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Context and motivations
Comparing genomes

Context and motivations

I Deoxyribonucleic acid: double helix of
nucleotides (A, C, G, T);

I Complementarity (A-T, C-G): one strip
is enough;

I Gene = sequence of nucleotides (that
codes for a specific protein);

I Chromosome = ordered set of genes;

I Genome = set of chromosomes;

I Goal: compare genomes;
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Context and motivations

I Biologists are interested in comparing species, for example:
I in order to classify them;
I in order to explain evolution by reconstructing scenarios;

I (Dis)similarity measures are needed;

I Usually based on the sequenced genomes;
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At the nucleotide level

I Most comparisons take place at the nucleotide level;

Example (sequence alignment)

S1 : · · · T C C G C C A − − C T A · · ·
| | | | | |

S2 : · · · T C G G A C T G G C − A · · ·

I Matches, substitutions, insertions and deletions;

I Correspond to mutations;
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At the “gene” level

I Some mutations act on segments of nucleotides;

I Those large-scale mutations are called genome rearrangements;

I Sequence alignment becomes unfit;

Example (genomes as sequences of segments)

(A)

(B)

genome rearrangements
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Genome rearrangements

I Our problem:

Problem (pairwise genome rearrangement)

Input: genomes G1, G2, a set S of mutations;
Goal: find a shortest sequence of elements of S that transforms G1

into G2.

I Related, simpler problem: compute the evolutionary distance
dS(G1,G2) (i.e. just the length of a shortest sequence);

I Many variants, depending on how genomes are modelled, what
(and how) mutations are taken into account, etc.;
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Modelling genomes as permutations

I Genomes are seen as permutations if:

1. they form ordered sequences of genes (or other segments), and
2. they only differ by order (no duplications or deletions).

Example (genomes → permutations)

5 1 2 4 7 3 6

(A)

1 2 3 4 5 6 7

(B)

genome rearrangements
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Genome rearrangements for permutations

I Segments can be numbered as we wish, so we assume either
genome is the identity permutation ι = 〈1 2 · · · n〉 and we wish
to sort the other genome:

Problem (genome rearrangement (permutations))

Input: a permutation π in Sn, a set S ⊆ Sn of (per)mutations;
Goal: find a shortest sorting sequence of elements of S for π.

I Again, we can also focus on merely computing dS(π) – the length
of an optimal sorting sequence;

I S must generate Sn for any pair of permutations to be a finite
distance apart;
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Notation and definitions pertaining to permutations

I Permutations can be written in one- or two-row notation:

π =

〈
1 2 3 4 5 6
4 1 6 2 5 3

〉
= 〈4 1 6 2 5 3〉.

I We deal exclusively with [n] = {1, 2, . . . , n};
I All permutations of [n] with composition form the symmetric

group Sn;

I Composition: the usual ◦, which means that in π ◦ σ, σ is applied
first;
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Sorting permutations by adjacent exchanges

I Simple operation : exchange any two adjacent elements:

Example

4 1 6 2 5 3

1 4 6 2 5 3

I So we want to sort a permutation by performing as few such
exchanges as possible;

I Solution:

I sorting: use Bubble Sort;
I distance: the number of swaps used by Bubble Sort;
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A closed formula for the adjacent exchange distance

I An inversion in a permutation is a pair of misplaced elements: (πi , πj)
with i < j and πi > πj ;

I The permutation graph of π has [n] as vertex set and the inversions of
π as edges;

Example (the permutation graph of 〈4 1 6 2 5 3〉)

1

3

2 5

4 6
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A closed formula for the adjacent exchange distance

Theorem

The adjacent exchange distance of π is |Inv(π)| = |E (PG (π))|.

Proof sketch.

Each adjacent swap “fixes” at most one inversion, which is
equivalent to removing an edge from PG , and we can always find
such a move at every step if π 6= ι.
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Sorting permutations by exchanges

I Simple operation : exchange any two elements:

Example

4 1 6 2 5 3

2 1 6 4 5 3

I So we want to sort a permutation by performing as few such
exchanges as possible;
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Sorting permutations by exchanges

I Here’s a more complete example:

Example (a sorting sequence for 〈4 1 6 2 5 3〉)
4 1 6 2 5 3

1 4 6 2 5 3

1 2 6 4 5 3

1 2 3 4 5 6

I It works... but can we do better?
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Sorting permutations by exchanges

I Our goal: each element should be “at the right place”;

I Some elements are already where they should be, so they won’t
move;

I Strategy: read permutation from left to right, and:
I if πi = i , pass;
I otherwise, exchange πi with i ;
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Sorting permutations by exchanges

I The algorithm obviously terminates;

I At every step, we “fix” one or two positions;

I We use the minimum number of exchanges;

I On the other hand, we’d like to be able to compute the distance
without sorting;
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Cycles

I Computing the distance requires using the cycles of the
permutation;

I Those cycles are obtained by iterating the permutation’s action on
{1, 2, . . . , n}, stopping when all elements have been visited;

Example (cycles of 〈4 1 6 2 5 3〉)
1 2 3 4 5 6

4 1 6 2 5 3
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Cycles

I Computing the distance requires using the cycles of the
permutation;

