¢t = (1 2 --- n) has no breakpoint;
That's also the case of (n n—1 --- 2 1);

To distinguish them, we frame permutations:

v

v

(my 7o -+)y (0w mp oo myn+ 1)

v

Those artificial elements are denoted by my and 7p41;

v

Which leads to the following definition:

Definition
The number of breakpoints of a permutation 7 in S, is

b(m) = [{(mi,mi+1) | 0 < i< nand |miy1 — m| # 1}].

Permutations Breakpoints
Signed permutations

Breakpoints

v

Note that ¢t = (1 2 --- n) has no breakpoint;
That's also the case of (n n—1 --- 2 1);

To distinguish them, we frame permutations:

v

v

(my 7o -+)y (0w mp oo myn+ 1)

v

Those artificial elements are denoted by my and 7p41;

v

Which leads to the following definition:

Definition
The number of breakpoints of a permutation 7 in S, is

b(m) = [{(mi,mi+1) | 0 < i< nand |miy1 — m| # 1}].

v

Example: (0e3ele54e2e806709) = b(m)=T,

Permutations Breakpoints
Signed permutations

Usefulness of breakpoints

» Observation: reversals can “fix" breakpoints:

Example

Oe3ele5 4e2e8eG 709 — (e3ele5 4e8e2eG 7e9

0e3e]l 283 7 6 5 409 «— (e3e]

!

2034 5 6 7e9

Permutations Breakpoints
Signed permutations

Lower bound

> A reversal can fix at most two breakpoints;
> If we're lucky, we are always in that case;

» This yields the following lower bound:

Theorem ([Kececioglu and Sankoff, 1995])

For every permutation m:

rd(m) > b(m)/2.

Permutations Breakpoints
Signed permutations

Upper bound

» On the other hand we can always fix at least one breakpoint
(details: [Kececioglu and Sankoff, 1995])

> So the algorithm is a 2-approximation:
b(m)/2 < rd(m) < b(r)

» Can we do better?

Permutations
Signed permutations The undirected breakpoint graph

The undirected breakpoint graph

> Yes, but we need a more appropriate structure:

Definition ([Bafna and Pevzner, 1996])

The undirected breakpoint graph of the permutation 7 in S,
written UBG(7) = (V, E), is defined by:

» V= (mo=0,m1,72,...,Tp,Tpy1 = n+1);
» E={{mi,mi1} |0<i<n}U{{i,i+1}|0<i<n}

black edges grey edges

Permutations Breakpoints
Signed permutations The undirected breakpoint graph

The undirected breakpoint graph: example

» Let us build the undirected breakpoint graph 7 = (3154286 7):

Example

31542867

70

Permutations Breakpoints
Signed permutations The undirected breakpoint graph

The undirected breakpoint graph: example

» Let us build the undirected breakpoint graph 7 = (3154286 7):

Example

03154286709

1. frame the permutation;

71

Permutations
Signed permutations The undirected breakpoint graph

The undirected breakpoint graph: example

» Let us build the undirected breakpoint graph 7 = (3154286 7):

Example

o
wo
—o
1o
Ho
N o
Q0o
oo
~o
o

1. frame the permutation;

2. build ordered vertex set (mo = 0, 71, T2, ..., Thy1 = n+1);

79

Permutations
Signed permutations The undirected breakpoint graph

The undirected breakpoint graph: example

» Let us build the undirected breakpoint graph 7 = (3154286 7):

Example

03154286709

1. frame the permutation;
2. build ordered vertex set (mo = 0, 71, T2, ..., Thy1 = n+1);

3. add black edges for every pair {m;, 7j+1};

bl

Permutations Breakpoints
Signed permutations The undirected breakpoint graph

The undirected breakpoint graph: example

» Let us build the undirected breakpoint graph 7 = (3154286 7):

N

Example

03154286709

frame the permutation;

build ordered vertex set (mo = 0, 71, 72, ..., Tht1 = n+1);
add black edges for every pair {m;, 7j+1};

add grey edges for every pair {i,i + 1};

54

Permutations Breakpoints
Signed permutations The undirected breakpoint graph

Decomposition

» That graph decomposes into cycles:

Example

031542861709

IR

Permutations Breakpoints
Signed permutations The undirected breakpoint graph

Decomposition

» That graph decomposes into cycles:

Example

031542861709

> ... but the decomposition is no longer unique!

76

Permutations Breakpoints
Signed permutations The undirected breakpoint graph

Decomposition

» That graph decomposes into cycles:

Example

031542861709

> ... but the decomposition is no longer unique!

Example

AN
0213

has either one 3-cycle or a 1-cycle and a 2-cycle.

57

Permutations
Signed permutations The undirected breakpoint graph

Cycle decompositions

» We use decompositions to derive lower bounds;

78

Permutations
Signed permutations The undirected breakpoint graph

Cycle decompositions

» We use decompositions to derive lower bounds;

» A reversal acts on one or two cycles and can split / merge cycles;

-~
~
l‘ " . ~§
V' 4 V' 4 ‘ Y - - =™

Ti-1 T T T+l Ti-1 T i T+l

70

Permutations
Signed permutations The undirected breakpoint graph

Cycle decompositions

» We use decompositions to derive lower bounds;

» A reversal acts on one or two cycles and can split / merge cycles;

- L -
P A N

’ ’ ~ .
V' 4 V' 4 ‘ Y - - =™
Ti-1 T T Tj+1 Ti-1 T i Tj+1

» So we're tempted to say:

rd(w) > n+1— c(UBG(m))

20

Permutations
Signed permutations The undirected breakpoint graph

Decomposition

> ... but recall that the decomposition is not unique!!!

<1

Permutations
Signed permutations The undirected breakpoint graph

Decomposition

> ... but recall that the decomposition is not unique!!!

» The more cycles we have, the closer we are to UBG(¢);

<9

Permutations
Signed permutations The undirected breakpoint graph

Decomposition

> ... but recall that the decomposition is not unique!!!
» The more cycles we have, the closer we are to UBG(¢);

» Therefore, we have in fact:

el

Permutations
Signed permutations The undirected breakpoint graph

Decomposition

> ... but recall that the decomposition is not unique!!!
» The more cycles we have, the closer we are to UBG(¢);
» Therefore, we have in fact:

Theorem ([Bafna and Pevzner, 1996])

For all win S,:
rd(m) > n+1— c*(UBG(7)),

where c*(UBG(m)) is the number of cycles in a maximum
cardinality decomposition.

ey

Permutations
Signed permutations The undirected breakpoint graph

Decomposition

> ... but recall that the decomposition is not unique!!!
» The more cycles we have, the closer we are to UBG(¢);

» Therefore, we have in fact:

Theorem ([Bafna and Pevzner, 1996])

For all win S,:
rd(m) > n+1— c*(UBG(7)),

where c*(UBG(m)) is the number of cycles in a maximum
cardinality decomposition.

» Unfortunately, finding a maximum cardinality decomposition is
NP-hard [Caprara, 1999];

2R

Signed permutations

Permutations

Results on sorting permutations

The undirected breakpoint graph

> Here's a nonexhaustive summary on sorting permutations using

various operations:

double cut-and-joins
reversal
transposition

NP-hard [Chen, 2010]
NP-hard [Caprara, 1999]
NP-hard [Bulteau et al., 2012]

Operation Sorting ‘ Distance Best approximation
exchange O(n) [Knuth, 1995] 1
block-interchange O(n) [Christie, 1996] 1

?

11/8 [Berman et al., 2002]
11/8 [Elias and Hartman, 2006]

exchange
reversal
transposition

prefix

O(n) [Akers et al., 1987]

NP-hard [Bulteau et al., 2015]
7 ?