I Those cycles are obtained by iterating the permutation’s action on
{1, 2, . . . , n}, stopping when all elements have been visited;

Example (cycles of 〈4 1 6 2 5 3〉)
1 2 3 5 6

4 6 5 3
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Cycles

I Computing the distance requires using the cycles of the
permutation;

I Those cycles are obtained by iterating the permutation’s action on
{1, 2, . . . , n}, stopping when all elements have been visited;

Example (cycles of 〈4 1 6 2 5 3〉)
1 2 3 5

4 6 5
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Cycles

I Computing the distance requires using the cycles of the
permutation;

I Those cycles are obtained by iterating the permutation’s action on
{1, 2, . . . , n}, stopping when all elements have been visited;

Example (cycles of 〈4 1 6 2 5 3〉)
1 2 3 5

4 6
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Disjoint cycle decomposition of permutations

I Each permutation decomposes into disjoint cycles:

π =

〈
1 2 3 4 5 6
4 1 6 2 5 3

〉
= (1, 4, 2)(3, 6)(5).

I The graph of the permutation π, denoted by Γ(π), pictures this
decomposition:

4 1 6 2 5 3

I The number of cycles of π is written c(π);

I 1-cycles are sometimes omitted;
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Cycles and sorting

I Cycles of length 1 correspond to sorted elements; all other cycles
consist of elements that are misplaced;

4 1 6 2 5 3 1 2 3 4 5 6

I Sorting comes down to splitting cycles until we only have cycles of
length 1;

I Our algorithm repeatedly splits k-cycles into a 1-cycle and a
(k − 1)-cycle;

40



Introduction
Permutations

The model
Exchanges
Larger-scale transformations
The directed breakpoint graph

Computing the “exchange distance” exc(·)

I At each step, we can always create a new cycle if π 6= ι, so:

exc(π) ≤ n − c(π)

I And we can’t do better, so:

exc(π) ≥ n − c(π)

I Therefore:

Theorem ([Cayley, 1849])

The exchange distance of π in Sn is n − c(π).
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Lessons from sorting by exchanges

I Note that ι is the only permutation with n cycles;
I The formula exc(π) = n − c(π) expresses:

I the difference between the number of cycles we have and the
number of cycles we want;

I and the fact that at each step, we can obtain exactly one new cycle.

I This point of view will be crucial to sorting problems;
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Practice

For the algorithms below, a permutation is represented as a size-n array

with values and indices ranging from 1 to n.

1. Give a linear-time algorithm computing the inverse of a
permutation.

2. Give a linear-time algorithm computing an optimal sequence
of swaps sorting a permutation.

3. Give a linear-time algorithm computing the decomposition of
a permutation into disjoint cycles

4. Let S be a set of permutations defining distance dS over Sn,
such that S is stable by inversion (π ∈ S ⇒ π−1 ∈ S).

I Prove that dS(π) = dS(π−1) for every permutation π.
I The stability by inversion is a sufficient condition to have the

above property, but is it necessary?
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Block-interchanges and transpositions

I The mutations we observe in evolution (may) act on intervals;
I We’ll now look at two generalisations of exchanges:

1. block-interchanges;
2. transpositions;

I Block-interchanges exchange two disjoint intervals in a
permutation;

1 2 34 5 6 7 8 9 1 6 7 5 2 3 4 8 9

I Transpositions displace an interval of the permutation;

1 2 34 5 6 7 8 9 10 1 5 67 8 2 3 4 9 10
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Computing the associated distances

I Does the disjoint cycle technique “work”?

I Unlikely: the following permutation has n/2 cycles of length two,
but bid(π) = td(π) = 1:

n
2 + 1 n

2 + 2 n
2 + 3 n 1 2 3 n

2· · · · · ·

I We’ll need something else since we cannot bound the effect of an
operation in that setting;
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The “directed breakpoint graph”

I (the term “breakpoint” will be explained later);

I Let’s build the directed breakpoint graph of π = 〈4 1 6 2 5 7 3〉:

1

4

0

3

7

5

2

6

1. build the ordered vertex set
(π0 = 0, π1, π2, . . . , πn);

2. add black arcs for every ordered
pair (πi , πi−1 (mod n+1));

3. add grey arcs for every ordered pair
(i , i + 1 (mod n + 1));

DBG (π) decomposes in a unique way into alternating cycles
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Formal definition of the directed breakpoint graph

Definition ([Bafna and Pevzner, 1998])

The directed breakpoint graph of 〈π1 π2 · · · πn〉 is defined by:

1. an ordered vertex set V = (π0 = 0, π1, π2, . . . , πn);

2. a bicoloured arc set A = AB ∪ AG , where:

2.1 AB = {(πi , πi−1 (mod n+1)) : 0 ≤ i ≤ n};
2.2 AG = {(i , i + 1 (mod n + 1)) : 0 ≤ i ≤ n};
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Circular vs. linear layout

I One can also represent the directed breakpoint graph using a linear
layout without affecting the cycle structure:

π2

π1

π0

π7

π6

π5

π4

π3

1

4

0

3

7

5

2

6
0
π0

4
π1

1
π2

6
π3

2
π4

5
π5

7
π6

3
π7

8
π8

I Circular → linear: split 0 into 0 and n + 1;

I Linear → circular: merge 0 and n + 1 into 0;

I (in both cases: adapt arcs accordingly);
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Intuitions behind DBG (π) – 1

I Both “monochromatic” cycles represent an ordering:

1. the black one represents the one we have (“reality”);
2. the grey one represents the one we want to obtain (“desire”);

1

4

0

3

7

5

2

6

1

4

0

3

7

5

2

6
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Intuitions behind DBG (π) – 2

I The alternating cycles are a blend of “reality” and “desire”, and
we must act on those cycles to turn “reality” into “desire”;

I When we are done, we have the largest number of cycles;
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Proving lower bounds

I One way of proving lower bounds on distances: be optimistic:

1. find out the “best case”;
2. pretend we’re always in that case;

I Techniques based on breakpoint graphs follow the same spirit as
those based on the disjoint cycle decomposition, but less freedom
is allowed (details later);

I Usually: case analysis to determine by how much a parameter of
the graph can change with one operation;
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Lower bounding the block-interchange distance

A block-interchange β(i , j , k , `) increases the number of cycles in
DBG by at most 2:

πi−1 πi πj−1 πj πk−1 πk π`−1 π` πi−1 πi πj−1πj πk−1πk π`−1 π`

Theorem ([Christie, 1996])

For all π in Sn: bid(π) ≥ n+1−c(DBG(π))
2 .
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Lower bounding the transposition distance
A transposition τ(i , j , k) increases the number of odd cycles in DBG by
at most 2:

πi−1 πi πj−1 πj πk−1 πk

πi−1 πi πj−1πj πk−1 πk

πi−1 πi πj−1 πj πk−1 πk

πi−1 πi πj−1πj πk−1 πk

πi−1 πi πj−1 πj πk−1 πk

πi−1 πi πj−1πj πk−1 πk

πi−1 πi πj−1 πj πk−1 πk

πi−1 πi πj−1πj πk−1 πk

Theorem ([Bafna and Pevzner, 1998])

For all π in Sn: td(π) ≥ n+1−codd (DBG(π))
2 .
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Lower bounding the transposition distance
A transposition τ(i , j , k) increases the number of odd cycles in DBG by
at most 2:

πi−1 πi πj−1 πj πk−1 πk πi−1 πi πj−1πj πk−1 πk

πi−1 πi πj−1 πj πk−1 πk πi−1 πi πj−1πj πk−1 πk

πi−1 πi πj−1 πj πk−1 πk πi−1 πi πj−1πj πk−1 πk

πi−1 πi πj−1 πj πk−1 πk πi−1 πi πj−1πj πk−1 πk

Theorem ([Bafna and Pevzner, 1998])

For all π in Sn: td(π) ≥ n+1−codd (DBG(π))
2 .
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Lower bounding the transposition distance
A transposition τ(i , j , k) increases the number of odd cycles in DBG by
at most 2:

πi−1 πi πj−1 πj πk−1 πk πi−1 πi πj−1πj πk−1 πk

πi−1 πi πj−1 πj πk−1 πk πi−1 πi πj−1πj πk−1 πk

πi−1 πi πj−1 πj πk−1 πk πi−1 πi πj−1πj πk−1 πk

πi−1 πi πj−1 πj πk−1 πk πi−1 πi πj−1πj πk−1 πk

Theorem ([Bafna and Pevzner, 1998])

For all π in Sn: td(π) ≥ n+1−codd (DBG(π))
2 .
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Practice

5. Give sorting sequences for the following permutations, and
prove they are optimal

I 〈654321〉, using block-interchanges

I 〈3254761〉, using transpositions
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Proving upper bounds

I One way of proving upper bounds on distances: be pessimistic:

1. find out the “worst case”;
2. pretend we’re always in that case;

I For better upper bounds: be less pessimistic:
I case analyses of varying difficulty;
I look at sequences of moves;

2
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Upper bounds

I For block-interchanges, we have:

Theorem ([Christie, 1996])

For all π in Sn: bid(π) ≤ n+1−c(DBG(π))
2 .

I Which equals the lower bound and therefore the exact distance;
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Upper bounds

I For transpositions:

Theorem ([Bafna and Pevzner, 1998])

For all π in Sn: td(π) ≤ 3
4 (n + 1− codd(DBG (π))) = 3

2OPT .

I Current best approximation: 11/8 [Elias and Hartman, 2006]
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Practice

6. Show that td(π) ≤ n − LIS(π), where LIS denotes the length
of the longest increasing subsequence.

7. Give a polynomial-time 2-approximation algorithm for the
Transposition Distance problem.

Hint 1: Use the lower bound based on the number of cycles:

td(π) ≥ n+1−c(DBG(π))
2

Hint 2: If π displays a cycle of the right form, give a transposition
creating two cycles. Otherwise, turn a cycle into the right form
with one transposition.
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Transposition Distance problem.