1
2 [Fischer and Ginzinger, 2005]
2 [Dias and Meidanis, 2002]

> Let us move on to our next model: signed permutations;

el

Permutations
Signed permutations

Motivation
Thymine
Adenine
> Permutations lack realism: DNA Send o 5 e
segments are oriented; 7 Iﬁ; " q
> We need to take orientation into . g N
. 7 (‘(W O PA
account; <
» Therefore, two DNA segments Phosphate-) e A
match if: e 7 ?;g &ﬁ)q
> they are the same, or . 1
. om? PR =
» one is the reverse 75 ey,);) 9
complement of the other. W
o 39~
3end) Cytosinefj"
Guanine 5 end

(picture by Madeleine Price Ball, taken from Wikimedia)

27

Permutations

Signed permutations Signed reversals

Motivation

» So instead of permutations:

Example (genomes — permutations)
®

genome rearrangements

1 2 3 4 5 3 7 (B)

» We now have signed permutations:

Permutations

. . Signed reversals
Signed permutations =

Motivation

» So instead of permutations:

Example (genomes — permutations)
®

genome rearrangements

1 2 3 4 5 3 7 (B)

» We now have signed permutations:

Example (genomes — signed permutations)
DB EZTEKTD »

D3I I D T I ©

Permutations

. . Signed reversals
Signed permutations =

Motivation

» So instead of permutations:

Example (genomes — permutations)
®

genome rearrangements

1 2 3 4 5 3 7 (B)

» We now have signed permutations:

Example (genomes — signed permutations)
EIDIDID XE&ETID

IDIDIDID IO TDID ©

A0

Permutations

. . Signed reversals
Signed permutations =

Motivation

» So instead of permutations:

Example (genomes — permutations)
®

genome rearrangements

1 2 3 4 5 3 7 (B)

» We now have signed permutations:

Example (genomes — signed permutations)
EIDIDID XE&ETID

XD 32> I XY T T TH ©

41

Permutations

. . Signed reversals
Signed permutations =

Motivation

» So instead of permutations:

Example (genomes — permutations)
®

genome rearrangements

1 2 3 4 5 3 7 (B)

» We now have signed permutations:

Example (genomes — signed permutations)
I ID Iy EKE@EITD *»

XD 32> I XY T T TH ©

A9

Permutations

. . Signed reversals
Signed permutations =

Motivation

» So instead of permutations:

Example (genomes — permutations)
®

genome rearrangements

1 2 3 4 5 3 7 (B)

» We now have signed permutations:

Example (genomes — signed permutations)
I ID Iy CKE@EITD *»

genome rearrangements

XD 32> I XY T T TH ©

A3

Permutations
Signed permutations

Signed (per)mutations

» Note: this does not mean that everything you know about
unsigned comparisons is useless:

1. orientation information is not always available;
2. ideas from unsigned comparisons lead to ideas for signed
comparisons;

» Mutations may now act on a segment’s place and orientation;

A4

Permutations
Signed permutations

Tools

> As expected, tools we've seen previously cannot be used here
because they do not take signs into account;

» Then again, some ideas can be adapted;

it

Permutations

Signed permutations Signed reversals

Notation and definitions pertaining to signed permutations

» We deal exclusively with {£1,+2,...,+n};

AR

Permutations
Signed permutations

Notation and definitions pertaining to signed permutations

» We deal exclusively with {£1,+2,...,+n};
» Convention: 7(—i) = —7(i) for 1 < i < n;

A7

Permutations
Signed permutations

Notation and definitions pertaining to signed permutations

» We deal exclusively with {£1,+2,...,+n};
» Convention: 7(—i) = —7(i) for 1 < i < n;

» Permutations can be written in one- or two-row notation:

4 -3 2 -1 12 3 4
”—< 2 4 -1 3 -3 1 —4 —2>_<_31_4_2>'

A8

Permutations
Signed permutations

Notation and definitions pertaining to signed permutations

» We deal exclusively with {£1,+2,...,+n};
» Convention: 7(—i) = —7(i) for 1 < i < n;

» Permutations can be written in one- or two-row notation:

4 -3 2 -1 12 3 4
”—< 2 4 -1 3 -3 1 —4 —2>_<_31_4_2>'

» We will restrict ourselves to the mapping of positive elements;

40

Permutations
Signed permutations

Notation and definitions pertaining to signed permutations

v

We deal exclusively with {+1,£2,...,+n};
Convention: m(—i) = —n(i) for 1 < i < n;

Permutations can be written in one- or two-row notation:

v

v

4 -3 2 -1 12 3 4
”—< 2 4 -1 3 -3 1 —4 —2>_<_31_4_2>'

We will restrict ourselves to the mapping of positive elements;

v

v

Composition works as before;

50

Permutations
Signed permutations

Notation and definitions pertaining to signed permutations

v

We deal exclusively with {+1,£2,...,+n};
Convention: m(—i) = —n(i) for 1 < i < n;

v

Permutations can be written in one- or two-row notation:

v

4 -3 2 -1 12 3 4
”—< 2 4 -1 3 -3 1 —4 —2>_<_31_4_2>'

We will restrict ourselves to the mapping of positive elements;

v

v

Composition works as before;
The corresponding group is the hyperoctahedral group S*;

v

51

Permutations

Signed permutations Signed reversals

Signed reversals

> Reversals can be generalised to signed reversals, which not only
reverse an interval but also flip signs along the interval;

1N

Permutations

Signed permutations Signed reversals

Signed reversals

> Reversals can be generalised to signed reversals, which not only
reverse an interval but also flip signs along the interval;

Example (signed reversal)

-5 1 2 4 -7 -3 6

Permutations

Signed permutations Signed reversals

Signed reversals

> Reversals can be generalised to signed reversals, which not only
reverse an interval but also flip signs along the interval;

Example (signed reversal)

-5 1 2 4 -7 -3 6

-5 1 3 7 -4 -2 6

> As before, we're interested in sorting a given signed permutation
using as few signed reversals as possible (or merely computing the
length of a shortest sequence);

KA

Permutations

Signed permutations Signed reversals

Example: sorting by signed reversals

- X X 22 X €K €& TD

-- X X Z5p 22» IT5» T0) TP

54~

Permutations

Signed permutations Signed reversals

Example: sorting by signed reversals

- X X 22 Xy €K €& TD
I

-- X X Z5p 22» IT5» T0) TP

KA

Permutations

Signed permutations Signed reversals

Example: sorting by signed reversals

- X X 22 Xy €K €& TD
I

-- X X Z5p 22» IT5» T0) TP

R7

Permutations

Signed permutations Signed reversals

Example: sorting by signed reversals

I
I

-- X X Z5p 22» IT5» T0) TP

"8

Permutations

Signed permutations Signed reversals

Example: sorting by signed reversals

I
I

-- X X Z5p 22» IT5» T0) TP

1N

Permutations

Signed permutations Signed reversals

Example: sorting by signed reversals

I
I

-- X X Z5p 22» IT5» T0) TP

A0

Permutations

Signed permutations Signed reversals

Example: sorting by signed reversals

I
I

-- X X Z5p 22» IT5» T0) TP

A1

Permutations

Signed permutations Signed reversals

Example: sorting by signed reversals

- X X 22 Xy €K €& TD
I
|
I

-- X X Z5p 22» IT5» T0) TP

Iy,

Permutations

Signed permutations Signed reversals

Example: sorting by signed reversals

- X X 22 Xy €K €& TD
I
|
I

-- X X Z5p 22» IT5» T0) TP

H2

Permutations

Signed permutations Signed reversals

Example: sorting by signed reversals

- X X 22 Xy €K €& TD
I
|
I

-- X X Z5p 22» IT5» T0) TP

H4

Permutations

Signed permutations Signed reversals

Example: sorting by signed reversals

- X X 22 Xy €K €& TD
I
|
I
-- X X Z5p 22» IT5» T0) TP

'

Permutations

Signed permutations Signed reversals

Example: sorting by signed reversals

- X X 22 Xy €K €& TD
I
|
I
-- X X Z5p 22» IT5» T0) TP

srd(m,0) <6

A6

Permutations
Signed permutations

Solving the problem

» How do we attack this problem?

Signed reversals

A7

Permutations

Signed permutations Signed reversals

Solving the problem

» How do we attack this problem?

» Breakpoints can be generalised to the signed setting ...

A8

Permutations

Signed permutations Signed reversals

Solving the problem

» How do we attack this problem?
» Breakpoints can be generalised to the signed setting ...

> ... but you already know / guess that this will at best provide an
approximation;

A0

Permutations

Signed permutations Signed reversals

Solving the problem

v

How do we attack this problem?

v

Breakpoints can be generalised to the signed setting ...

> ... but you already know / guess that this will at best provide an
approximation;

v

Instead, we're going to adapt the breakpoint graph to the signed
setting;

70

Permutations

Signed permutations Signed reversals

The breakpoint graph

> The breakpoint graph in the signed case is slightly different:

- EX 1D X2 Xy €K € T

71

Permutations

Signed permutations Signed reversals

The breakpoint graph

> The breakpoint graph in the signed case is slightly different:

EX ID D I €K €& T
0 10 91 2 3 4 7 8 14 13 6 511

1215

s
7T_I

1. double 7’s elements
(i— {2|i| — 1,2]i|]}) and add 0
and 2n +1

79

Permutations Signed reversals
Signed permutations g

The breakpoint graph

> The breakpoint graph in the signed case is slightly different:

=0 10 511 1215
/ Tf, /
1. double 7’s elements T14 11; T
(i — {2]i| — 1,2|i]}) and add 0 i 126 9 ¥
and 2n +1 / o o _
7T12 5 o 9 o
2. elements of 7’ = vertices
T, 60 o1}
O (@)
ot . °m
e o0 3,
1/ 9 /l5
! 7 !
g . Te

73

Permutations

Signed permutations Signed reversals

The breakpoint graph

> The breakpoint graph in the signed case is slightly different:

- @EX 15D XD Xy €K €K T
=010 9 1 23 47 814 136 511 1215
/] /
1. double 7’s elements T14 11; To
(i — {2]i| — 1,2|i]}) and add 0 My 12 5 O m
11 10
and 2n +1 o _
) A12 5 9 /l2
2. elements of 7’ = vertices o&
!)
3. black edges connect distinct T 6 ‘1 173
adjacent genes s 13 2
“10 O\O /l4
14 o 3

74

Permutations

Signed permutations Signed reversals

The breakpoint graph

> The breakpoint graph in the signed case is slightly different:

1. double 7’s elements
(i— {2|i| — 1,2]i|]}) and add 0
and 2n+1

2. elements of 7’ = vertices

3. black edges connect distinct
adjacent genes

4. grey edges connect distinct
consecutive genes

7K

Permutations

Signed permutations Signed reversals

Using the breakpoint graph

» The breakpoint graph is 2-regular and decomposes as such into
alternating cycles in a unique way;

» The breakpoint graph of (12 --- n) contains the largest number

of cycles:
120/.{5 0 1w B9
11 10 3 = AN
5 9 12 j 2
6 1 _) 11 Qy 3
13 f 2 10 f 4
14 3 9 5
8 7 4 8 7 6

> = goal: create new cycles in as few moves as possible;

76

Practice

8. Draw the breakpoint graph for the signed permutation

<_4a 3a _27 _57 1>

Permutations

Signed permutations Signed reversals

Overview of Hannenhalli and Pevzner's solution

» [Hannenhalli and Pevzner, 1999] came up with the first
polynomial-time algorithm for this problem:

1. Transform 7 into 7 (simpler, does not affect distance);

77

Permutations

Signed permutations Signed reversals

Overview of Hannenhalli and Pevzner's solution

» [Hannenhalli and Pevzner, 1999] came up with the first
polynomial-time algorithm for this problem:

1. Transform 7 into 7 (simpler, does not affect distance);
2. Find an optimal sorting sequence for 7;

78

Permutations

Signed permutations Signed reversals

Overview of Hannenhalli and Pevzner's solution

» [Hannenhalli and Pevzner, 1999] came up with the first
polynomial-time algorithm for this problem:

1. Transform 7 into 7 (simpler, does not affect distance);
2. Find an optimal sorting sequence for 7;

3. Convert it back to an optimal sorting sequence for ;

70

Permutations

Signed permutations Signed reversals

Overview of Hannenhalli and Pevzner's solution

» [Hannenhalli and Pevzner, 1999] came up with the first
polynomial-time algorithm for this problem:

1. Transform 7 into 7 (simpler, does not affect distance);
2. Find an optimal sorting sequence for 7;

2.1 identify “good” and “bad” cycles in BG(7);

3. Convert it back to an optimal sorting sequence for ;

<0

Permutations

Signed permutations Signed reversals

Overview of Hannenhalli and Pevzner's solution

» [Hannenhalli and Pevzner, 1999] came up with the first
polynomial-time algorithm for this problem:

1. Transform 7 into 7 (simpler, does not affect distance);
2. Find an optimal sorting sequence for 7;

2.1 identify “good” and “bad” cycles in BG(7);

2.2 identify “good” and “bad” components in BG(7);

3. Convert it back to an optimal sorting sequence for ;

“1

Permutations

Signed permutations Signed reversals

Overview of Hannenhalli and Pevzner's solution

» [Hannenhalli and Pevzner, 1999] came up with the first
polynomial-time algorithm for this problem:
1. Transform 7 into 7 (simpler, does not affect distance);
2. Find an optimal sorting sequence for 7;
2.1 identify “good” and “bad” cycles in BG(7);
2.2 identify “good” and “bad” components in BG(7);
2.3 “sort” those components to optimality;

3. Convert it back to an optimal sorting sequence for ;

“9

Permutations

Signed permutations Signed reversals

Transformation into simple permutations

» A permutation 7 is simple if BG(7) contains only cycles of length
<2

fole’

Permutations

Signed permutations Signed reversals

Transformation into simple permutations

» A permutation 7 is simple if BG(7) contains only cycles of length
<2

» The transformation was introduced to simplify analysis and
preserves the distance: if 7 is the “simplified” version of 7, then
srd(7) = srd(m);

«A

Permutations

Signed permutations Signed reversals

Transformation into simple permutations

» A permutation 7 is simple if BG(7) contains only cycles of length
<2

» The transformation was introduced to simplify analysis and
preserves the distance: if 7 is the “simplified” version of 7, then
srd(7) = srd(m);

» So we can assume from now on that the permutation to sort is
simple;

“R

Permutations

Signed permutations Signed reversals

Transformation into simple permutations

v

A permutation 7 is simple if BG(7) contains only cycles of length
<2

The transformation was introduced to simplify analysis and
preserves the distance: if 7 is the “simplified” version of 7, then
srd(7) = srd(m);

So we can assume from now on that the permutation to sort is
simple;

[Gog and Bader, 2008] give fast algorithms to achieve the
conversions;

<A

Permutations

Signed permutations Signed reversals

A lower bound on the signed reversal distance

> A signed reversal involves black edges belonging to at most two
cycles;

Q7

Permutations

Signed permutations Signed reversals

A lower bound on the signed reversal distance

> A signed reversal involves black edges belonging to at most two
cycles;

» The only way to increase c(BG(7)) is to split cycles:

’ ’ Y Y o= o=

! ! ! ! ! ! ! !
T Ti41 Toj T2j+1 Top o) T2j4+1 T2j+1

«Q

Permutations

Signed permutations Signed reversals

A lower bound on the signed reversal distance

> A signed reversal involves black edges belonging to at most two
cycles;

» The only way to increase c(BG(7)) is to split cycles:

~ ~
» »
4 4 ~‘ ~‘
’ ’ ' ' o -
! ! ! ! ! ! ! !
T Ti41 Toj T2j+1 Top o) T2j4+1 T2j+1

» Therefore, for all 7 in SF:

srd(m) > n+ 1 — ¢(BG(7)).