Hint 1: Use the lower bound based on the number of cycles:

td(π) ≥ n+1−c(DBG(π))
2

Hint 2: If π displays a cycle of the right form, give a transposition
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Reversals

I Another type of mutation occurs frequently: reversals, which
reverse the order of elements on an interval of the permutation;

Example

4 1 6 2 5 3

4 5 2 6 1 3

5
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Reversals

I Here’s an optimal sorting sequence1:

Example (optimal sorting sequence of reversals)

I Bad news: stuff seen so far doesn’t work;

1Obtained using GRIMM: http://grimm.ucsd.edu/cgi-bin/grimm.cgi

6



Permutations
Signed permutations

Breakpoints
The undirected breakpoint graph

Breakpoints

Definition ([Watterson et al., 1982])

A breakpoint in a permutation π is an ordered pair (πi , πi+1) with
|πi+1 − πi | 6= 1 (otherwise it’s an adjacency).

Example (breakpoints of 〈3 1 5 4 2 8 6 7〉)
3 1 5 4 2 8 6 7• • • • •

I This notion characterises elements that are “relatively misplaced”:
they’re not consecutive in ι, nor in 〈n n − 1 · · · 2 1〉
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Breakpoints

Definition ([Watterson et al., 1982])

A breakpoint in a permutation π is an ordered pair (πi , πi+1) with
|πi+1 − πi | 6= 1 (otherwise it’s an adjacency).

Example (breakpoints of 〈3 1 5 4 2 8 6 7〉)
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Breakpoints

Definition ([Watterson et al., 1982])

A breakpoint in a permutation π is an ordered pair (πi , πi+1) with
|πi+1 − πi | 6= 1 (otherwise it’s an adjacency).

Example (breakpoints of 〈3 1 5 4 2 8 6 7〉)
3 1 5 4 2 8 6 7• • • • •

I This notion characterises elements that are “relatively misplaced”:
they’re not consecutive in ι, nor in 〈n n − 1 · · · 2 1〉
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Breakpoints

I Note that ι = 〈1 2 · · · n〉 has no breakpoint;

I That’s also the case of 〈n n − 1 · · · 2 1〉;
I To distinguish them, we frame permutations:

〈π1 π2 · · · πn〉 7→ 〈0 π1 π2 · · · πn n + 1〉

I Those artificial elements are denoted by π0 and πn+1;

I Which leads to the following definition:

Definition

The number of breakpoints of a permutation π in Sn is

b(π) = |{(πi , πi+1) | 0 ≤ i ≤ n and |πi+1 − πi | 6= 1}|.

I Example: 〈0 • 3 • 1 • 5 4 • 2 • 8 • 6 7 • 9〉 ⇒ b(π) = 7;
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Breakpoints
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I That’s also the case of 〈n n − 1 · · · 2 1〉;
I To distinguish them, we frame permutations:

〈π1 π2 · · · πn〉 7→ 〈0 π1 π2 · · · πn n + 1〉

I Those artificial elements are denoted by π0 and πn+1;
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Breakpoints
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The number of breakpoints of a permutation π in Sn is
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I Example: 〈0 • 3 • 1 • 5 4 • 2 • 8 • 6 7 • 9〉 ⇒ b(π) = 7;
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Breakpoints

I Note that ι = 〈1 2 · · · n〉 has no breakpoint;

I That’s also the case of 〈n n − 1 · · · 2 1〉;
I To distinguish them, we frame permutations:

〈π1 π2 · · · πn〉 7→ 〈0 π1 π2 · · · πn n + 1〉

I Those artificial elements are denoted by π0 and πn+1;

I Which leads to the following definition:

Definition

The number of breakpoints of a permutation π in Sn is

b(π) = |{(πi , πi+1) | 0 ≤ i ≤ n and |πi+1 − πi | 6= 1}|.

I Example: 〈0 • 3 • 1 • 5 4 • 2 • 8 • 6 7 • 9〉 ⇒ b(π) = 7;
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Breakpoints

I Note that ι = 〈1 2 · · · n〉 has no breakpoint;

I That’s also the case of 〈n n − 1 · · · 2 1〉;
I To distinguish them, we frame permutations:

〈π1 π2 · · · πn〉 7→ 〈0 π1 π2 · · · πn n + 1〉

I Those artificial elements are denoted by π0 and πn+1;

I Which leads to the following definition:

Definition

The number of breakpoints of a permutation π in Sn is

b(π) = |{(πi , πi+1) | 0 ≤ i ≤ n and |πi+1 − πi | 6= 1}|.