«0Q

Permutations

Signed permutations Signed reversals

Good and bad cycles

» However, we cannot always split cycles:

G0

Permutations

Signed permutations Signed reversals

Good and bad cycles

» However, we cannot always split cycles:

-y

- '~‘ - ~
PSSt . S i N .
' ’ S) ' ’ A Y

/ / / / / / / /
Toi Tit1 T T2j4+1 T Toj Ti+1 T2j4+1

G1

Permutations

Signed permutations Signed reversals

Good and bad cycles

> However, we cannot always split cycles:

- . .
- “w

» ~ N - ~ N
PSSt . S i N .
' ’ S) ' ’ A \
! ! / ! ! ! ! !
i T2jt1 T2j T2j41 Ti M) Ti+1 T2j41

» Hence the inequality: we can split "good” cycles, and we cannot
split “bad” cycles;
» standard terminology: “good’ = oriented, “bad” = unoriented,

g9

Permutations

Signed permutations Signed reversals

Handling good cycles

» Things are actually more complicated than that;

» Even when we don't have bad cycles, the order in which we do
things matters!

Example (careless and careful cycle splitting)

g_

Permutations Signed reversals
Signed permutations g

Handling good cycles

» Things are actually more complicated than that;

» Even when we don't have bad cycles, the order in which we do
things matters!

Example (careless and careful cycle splitting)

m (bad) = m
0 6 5 10 9 2 1 7 8 3 4 11 H 0 1 2 9 10 5 6 7 8 3 4 11

Permutations

Signed permutations Signed reversals

Handling good cycles

» Things are actually more complicated than that;

» Even when we don't have bad cycles, the order in which we do
things matters!

Example (careless and careful cycle splitting)

m (bad) = m
0 6 5 10 9 2 1 7 8 3 4 11 H 0 1 2 9 10 5 6 7 8 3 4 11

o & = = = vaQe

Permutations

Signed permutations Signed reversals

Handling good cycles

» Things are actually more complicated than that;
» Even when we don't have bad cycles, the order in which we do
things matters!

Example (careless and careful cycle splitting)

TUNN w0 = N

Permutations

Signed permutations Signed reversals

Handling bad cycles

» “Bad" cycles are not so bad if we can make them “good” (see
previous example);

» But sometimes we can't:

Example (a minimal permutation with only bad cycles)

g7

Permutations

Signed permutations Signed reversals

Components

» Although reversals only modify the “contents” of a single cycle,
they may also modify the configuration of some other cycles;

» This suggests that cycles are not the right “unit” to deal with;

> We need to consider collections of cycles, or components instead;

g8

Permutations

Signed permutations Signed reversals

Interleaving cycles

v

Grey edge {m}, 7} spans the interval [i, j] in 7';
Two grey edges interleave if their spans intersect properly;
Two cycles interleave if they contain interleaving edges;

The interleaving graph I, is defined by:

» V(I;) = cycles of BG(7);

» E(I;) = pairs of interleaving cycles in BG(7);
» A component of the breakpoint graph is a connected component
of the interleaving graph;

v

v

v

9o

Permutations

Signed permutations Signed reversals

The interleaving graph /;

abcdefgmlEk jihaoopaqgrs.:t .

QO unoriented cycle
@ oriented cycle

Fic. 8. Reversal on a cycle C (i) deletes vertex C from the interleaving graph; (ii) changes the
orientation of vertices in V(C); (iii) complements the subgraph induced by V(C).
(source: [Hannenhalli and Pevzner, 1999])

100

Permutations

Signed permutations Signed reversals

Good and bad components

» A component is bad if it contains only bad cycles, and good
otherwise;

» Although we must be careful (as seen before), good components
are not a problem:

» they contain good cycles, which can be split;

» applying a signed reversal on a 2-cycle C reverses the orientation of
the cycles interleaving with C (and also changes their interleaving
relationships);

> so we just need to make sure at each step that we can keep splitting
cycles afterwards;

101

Permutations

Signed permutations Signed reversals

Hurdles

» “Bad” (unoriented) components are called hurdles and are a
problem;
» There are two ways of getting rid of them:

1. “cutting” them;
2. "merging” them;

» Either way, one move must be wasted for each hurdle to turn them
into “good” components;

» Therefore, for all 7 in S;:

srd(m) > n+1— ¢(BG(7)) + h(w).

102

Practice

9. In the breakpoint graph of

(3,-6,-9,8,—7,4,-10,-5,11,2,1) :

> ldentify good and bad cycles, components and hurdles
» Give a lower-bound for its signed reversal distance and an
optimal sorting scenario

0 5 6 12 11 18 17 15 16 14 13 7 8 20 19 10 9 21 22 3 4 1 2 23

Permutations

Signed permutations Signed reversals

An actual formula

» All this (and many concealed details) leads to a formula for the
signed reversal distance:

Theorem ([Hannenhalli and Pevzner, 1999])

For all 7 in Sif:
srd(t)=n+1—c(BG(7))+ h(r) + f(m
—~ —~

number of hurdles special “fortress” case

103

Strings

Other models

Alternative approaches
Beyond pairwise comparisons

Duplications in evolution

Motivation

v

We saw a model for representing genomes without directionality;

v

We saw another model for taking directionality into account;

v

Both of them lack realism in a crucial way: they don't allow
duplications;

v

And duplications / insertions / deletions account for a very large
part of what happens in evolution [Ohno, 1970];

Strings

Other models

Alternative approaches
Beyond pairwise comparisons

Duplications in evolution
Balanced strings
General strings

Two examples of duplications

Example (tandem duplications)

>~

(source: K. Aainsqatsi on Wikimedia)

Example (whole genome duplication)

-98S808cecces

Genome
duplica(ionv

.

19SS S00S8S088

RY
Gene Loss / Fractionation

(source: Eric Lyons on CoGePedia)

O (g

Strings

Other models

Alternative approaches
Beyond pairwise comparisons

Duplications in evolution

Strings

v

Since duplications pervade genomes, we should take them into
account;

» We now see genomes as strings on an alphabet ¥;

v

Be careful: similar segments have been identified, so

Y = {segments} and not {A,C,G, T},

Our goal is still to explain evolution using most parsimonious
scenarios made of fixed transformations;

v

Strings I . .
Other models Duplications in evolution

Alternative approaches
Beyond pairwise comparisons

Strings

» Note: the restriction to sorting problems does not work anymore;
» if you have two A’s, which one should be “number one”?
» So we really are interested in transforming one string into another,
which is not equivalent to sorting another string;
» Sorting problems have been considered in that model, but they're
just a special case of a more general problem;

Strings

Other models

Alternative approaches
Beyond pairwise comparisons

Duplications in evolution

Strings

» We can distinguish between several approaches based on gene
contents;

» Either we have exactly the same contents in both genomes (and
duplications are of course allowed);

» Or we have duplications but with different amounts of repetitions
(e.g. three 1's in genome A but only two in genome B);

» This time the breakpoint graph cannot save us anymore, since we
would not know how to connect elements or decompose the graph;

Strings

Other models

Alternative approaches
Beyond pairwise comparisons

Balanced strings

Balanced strings

» The number of occurrences of a character ¢ in a string S is
denoted by occ(c, S);

Definition (balanced strings)
Two strings S and T on an alphabet X are balanced if:

VceX:oce(c,S)=occ(c, T).

» Basically, S and T are anagrams;

» Straightforward generalisation of permutations: we have
duplications, but we actually still have the same content in both
genomes;

Strings

Other models

Alternative approaches
Beyond pairwise comparisons

Balanced strings

Comparing balanced strings

» One way of relating genomes’ contents is to identify common
segments;

> In other words, we want to partition genomes into the same set of
segments;

» this is how we obtained (signed) permutations;
» but now we want to partition the resulting sequences;

Strings

Other models

Alternative approaches
Beyond pairwise comparisons

Balanced strings

Generalising breakpoints

v

Recall that, for permutations:
» adjacencies are pairs of adjacent elements in 7 that are also
adjacentint=(12 --- n) (or x=(nn—1 .- 1) for reversals);
» breakpoints are pairs that are not adjacencies;

v

Recall that, for signed permutations:

» adjacencies are pairs of adjacent elements in 7 that are also
adjacentint=(12 --- n) (or x={(—n —(n—1) --- —1) for
signed reversals);

» breakpoints are pairs that are not adjacencies;

v

Those can be generalised to any pair of permutations;

v

And we can do the same thing for strings;

Strings

Other models

Alternative approaches
Beyond pairwise comparisons

Balanced strings

Minimum common string partition

> A partition of a string S is a set of strings that can be
concatenated to obtain S;

» A common partition of two strings S and T is a set of strings
that can be concatenated to obtain both S and T

Example (common string partitions)

Here's a common partition of “dictionary” and “indicatory”:

S5 S5 S S5% S5

S
_.®@@@-
@@@@

S35

Strings

Other models

Alternative approaches
Beyond pairwise comparisons

Balanced strings

Minimum common string partition

» A common string partition is minimum if there is no smaller
common string partition for the two strings under consideration;

> This leads to the following decision problem:

Problem (MINIMUM COMMON STRING PARTITION (MCSP))

Instance: balanced strings S and T, a bound k € N;

Question: is there a common partition of S and T with at most k
blocks?