I Example: 〈0 • 3 • 1 • 5 4 • 2 • 8 • 6 7 • 9〉 ⇒ b(π) = 7;
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Usefulness of breakpoints

I Observation: reversals can “fix” breakpoints:

Example

0 3 1 5 4 2 8 6 7 9• • • • • • • 0 3 1 5 4 8 2 6 7 9• • • • • • •

0 3 1 2 8 4 5 6 7 9• • • • •0 3 1 2 8 7 6 5 4 9• • • •
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Lower bound

I A reversal can fix at most two breakpoints;

I If we’re lucky, we are always in that case;

I This yields the following lower bound:

Theorem ([Kececioglu and Sankoff, 1995])

For every permutation π:

rd(π) ≥ b(π)/2.
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Upper bound

I On the other hand we can always fix at least one breakpoint
(details: [Kececioglu and Sankoff, 1995])

I So the algorithm is a 2-approximation:

b(π)/2 ≤ rd(π) ≤ b(π)

I Can we do better?
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The undirected breakpoint graph

I Yes, but we need a more appropriate structure:

Definition ([Bafna and Pevzner, 1996])

The undirected breakpoint graph of the permutation π in Sn,
written UBG (π) = (V ,E ), is defined by:

I V = (π0 = 0, π1, π2, . . . , πn, πn+1 = n + 1);

I E = {{πi , πi+1} | 0 ≤ i ≤ n}︸ ︷︷ ︸
black edges

∪{{i , i + 1} | 0 ≤ i ≤ n}︸ ︷︷ ︸
grey edges

.
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The undirected breakpoint graph: example

I Let us build the undirected breakpoint graph π = 〈3 1 5 4 2 8 6 7〉:

Example

3 1 5 4 2 8 6 7

0 9

1. frame the permutation;

2. build ordered vertex set (π0 = 0, π1, π2, . . ., πn+1 = n + 1);

3. add black edges for every pair {πi , πi+1};
4. add grey edges for every pair {i , i + 1};
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The undirected breakpoint graph: example

I Let us build the undirected breakpoint graph π = 〈3 1 5 4 2 8 6 7〉:

Example

3 1 5 4 2 8 6 70 9

1. frame the permutation;

2. build ordered vertex set (π0 = 0, π1, π2, . . ., πn+1 = n + 1);

3. add black edges for every pair {πi , πi+1};
4. add grey edges for every pair {i , i + 1};
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The undirected breakpoint graph: example

I Let us build the undirected breakpoint graph π = 〈3 1 5 4 2 8 6 7〉:

Example

3 1 5 4 2 8 6 70 9

1. frame the permutation;

2. build ordered vertex set (π0 = 0, π1, π2, . . ., πn+1 = n + 1);

3. add black edges for every pair {πi , πi+1};
4. add grey edges for every pair {i , i + 1};
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The undirected breakpoint graph: example

I Let us build the undirected breakpoint graph π = 〈3 1 5 4 2 8 6 7〉:

Example

3 1 5 4 2 8 6 70 9

1. frame the permutation;

2. build ordered vertex set (π0 = 0, π1, π2, . . ., πn+1 = n + 1);

3. add black edges for every pair {πi , πi+1};

4. add grey edges for every pair {i , i + 1};
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The undirected breakpoint graph: example

I Let us build the undirected breakpoint graph π = 〈3 1 5 4 2 8 6 7〉:

Example

3 1 5 4 2 8 6 70 9

1. frame the permutation;

2. build ordered vertex set (π0 = 0, π1, π2, . . ., πn+1 = n + 1);

3. add black edges for every pair {πi , πi+1};
4. add grey edges for every pair {i , i + 1};
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Decomposition

I That graph decomposes into cycles:

Example

0 3 1 5 4 2 8 6 7 9

I ... but the decomposition is no longer unique!

Example

0 2 1 3

has either one 3-cycle or a 1-cycle and a 2-cycle.
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Example
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26



Permutations
Signed permutations

Breakpoints
The undirected breakpoint graph

Decomposition

I That graph decomposes into cycles:

Example

0 3 1 5 4 2 8 6 7 9

I ... but the decomposition is no longer unique!

Example

0 2 1 3

has either one 3-cycle or a 1-cycle and a 2-cycle.
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Cycle decompositions

I We use decompositions to derive lower bounds;

I A reversal acts on one or two cycles and can split / merge cycles;

πi−1 πi πj πj+1
· · ·

πi−1 πj πi πj+1
· · ·

I So we’re tempted to say:

rd(π) ≥ n + 1− c(UBG (π))
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Cycle decompositions

I We use decompositions to derive lower bounds;
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· · ·

I So we’re tempted to say:
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Cycle decompositions

I We use decompositions to derive lower bounds;

I A reversal acts on one or two cycles and can split / merge cycles;

πi−1 πi πj πj+1
· · ·

πi−1 πj πi πj+1
· · ·

I So we’re tempted to say:

rd(π) ≥ n + 1− c(UBG (π))
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Decomposition

I ... but recall that the decomposition is not unique!!!

I The more cycles we have, the closer we are to UBG (ι);

I Therefore, we have in fact:

Theorem ([Bafna and Pevzner, 1996])

For all π in Sn:

rd(π) ≥ n + 1− c∗(UBG (π)),

where c∗(UBG (π)) is the number of cycles in a maximum
cardinality decomposition.

I Unfortunately, finding a maximum cardinality decomposition is
NP-hard [Caprara, 1999];

31



Permutations
Signed permutations

Breakpoints
The undirected breakpoint graph

Decomposition

I ... but recall that the decomposition is not unique!!!

I The more cycles we have, the closer we are to UBG (ι);

I Therefore, we have in fact:
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For all π in Sn:
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Decomposition

I ... but recall that the decomposition is not unique!!!

I The more cycles we have, the closer we are to UBG (ι);

I Therefore, we have in fact:

Theorem ([Bafna and Pevzner, 1996])

For all π in Sn:
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where c∗(UBG (π)) is the number of cycles in a maximum
cardinality decomposition.

I Unfortunately, finding a maximum cardinality decomposition is
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Decomposition

I ... but recall that the decomposition is not unique!!!

I The more cycles we have, the closer we are to UBG (ι);

I Therefore, we have in fact:

Theorem ([Bafna and Pevzner, 1996])

For all π in Sn:

rd(π) ≥ n + 1− c∗(UBG (π)),

where c∗(UBG (π)) is the number of cycles in a maximum
cardinality decomposition.

I Unfortunately, finding a maximum cardinality decomposition is
NP-hard [Caprara, 1999];
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Decomposition

I ... but recall that the decomposition is not unique!!!

I The more cycles we have, the closer we are to UBG (ι);

I Therefore, we have in fact:

Theorem ([Bafna and Pevzner, 1996])

For all π in Sn:

rd(π) ≥ n + 1− c∗(UBG (π)),

where c∗(UBG (π)) is the number of cycles in a maximum
cardinality decomposition.

I Unfortunately, finding a maximum cardinality decomposition is
NP-hard [Caprara, 1999];
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Results on sorting permutations

I Here’s a nonexhaustive summary on sorting permutations using
various operations:

Operation Sorting Distance Best approximation

exchange O(n) [Knuth, 1995] 1
block-interchange O(n) [Christie, 1996] 1
double cut-and-joins NP-hard [Chen, 2010] ?
reversal NP-hard [Caprara, 1999] 11/8 [Berman et al., 2002]
transposition NP-hard [Bulteau et al., 2012] 11/8 [Elias and Hartman, 2006]

pr
efi

x exchange O(n) [Akers et al., 1987] 1
reversal NP-hard [Bulteau et al., 2015] 2 [Fischer and Ginzinger, 2005]
transposition ? ? 2 [Dias and Meidanis, 2002]

I Let us move on to our next model: signed permutations;
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Motivation

I Permutations lack realism: DNA
segments are oriented;

I We need to take orientation into
account;

I Therefore, two DNA segments
match if:

I they are the same, or
I one is the reverse

complement of the other.

(picture by Madeleine Price Ball, taken from Wikimedia)
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Motivation

I So instead of permutations:

Example (genomes → permutations)
5 1 2 4 7 3 6 (A)

1 2 3 4 5 6 7 (B)

genome rearrangements

I We now have signed permutations:

Example (genomes → signed permutations)

−5 +1 +2 +4 −7 −3 +6

(A)

+1 +2 +3 +4 +5 +6 +7

(B)

genome rearrangements
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Motivation

I So instead of permutations:

Example (genomes → permutations)
5 1 2 4 7 3 6 (A)

1 2 3 4 5 6 7 (B)

genome rearrangements

I We now have signed permutations:

Example (genomes → signed permutations)
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6

(A)

+

1

+
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+
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genome rearrangements
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Motivation

I So instead of permutations:

Example (genomes → permutations)
5 1 2 4 7 3 6 (A)

1 2 3 4 5 6 7 (B)

genome rearrangements

I We now have signed permutations:
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−5 +1 +2 +4 −7 −3 +6 (A)

+1 +2 +3 +4 +5 +6 +7 (B)

genome rearrangements
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Signed (per)mutations

I Note: this does not mean that everything you know about
unsigned comparisons is useless:

1. orientation information is not always available;
2. ideas from unsigned comparisons lead to ideas for signed

comparisons;

I Mutations may now act on a segment’s place and orientation;
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Tools

I As expected, tools we’ve seen previously cannot be used here
because they do not take signs into account;

I Then again, some ideas can be adapted;
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Notation and definitions pertaining to signed permutations

I We deal exclusively with {±1,±2, . . . ,±n};

I Convention: π(−i) = −π(i) for 1 ≤ i ≤ n;

I Permutations can be written in one- or two-row notation:

π =

〈
−4 −3 −2 −1 1 2 3 4

2 4 −1 3 −3 1 −4 −2

〉
= 〈−3 1 − 4 − 2〉.

I We will restrict ourselves to the mapping of positive elements;

I Composition works as before;

I The corresponding group is the hyperoctahedral group S±n ;
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Signed reversals

I Reversals can be generalised to signed reversals, which not only
reverse an interval but also flip signs along the interval;

Example (signed reversal)

-5 1 2 4 -7 -3 6

-5 1 3 7 -4 -2 6

I As before, we’re interested in sorting a given signed permutation
using as few signed reversals as possible (or merely computing the
length of a shortest sequence);
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Example: sorting by signed reversals

π = −5 +1 +2 +4 −7 −3 +6

−5 +1 +2 −4 −7 −3 +6

−5 +1 +2 −4 −7 −6 +3

−5 +1 +2 −4 −3 +6 +7

−5 +1 +2 +3 +4 +6 +7

−5 −4 −3 −2 −1 +6 +7

σ = +1 +2 +3 +4 +5 +6 +7

srd(π, σ) ≤ 6
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Solving the problem

I How do we attack this problem?

I Breakpoints can be generalised to the signed setting ...