Strings

Other models

Alternative approaches
Beyond pairwise comparisons

Balanced strings

Relation(s) to rearrangement problems

» Recall that breakpoints were pairs of elements adjacent in one
genome but not in the other;

» Common string partitions generalise that point of view to an
arbitrary number of elements in each part;

» So if we have a minimum common string partition for S and T, we
get the number of breakpoints between strings S and T;

Strings

Other models

Alternative approaches
Beyond pairwise comparisons

Balanced strings

About MCSP

» Bad news about MCSP:
» NP-hard, even if only one gene family is
nontrivial [Blin et al., 2004];
» APX-hard, even if no character appears more than
twice [Goldstein et al., 2005];

» Good news about MCSP:
» fixed parameter tractable: a solution of size k can be found in time
f(k) - poly(n) (n=1S| =|T|) [Bulteau and Komusiewicz, 2014];
» Greedy approach [Goldstein and Lewenstein, 2011]: repeatedly
select an LCS without any marked letter;

V" simple and fast (runs in O(n) time);
X approximation ratio between Q(n%#3) and O(n%%)
[Kaplan and Shafrir, 2006];

Practice

10. Give pairwise MCSP distances between the following strings
(ignore capitals and whitespaces)

» Arrange A String
» A Staring Ranger
» A Garnering Tsar
11. Find a pair of strings for which Greedy behaves as badly as
possible (i.e. maximizing the approximation ratio)

Permutations

Signed permutations Signed reversals

References |

E

T P 1 R A

Akers, S. B., Krishnamurthy, B., and Harel, D. (1987).

The star graph: An attractive alternative to the n-cube.

In ICPP’87, pages 393—-400. Pennsylvania State University Press.
Bafna, V. and Pevzner, P. A. (1996).

Genome rearrangements and sorting by reversals.

SIAM Journal on Computing, 25(2):272-289.

Bafna, V. and Pevzner, P. A. (1998).

Sorting by transpositions.

SIAM Journal on Discrete Mathematics, 11(2):224-240

Berman, P., Hannenhalli, S., and Karpinski, M. (2002).
1.375-approximation algorithm for sorting by reversals.

In ESA'02, volume 2461 of LNCS, pages 200-210. Springer-Verlag
Bulteau, L., Fertin, G., and Rusu, I. (2012).

Sorting by transpositions is difficult.

SIAM Journal on Discrete Mathematics, 26(3):1148-1180.
Bulteau, L., Fertin, G., and Rusu, I. (2015).

Pancake flipping is hard.

Journal of Computer and System Sciences, 81(8):1556-1574.
Caprara, A. (1999).

Sorting permutations by reversals and eulerian cycle decompositions.
SIAM Journal on Discrete Mathematics, 12(1):91-110 (electronic).

104

Permutations

Signed permutations Signed reversals

References |1
@ Chen, X. (2010).

On sorting permutations by double-cut-and-joins.
In COCOON'10, volume 6196 of LNCS, pages 439-448. Springer-Verlag.
Ia Christie, D. A. (1996).

Sorting permutations by block-interchanges.
Information Processing Letters, 60(4):165-169.

Dias, Z. and Meidanis, J. (2002).

Sorting by prefix transpositions.

In SPIRE’02, volume 2476 of LNCS, pages 65—76. Springer-Verlag.

Elias, I. and Hartman, T. (2006).

A 1.375-approximation algorithm for sorting by transpositions.

IEEE/ACM Transactions on Computational Biology and Bioinformatics, 3(4):369-379.
Fischer, J. and Ginzinger, S. W. (2005).

A 2-approximation algorithm for sorting by prefix reversals.

In ESA’'05, volume 3669 of LNCS, pages 415-425. Springer-Verlag.

Gog, S. and Bader, M. (2008).

Fast algorithms for transforming back and forth between a signed permutation and its equivalent simple
permutation.
Journal of Computational Biology, 15(8):1-13.

B & D D

Hannenhalli, S. and Pevzner, P. A. (1999).

Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals.
Journal of the ACM, 46(1):1-27

108

Permutations

Signed permutations Signed reversals

References |1l

Kececioglu, J. and Sankoff, D. (1995).
Exact and approximation algorithms for sorting by reversals, with application to genome rearrangement.
Algorithmica, 13(1-2):180-210.

Knuth, D. E. (1995).

Sorting and Searching, volume 3 of The art of Computer Programming.
Addison-Wesley.

Watterson, G. A., Ewens, W. J., Hall, T. E., and Morgan, A. (1982).

The chromosome inversion problem.
Journal of Theoretical Biolooy, 99:1-7

106

Algorithms and Bioinformatics

Part Il — Comparative Genomics

I1.2 — Focus on MCSP and FPT

Laurent Bulteau
Presented at WABI 2013
Workshop on Algorithms in Bioinformatics

MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion
(oo} 00000000 [e]e]e} [e]e]

Fixed-Parameter Algorithm for
Minimum Common String Partition with
Few Duplications

Laurent Bulteau, Christian Komusiewicz,
Guillaume Fertin, Irena Rusu

WABI 2013
Full version available at arxiv.org/abs/1307.7842

MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion
(oo} 00000000 [e]e]e} [e]e]

Outline

MCSP Problem
O(d?n) FPT algorithm
Implementation

Conclusion

2/21

MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion
(oo} 00000000 [e]e]e} [e]e]

MCSP Problem

3/21

MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion
o0 00000000 [e]e]e} [e]e]

Minimum Common String Partition

Input: two strings of length n
Output: min. set of blocks partitioning both sequences

d eeabcdabcddebdeahb

e ababcddeeabocddebd

4/21

MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion
o0 00000000 [e]e]e} [e]e]

Minimum Common String Partition

Input: two strings of length n
Output: min. set of blocks partitioning both sequences

d eeabocdlabocdldebd|le ab

e ablabcd|deeabocd|debd

4/21

MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion
o0 00000000 [e]e]e} [e]e]

Minimum Common String Partition

Input: two strings of length n
Output: min. set of blocks partitioning both sequences
Parameters:

B d = max. number of occurences of each letter

m k = number of blocks in an optimal solution

d eeabocdlabocdldebd|le ab

e ablabcd|deeabocd|debd

4/21

MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion
o0 00000000 [e]e]e} [e]e]

Minimum Common String Partition

Input: two strings of length n
Output: min. set of blocks partitioning both sequences
Parameters:

B d = max. number of occurences of each letter

m k = number of blocks in an optimal solution

d eeabocdlabocdldebd|le ab

e ablabcd|deeabocd|debd

n =18 elements, d =5, k =4

4/21

MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion
o0 00000000 [e]e]e} [e]e]

Minimum Common String Partition

Input: two strings of length n
Output: min. set of blocks partitioning both sequences
Parameters:

B d = max. number of occurences of each letter

m k = number of blocks in an optimal solution

Can be seen as a matching problem

4/21

MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion
o0 00000000 [e]e]e} [e]e]

Minimum Common String Partition

Input: two strings of length n
Output: min. set of blocks partitioning both sequences
Parameters:

B d = max. number of occurences of each letter

m k = number of blocks in an optimal solution

d eeabcdabcddebdeaa
[] [) e o

[] []
e aecbcddeeabcddebd

Unbalanced strings:

4/21

MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion
o0 00000000 [e]e]e} [e]e]

Minimum Common String Partition

Input: two strings of length n
Output: min. set of blocks partitioning both sequences
Parameters:

B d = max. number of occurences of each letter

m k = number of blocks in an optimal solution

d eeabcdabcddebdeaa

rare abundant

e aecbcddeeabcddebd

Unbalanced strings: allow deletion of abundant elements between
blocks (all rare elements are kept)

4/21

MCSP Problem O(d2kn) FPT algorithm Implementation
o0 00000000 [e]e]e}

Minimum Common String Partition

Input: two strings of length n
Output: min. set of blocks partitioning both sequences
Parameters:

B d = max. number of occurences of each letter

m k = number of blocks in an optimal solution

d eeabocdlelbcd|debdle ala

e ale—e|b c d|d e e a b c dldebd

4/21

Conclusion
[e]e)

MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion
oe 00000000 [e]e]e} [e]e]

Minimum Common String Partition

Assignment of orthologous genes via genome rearrangement

X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi and T. Jiang 2005

5/21

MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion
oe 00000000 [e]e]e} [e]e]

Minimum Common String Partition

m NP-hard

Minimum common string partition problem: Hardness and
approximations

A. Goldstein, P. Kolman and J. Zheng 2005

5/21

MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion
oe 00000000 [e]e]e} [e]e]

Minimum Common String Partition

m NP-hard

m FPT algorithms d'*poly(n)
k = number of blocks; d = number of duplications

Minimum common string partition parameterized
P. Damaschke 2008
Minimum common string partition revisited
H. Jiang, B. Zhu, D. Zhu and H. Zhu 2012

5/21

MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion
oe 00000000 [e]e]e} [e]e]

Minimum Common String Partition

m NP-hard

m FPT algorithms d'*poly(n)
k = number of blocks; d = number of duplications

m FPT algorithm with parameter k only kzlkzpoly(n)

Minimum Common String Partition Parameterized by
Partition Size is Fixed-Parameter Tractable

L. Bulteau, C. Komusiewicz Arxiv 2013

5/21

MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion
oe 00000000 [e]e]e} [e]e]

Minimum Common String Partition

m NP-hard

m FPT algorithms d'*poly(n)
k = number of blocks; d = number of duplications

m FPT algorithm with parameter k only kzlkzpoly(n)

Improved FPT algorithm with k and d d**poly(n)
+ Allows for unbalanced strings
+ Implemented

This talk

5/21

MCSP Problem 0(d?**n) FPT algorithm Implementation
(oo} 00000000 [e]e]e}

O(d?*¢n) FPT algorithm

6/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} @®0000000 [e]e]e} [e]e]

Seeds

m Optimal solution OPT, seen as a matching

d eeabcda=bcddebdea-=

e aeecbcddeeabocddebd

7/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} @®0000000 [e]e]e} [e]e]

Seeds

m Optimal solution OPT, seen as a matching

m One block <> one seed

d eabcd=bcddebdea-=

e aeecbcddeeabocddebd

7/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} @®0000000 [e]e]e} [e]e]

Seeds

m Optimal solution OPT, seen as a matching

m One block <> one seed

d e abcd=©5>L ddebdea-=

e aeecbcddeeabocddebd

7/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} @®0000000 [e]e]e} [e]e]

Seeds

m Optimal solution OPT, seen as a matching

m One block <> one seed

e aeecbcddeeabocddebd

7/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} @®0000000 [e]e]e} [e]e]

Seeds

m Optimal solution OPT, seen as a matching

m One block <> one seed

o—
e aeecbcddeeabocddebd

7/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} @®0000000 [e]e]e} [e]e]

Seeds

m Optimal solution OPT, seen as a matching

m One block <> one seed
m Goal: find a good set of seeds

d eeabcdabcdd b de a a

e aecbcddeeabocddebd

7/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} @®0000000 [e]e]e} [e]e]

Seeds

m Optimal solution OPT, seen as a matching
m One block <> one seed

m Goal: find a good set of seeds

m Every rare element must be in the same block as a seed:
the set is complete

7/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} @®0000000 [e]e]e} [e]e]

Seeds

m Optimal solution OPT, seen as a matching

m One block <> one seed
m Goal: find a good set of seeds

m Every rare element must be in the same block as a seed:
the set is complete
m Two seeds cannot be in the same block:
the set is non-redundant

d[g_ b de aa

eaecbcddlele abcddlelbd

7/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} O@000000 [e]e]e} [e]e]

Algorithm Outline

m Start with set of seeds T = ()

d eeabcdabcddebdeaa

e aecbcddeeabocddebd

8/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} O@000000 [e]e]e} [e]e]

Algorithm Outline

m Start with set of seeds T = ()
m |dentify set of pairs containing 1 correct seed

d eeabcdabcddebdeaa

e aecbcddeeabocddebd

8/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} O@000000 [e]e]e} [e]e]

Algorithm Outline

m Start with set of seeds T = ()
m |dentify set of pairs containing 1 correct seed

m Try each candidate in the set as a new seed, start again

d e abcdabcddebdeaa

e aecbcddeeabcddebd

8/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} O@000000 [e]e]e} [e]e]

Algorithm Outline

m Start with set of seeds T = ()
m |dentify set of pairs containing 1 correct seed

m Try each candidate in the set as a new seed, start again

d e abcdabcddebdeaa

e aecbcddeeabcddebd

8/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} O@000000 [e]e]e} [e]e]

Algorithm Outline

m Start with set of seeds T = ()
m |dentify set of pairs containing 1 correct seed

m Try each candidate in the set as a new seed, start again

d e abcdabcddebdeaa

e aecbcddeeabcddebd

8/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} O@000000 [e]e]e} [e]e]

Algorithm Outline

m Start with set of seeds T = ()
m |dentify set of pairs containing 1 correct seed

m Try each candidate in the set as a new seed, start again

d e abcdabocdd b de a a

e aecbcddeeabcddebd

8/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} O@000000 [e]e]e} [e]e]

Algorithm Outline

m Start with set of seeds T = ()
m |dentify set of pairs containing 1 correct seed

m Try each candidate in the set as a new seed, start again

d e abcdabocdd b de a a

e aecbcddeeabcddebd

8/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} O@000000 [e]e]e} [e]e]

Algorithm Outline

m Start with set of seeds T = ()
m |dentify set of pairs containing 1 correct seed

m Try each candidate in the set as a new seed, start again

dgeabcdabcdd*aa

e aecbcddeeabcddebd

8/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} O@000000 [e]e]e} [e]e]

Algorithm Outline

m Start with set of seeds T = ()
m |dentify set of pairs containing 1 correct seed

m Try each candidate in the set as a new seed, start again

dgeabcdabfdd*aa

e aecbcddeeabocddebd

8/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} O@000000 [e]e]e} [e]e]

Algorithm Outline

m Start with set of seeds T = ()
m |dentify set of pairs containing 1 correct seed

m Try each candidate in the set as a new seed, start again

d e abcdakb d d b de a a

e aecbcddeeabocddebd

8/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} O@000000 [e]e]e} [e]e]

Algorithm Outline

m Start with set of seeds T = ()
m |dentify set of pairs containing 1 correct seed

m Try each candidate in the set as a new seed, start again

e aecbcddeeabocddebd

8/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} O@000000 [e]e]e} [e]e]

Algorithm Outline

m Start with set of seeds T = ()
m |dentify set of pairs containing 1 correct seed

m Try each candidate in the set as a new seed, start again

d e abcdakb d d b d a a

e aecbcddeeabcddebd

8/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} O@000000 [e]e]e} [e]e]

Algorithm Outline

m Start with set of seeds T = ()
m |dentify set of pairs containing 1 correct seed

m Try each candidate in the set as a new seed, start again

d e abcdakb d d b d a a

e aecbcddeeabcddebd

8/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} O@000000 [e]e]e} [e]e]

Algorithm Outline

m Start with set of seeds T = ()
m |dentify set of pairs containing 1 correct seed
m Try each candidate in the set as a new seed, start again

m No more possible set:

d e abcdakb d d b d a a

e aecbcddeeabcddebd

8/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} O@000000 [e]e]e} [e]e]