I ... but you already know / guess that this will at best provide an
approximation;

I Instead, we’re going to adapt the breakpoint graph to the signed
setting;
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The breakpoint graph

I The breakpoint graph in the signed case is slightly different:

−5 +1 +2 +4 −7 −3 +6π =

π′ = 0 10 9 1 2 3 4 7 8 14 13 6 5 11 12 15

1. double π’s elements
(i 7→ {2|i | − 1, 2|i |}) and add 0
and 2n + 1

2. elements of π′ = vertices

3. black edges connect distinct
adjacent genes

4. grey edges connect distinct
consecutive genes
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Using the breakpoint graph

I The breakpoint graph is 2-regular and decomposes as such into
alternating cycles in a unique way;

I The breakpoint graph of 〈1 2 · · · n〉 contains the largest number
of cycles:
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I ⇒ goal: create new cycles in as few moves as possible;
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Practice

8. Draw the breakpoint graph for the signed permutation

〈−4, 3,−2,−5, 1〉



Permutations
Signed permutations

Signed reversals

Overview of Hannenhalli and Pevzner’s solution

I [Hannenhalli and Pevzner, 1999] came up with the first
polynomial-time algorithm for this problem:

1. Transform π into π̃ (simpler, does not affect distance);

2. Find an optimal sorting sequence for π̃;

2.1 identify “good” and “bad” cycles in BG(π̃);
2.2 identify “good” and “bad” components in BG(π̃);
2.3 “sort” those components to optimality;

3. Convert it back to an optimal sorting sequence for π;
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Transformation into simple permutations

I A permutation π is simple if BG (π) contains only cycles of length
≤ 2;

I The transformation was introduced to simplify analysis and
preserves the distance: if π̃ is the “simplified” version of π, then
srd(π̃) = srd(π);

I So we can assume from now on that the permutation to sort is
simple;

I [Gog and Bader, 2008] give fast algorithms to achieve the
conversions;
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A lower bound on the signed reversal distance

I A signed reversal involves black edges belonging to at most two
cycles;

I The only way to increase c(BG (π)) is to split cycles:

π′2i π′2i+1 π′2j π′2j+1

· · ·
π′2i π′2j π′2i+1 π

′
2j+1

· · ·

I Therefore, for all π in S±n :

srd(π) ≥ n + 1− c(BG (π)).
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Good and bad cycles

I However, we cannot always split cycles:

π′2i π′2i+1 π′2j π′2j+1

· · ·
π′2i π′2j π′2i+1 π

′
2j+1

· · ·

I Hence the inequality: we can split “good” cycles, and we cannot
split “bad” cycles;

I standard terminology: “good” = oriented, “bad” = unoriented;
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Handling good cycles

I Things are actually more complicated than that;

I Even when we don’t have bad cycles, the order in which we do
things matters!

Example (careless and careful cycle splitting)

0 6 5 10 9 2 1 7 8 3 4 11

(bad)−→ 0 1 2 9 10 5 6 7 8 3 4 11

0 6 5 10 9 2 1 7 8 3 4 11

(good)−→ 0 6 5 10 9 8 7 1 2 3 4 11
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Handling good cycles

I Things are actually more complicated than that;

I Even when we don’t have bad cycles, the order in which we do
things matters!
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Handling bad cycles

I “Bad” cycles are not so bad if we can make them “good” (see
previous example);

I But sometimes we can’t:

Example (a minimal permutation with only bad cycles)

0 5 6 3 4 1 2 7
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Components

I Although reversals only modify the “contents” of a single cycle,
they may also modify the configuration of some other cycles;

I This suggests that cycles are not the right “unit” to deal with;

I We need to consider collections of cycles, or components instead;
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Interleaving cycles

I Grey edge {π′i , π′j} spans the interval [i , j ] in π′;
I Two grey edges interleave if their spans intersect properly;

I Two cycles interleave if they contain interleaving edges;
I The interleaving graph Iπ is defined by:

I V (Iπ) = cycles of BG (π);
I E (Iπ) = pairs of interleaving cycles in BG (π);

I A component of the breakpoint graph is a connected component
of the interleaving graph;
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The interleaving graph Iπ

(source: [Hannenhalli and Pevzner, 1999])
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Good and bad components

I A component is bad if it contains only bad cycles, and good
otherwise;

I Although we must be careful (as seen before), good components
are not a problem:

I they contain good cycles, which can be split;
I applying a signed reversal on a 2-cycle C reverses the orientation of

the cycles interleaving with C (and also changes their interleaving
relationships);

I so we just need to make sure at each step that we can keep splitting
cycles afterwards;
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Hurdles

I “Bad” (unoriented) components are called hurdles and are a
problem;

I There are two ways of getting rid of them:

1. “cutting” them;
2. “merging” them;

I Either way, one move must be wasted for each hurdle to turn them
into “good” components;

I Therefore, for all π in S±n :

srd(π) ≥ n + 1− c(BG (π)) + h(π).
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Practice

9. In the breakpoint graph of

〈3,−6,−9, 8,−7, 4,−10,−5, 11, 2, 1〉 :