Algorithm Outline

m Start with set of seeds T = ()
m |dentify set of pairs containing 1 correct seed
m Try each candidate in the set as a new seed, start again

m No more possible set:
The set is complete, create a CSP corresponding to the seeds.

e abcd=©5>L

dgi\&lzd a =

o—
e aeecbcddeeabocddebd

8/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} O@000000 [e]e]e} [e]e]

Algorithm Outline

m Start with set of seeds T = ()
m |dentify set of pairs containing 1 correct seed
m Try each candidate in the set as a new seed, start again

m No more possible set:
The set is complete, create a CSP corresponding to the seeds.

e abcd=©5>L

dgi\{lzd a =

o—
e aeecbcddeeabocddebd

8/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} 00@00000 [e]e]e} [e]e]

Finding new seeds (1)

Non-redundancy

In OPT, every (x,y) which is not in the same block as an already
present seed can be a new seed...

m Every x which cannot be in the same block as any seed can be
part of a new seed.

d eeabcdabcddebdeaa

e aecbcddeeabcddebd

9/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} 00@00000 [e]e]e} [e]e]

Finding new seeds (1)

Non-redundancy

In OPT, every (x,y) which is not in the same block as an already
present seed can be a new seed...

m Every x which cannot be in the same block as any seed can be
part of a new seed.

deeabcdabcdd@bdeaa

e aecbcddeeabcddebd

9/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} 00@00000 [e]e]e} [e]e]

Finding new seeds (1)

Non-redundancy

In OPT, every (x,y) which is not in the same block as an already
present seed can be a new seed...

m Every x which cannot be in the same block as any seed can be
part of a new seed.

dle e abcdabcddlel]bdeaa

e aecbocdd|leeabcddebd

9/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} 00@00000 [e]e]e} [e]e]

Finding new seeds (1)

Non-redundancy
In OPT, every (x,y) which is not in the same block as an already
present seed can be a new seed...

m Every x which cannot be in the same block as any seed can be
part of a new seed.

m y is one of the d copies of x in the other sequence: each such
pair is a candidate

d eeabcdabcdd b de a a

e aecbcddeeabcddebd

9/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} 000@0000 [e]e]e} [e]e]

Finding new seeds (2)

Association graph
Link together pairs (x, y) that can be in the same block as a seed

d eeabcdabcddebdeaa

e aecbcddeeabcddebd

10/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} 000@0000 [e]e]e} [e]e]

Finding new seeds (2)

Association graph
Link together pairs (x, y) that can be in the same block as a seed

m Green edge: (x,y) can be part of the right-side of a seed

d ee abcdabcddebdeaa

e aecbcddeeabcddebd

10/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} 000@0000 [e]e]e} [e]e]

Finding new seeds (2)

Association graph
Link together pairs (x, y) that can be in the same block as a seed

m Green edge: (x,y) can be part of the right-side of a seed

d e abcdabocdd b de a a

e aecbcddeeabocddebd

10/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} 000@0000 [e]e]e} [e]e]

Finding new seeds (2)

Association graph
Link together pairs (x, y) that can be in the same block as a seed

m Green edge: (x,y) can be part of the right-side of a seed
m Red edge: (x,y) can be part of the left-side of a seed

w\

e a e c e e abc

10/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} 000@0000 [e]e]e} [e]e]

Finding new seeds (2)

Association graph
Link together pairs (x, y) that can be in the same block as a seed

m Green edge: (x,y) can be part of the right-side of a seed
m Red edge: (x,y) can be part of the left-side of a seed

e aecbcddeeabocddebd

10/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} 000@0000 [e]e]e} [e]e]

Finding new seeds (2)
Association graph
Link together pairs (x, y) that can be in the same block as a seed

m Green edge: (x,y) can be part of the right-side of a seed
m Red edge: (x,y) can be part of the left-side of a seed

m Abundant vertices can be ignored.

[eJale cJb[c]d deeabcddebd

10/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} 000@0000 [e]e]e} [e]e]

Finding new seeds (2)
Association graph
Link together pairs (x, y) that can be in the same block as a seed

m Green edge: (x,y) can be part of the right-side of a seed
m Red edge: (x,y) can be part of the left-side of a seed
m Abundant vertices can be ignored.

m Degree-0 vertices can be part of new seeds (rule 1).

eabcdabcddebd

e N

e a e c e e abc

10/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} 000@0000 [e]e]e} [e]e]

Finding new seeds (2)

Association graph
Link together pairs (x, y) that can be in the same block as a seed

m Green edge: (x,y) can be part of the right-side of a seed
m Red edge: (x,y) can be part of the left-side of a seed

m Abundant vertices can be ignored.

m Degree-0 vertices can be part of new seeds (rule 1).

m What about degree-1 and degree-2 vertices?

deeablc)d ablc)]ddebdeaa

eaecbcddeeablc)ddebd

10/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion

Odd Paths

Path of odd length
If (c',c?,c3,...,c?P*) is an odd path with ¢! being rare

11/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion

Odd Paths

Path of odd length

If (c',c?,c3,...,c?P*) is an odd path with ¢! being rare
One of {c?*! | i=1.p} is part of a seed.

NB: p < d

11/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion

Odd Paths

Path of odd length

If (c',c?,c3,...,c?P*) is an odd path with ¢! being rare
One of {c?*! | i=1.p} is part of a seed.

NB: p < d

11/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion

Odd Paths

Path of odd length

If (c',c?,c3,...,c?P*) is an odd path with ¢! being rare
One of {c?*! | i=1.p} is part of a seed.

NB: p < d

11/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion

Odd Paths

Path of odd length

If (c',c?,c3,...,c?P*) is an odd path with ¢! being rare
One of {c?*! | i =1..p} is part of a seed.
NB: p < d

Other half of the seed: any letter ¢ in the other sequence.

11/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion

Odd Paths

Path of odd length

If (c',c?,c3,...,c?P*) is an odd path with ¢! being rare
One of {c?*! | i=1.p} is part of a seed.
NB: p < d

Other half of the seed: any letter ¢ in the other sequence.
Total number of seeds to try: at most d?.

11/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} 0O0000@00 [e]e]e} [e]e]

So far...

We know how to deal with single elements and rare odd paths.

What if our association graph has only even paths, cycles, and
abundant odd paths?

12/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} 0O0000@00 [e]e]e} [e]e]

So far...

We know how to deal with single elements and rare odd paths.

What if our association graph has only even paths, cycles, and
abundant odd paths?

Then we can create a CSP based on our seeds!

12/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} 00000080 [e]e]e} [e]e]

Constructing the solution

m No more seeds can be found...

d eeabcdabcddebdeaa

e aecbcddeeabocddebd

13/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} 00000080 [e]e]e} [e]e]

Constructing the solution

m No more seeds can be found...

m Create one block per seed

dlele a b cdableglddlelb dlela a

le]a e c blc)d dlele a b c d dlelb d

13/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} 00000080 [e]e]e} [e]e]

Constructing the solution

m No more seeds can be found...
m Create one block per seed
m Extend the blocks to the left and right (details omitted)

8] e 2 b c d|[d]

[b dj

13/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} 00000080 [e]e]e} [e]e]

Constructing the solution

m No more seeds can be found...

m Create one block per seed

m Extend the blocks to the left and right (details omitted)
]

Delete remaining (abundant) elements

[d[g_ |b dle]al=

[e]a]e—<[blcld]ldle]e a b c d]d[e[b d]

13/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} 00000080 [e]e]e} [e]e]

Constructing the solution

m No more seeds can be found...

m Create one block per seed

m Extend the blocks to the left and right (details omitted)
m Delete remaining (abundant) elements

(]

Output the solution!

e a]-a—

ld e e abcdlalbcd|debd]

e a]e—<(b c dld e eabcd|debd

13/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} 0000000 [e]e]e} [e]e]

Theoretical Time Complexity

m Time complexity:
m d or d? choices for each of the k seeds: d?~! branches
m Computing the graph, looking for paths, etc.: O(kn)
m Overall: O(d?¥n)

m The algorithm may try to optimize a second objective value.

m Many duplicates, few blocks: from d? to 3dk
If an odd path visits many times the same intervals, keep only
< 3k candidate seeds.

14/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} 0000000 [e]e]e} [e]e]

Theoretical Time Complexity

m Time complexity:
m d or d? choices for each of the k seeds: d?~! branches
m Computing the graph, looking for paths, etc.: O(kn)
m Overall: O(d?¥n)

m The algorithm may try to optimize a second objective value.

m Many duplicates, few blocks: from d? to 3dk
If an odd path visits many times the same intervals, keep only
< 3k candidate seeds.

x]uvabababababaw

14/21

MCSP Problem 0(d?**n) FPT algorithm Implementation Conclusion
(oo} 0000000 [e]e]e} [e]e]

Theoretical Time Complexity

m Time complexity:
m d or d? choices for each of the k seeds: d?~! branches
m Computing the graph, looking for paths, etc.: O(kn)
m Overall: O(d?¥n)

m The algorithm may try to optimize a second objective value.

m Many duplicates, few blocks: from d? to 3dk
If an odd path visits many times the same intervals, keep only
< 3k candidate seeds.

x]uvabababababaw

14/21

MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion
(oo} 00000000 [e]e]e} [e]e]

Implementation

15/21

MCSP Problem 0(d?*n) FPT algorithm
(oo} 00000000

Reduction rules

Reduction Rule 1
Merge strings with unique letters

a u v
\
\
\
A)
a

Implementation
[lele}

16/21

Conclusion
[e]e)

MCSP Problem 0(d?*n) FPT algorithm Implementation
(oo} 00000000 [lele}

Reduction rules

Reduction Rule 1
Merge strings with unique letters

16/21

Conclusion
[e]e)

MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion
(oo} 00000000 [lele} [e]e]

Reduction rules

Reduction Rule 1 Reduction Rule 2
Merge strings with unique letters Remove obvious size-1 blocks
43y
1 N\ S \,/
1 N />\\
N\, So
¢ v T
w a X

16/21

MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion
(oo} 00000000 [lele} [e]e]

Reduction rules

Reduction Rule 1 Reduction Rule 2
Merge strings with unique letters Remove obvious size-1 blocks
u
LN Y
1 N
I P
¢ v b T
W X

Decrease k by 1

16/21

MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion
(oo} 00000000 [lele} [e]e]

Reduction rules

Reduction Rule 1 Reduction Rule 2
Merge strings with unique letters Remove obvious size-1 blocks
uoy X W
T t A
o
[,%
$ b v
u v wax

Decrease k by 2

16/21

MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion
(oo} 00000000 [lele} [e]e]

Reduction rules

Reduction Rule 1 Reduction Rule 2
Merge strings with unique letters Remove obvious size-1 blocks

S
~ex

C - ———oC
< o= ———o<
S e

~
X oL

~

Decrease k by 3

16/21

MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion
(oo} 00000000 [lele} [e]e]

Reduction rules

Reduction Rule 1 Reduction Rule 2
Merge strings with unique letters Remove obvious size-1 blocks
uoy
RN
NN
NN
NN
Y e
u-v

Leave k unchanged
16/21

MCSP Problem O(d2kn) FPT algorithm
(oo} 00000000

Reduction rules

Reduction Rule 1
Merge strings with unique letters

Reduction Rule 3
Keep best match (one unique letter)

d
oQ

Reduction Rule 2
Remove obvious size-1 blocks

16/21

Implementation
[lele}

Conclusion
[e]e)

MCSP Problem O(d2kn) FPT algorithm
(oo} 00000000

Reduction rules

Reduction Rule 1
Merge strings with unique letters

Reduction Rule 3
Keep best match (one unique letter)

Reduction Rule 2
Remove obvious size-1 blocks

L e

 J)

16/21

Implementation
[lele}

Conclusion
[e]e)

MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion
(oo} 00000000 [lele} [e]e]

Reduction rules

Reduction Rule 1 Reduction Rule 2
Merge strings with unique letters Remove obvious size-1 blocks
Reduction Rule 3 Reduction Rule 4
Keep best match (one unique letter) Keep best match (< 2 occurences)
a a
N s
I NSR
1 //\/ /
¥ '
lal [a

16/21

MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion
(oo} 00000000 [lele} [e]e]

Reduction rules

Reduction Rule 1 Reduction Rule 2
Merge strings with unique letters Remove obvious size-1 blocks
Reduction Rule 3 Reduction Rule 4
Keep best match (one unique letter) Keep best match (< 2 occurences)
a a’
? ’
I /
I /
é
lal [a'

16/21

MCSP Problem O(d2kn) FPT algorithm
(oo} 00000000

Reduction rules

Reduction Rule 1
Merge strings with unique letters

Reduction Rule 3
Keep best match (one unique letter)

Implementation Conclusion
[lele} [e]e)

Reduction Rule 2
Remove obvious size-1 blocks

Reduction Rule 4
Keep best match (< 2 occurences)

Reduction of genome size: from 40% to 85%

16/21

MCSP Problem
[e]e]

O(kd2’K n) FPT algorithm

00000000

Running time on biological data

Implementation Conclusion

o] e}

[e]e]

Genomic sequences from: Borrelia burgdorferi, Treponema pallidum,
Escherichia coli, Bacillus subtilis, and Bacillus thuringiensis

Species 1 Species2 n k d t(s)
B. burg. T. pall. 93 68 3 0.06
B. burg. E. coli 72 59 6 0.22
B. burg. B. sub. 91 63 6 0.15
B. burg. B. thur. 71 51 5 0.09
T. pall. E coli 93 78 b 0.35
T. pall. B. sub. 144 82 7 0.18
T. pall. B. thur. 128 76 6 0.15
E. coli B. sub. 287 234 7 41.06
E. coli B. thur. 282 221 10 18.64
B. sub. B. thur. 693 340 8 249.71

17/21

EnsemblBacteria database

MCSP Problem
[e]e]

O(kd2‘\ n) FPT algorithm

00000000

Running time on biological data

Implementation Conclusion

o] e}

[e]e]

Genomic sequences from: Borrelia burgdorferi, Treponema pallidum,
Escherichia coli, Bacillus subtilis, and Bacillus thuringiensis
Average letter occurences: from 1.02 to 1.24

Species 1 Species2 n k d t(s)
B. burg. T. pall. 93 68 3 0.06
B. burg. E. coli 72 59 6 0.22
B. burg. B. sub. 91 63 6 0.15
B. burg. B. thur. 71 51 5 0.09
T. pall. E coli 93 78 b 0.35
T. pall. B. sub. 144 82 7 0.18
T. pall. B. thur. 128 76 6 0.15
E. coli B. sub. 287 234 7 41.06
E. coli B. thur. 282 221 10 18.64
B. sub. B. thur. 693 340 8 249.71

17/21

EnsemblBacteria database

MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion
(oo} 00000000 ooe [e]e]

Running time on synthetic data

Generated sequences of size n = 1000
Average letter occurences: from 2 to 4

k t (s)

d=6 d=38
50 0.06 0.07
60 0.06 0.06
70 0.07 0.08
80 0.09 0.09
90 0.10 0.12
100 0.12 0.16
110 0.13 0.26
120 0.18 1.62
130 0.21 30.42

18/21

MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion
(oo} 00000000 [e]e]e} [e]e]

Conclusion

19/21

MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion
(oo} 00000000 [e]e]e} [Je]

Conclusion

Practical FPT algorithms for MCSP with association graph:
O (dzkn)
= O ((3dk)kn)

20/21

MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion
(oo} 00000000 [e]e]e} [Je]

Conclusion

Practical FPT algorithms for MCSP with association graph:
O (dzkn)
= O ((3dk)kn)

Open questions:
m Extend algorithm to signed strings?

m Practical running time with high number of duplications?

m Constant-ratio approximation?

20/21