I Identify good and bad cycles, components and hurdles
I Give a lower-bound for its signed reversal distance and an

optimal sorting scenario

0 1 23 45 6 7 8 9101112 131415 161718 1920 21 22 23
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An actual formula

I All this (and many concealed details) leads to a formula for the
signed reversal distance:

Theorem ([Hannenhalli and Pevzner, 1999])

For all π in S±n :

srd(π) = n + 1− c(BG (π)) + h(π)︸︷︷︸
number of hurdles

+ f (π)︸︷︷︸
special “fortress” case

.
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Strings
Other models

Alternative approaches
Beyond pairwise comparisons

Duplications in evolution
Balanced strings
General strings

Motivation

I We saw a model for representing genomes without directionality;

I We saw another model for taking directionality into account;

I Both of them lack realism in a crucial way: they don’t allow
duplications;

I And duplications / insertions / deletions account for a very large
part of what happens in evolution [Ohno, 1970];
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Duplications in evolution
Balanced strings
General strings

Two examples of duplications

Example (tandem duplications)

(source: K. Aainsqatsi on Wikimedia)

Example (whole genome duplication)

(source: Eric Lyons on CoGePedia)
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General strings

Strings

I Since duplications pervade genomes, we should take them into
account;

I We now see genomes as strings on an alphabet Σ;

I Be careful: similar segments have been identified, so
Σ = {segments} and not {A,C ,G ,T};

I Our goal is still to explain evolution using most parsimonious
scenarios made of fixed transformations;
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Balanced strings
General strings

Strings

I Note: the restriction to sorting problems does not work anymore;
I if you have two A’s, which one should be “number one”?

I So we really are interested in transforming one string into another,
which is not equivalent to sorting another string;

I Sorting problems have been considered in that model, but they’re
just a special case of a more general problem;

6
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Balanced strings
General strings

Strings

I We can distinguish between several approaches based on gene
contents;

I Either we have exactly the same contents in both genomes (and
duplications are of course allowed);

I Or we have duplications but with different amounts of repetitions
(e.g. three 1’s in genome A but only two in genome B);

I This time the breakpoint graph cannot save us anymore, since we
would not know how to connect elements or decompose the graph;
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Duplications in evolution
Balanced strings
General strings

Balanced strings

I The number of occurrences of a character c in a string S is
denoted by occ(c ,S);

Definition (balanced strings)

Two strings S and T on an alphabet Σ are balanced if:

∀ c ∈ Σ : occ(c ,S) = occ(c ,T ).

I Basically, S and T are anagrams;

I Straightforward generalisation of permutations: we have
duplications, but we actually still have the same content in both
genomes;
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Duplications in evolution
Balanced strings
General strings

Comparing balanced strings

I One way of relating genomes’ contents is to identify common
segments;

I In other words, we want to partition genomes into the same set of
segments;

I this is how we obtained (signed) permutations;
I but now we want to partition the resulting sequences;
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Balanced strings
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Generalising breakpoints

I Recall that, for permutations:
I adjacencies are pairs of adjacent elements in π that are also

adjacent in ι = 〈1 2 · · · n〉 (or χ = 〈n n − 1 · · · 1〉 for reversals);
I breakpoints are pairs that are not adjacencies;

I Recall that, for signed permutations:
I adjacencies are pairs of adjacent elements in π that are also

adjacent in ι = 〈1 2 · · · n〉 (or χ = 〈−n − (n − 1) · · · − 1〉 for
signed reversals);

I breakpoints are pairs that are not adjacencies;

I Those can be generalised to any pair of permutations;

I And we can do the same thing for strings;
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Balanced strings
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Minimum common string partition

I A partition of a string S is a set of strings that can be
concatenated to obtain S ;

I A common partition of two strings S and T is a set of strings
that can be concatenated to obtain both S and T ;

Example (common string partitions)

Here’s a common partition of “dictionary” and “indicatory”:

d i c t i o n a r y

S1 S2 S3 S4 S5 S6 S7

i n d i c a t o r y

S3 S5 S1 S6 S2 S4 S7
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Duplications in evolution
Balanced strings
General strings

Minimum common string partition

I A common string partition is minimum if there is no smaller
common string partition for the two strings under consideration;

I This leads to the following decision problem:

Problem (minimum common string partition (mcsp))

Instance: balanced strings S and T , a bound k ∈ N;
Question: is there a common partition of S and T with at most k
blocks?

12
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Alternative approaches
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Duplications in evolution
Balanced strings
General strings

Relation(s) to rearrangement problems

I Recall that breakpoints were pairs of elements adjacent in one
genome but not in the other;

I Common string partitions generalise that point of view to an
arbitrary number of elements in each part;

I So if we have a minimum common string partition for S and T , we
get the number of breakpoints between strings S and T ;
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Duplications in evolution
Balanced strings
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About mcsp

I Bad news about mcsp:
I NP-hard, even if only one gene family is

nontrivial [Blin et al., 2004];
I APX-hard, even if no character appears more than

twice [Goldstein et al., 2005];

I Good news about mcsp:
I fixed parameter tractable: a solution of size k can be found in time

f (k) · poly(n) (n = |S | = |T |) [Bulteau and Komusiewicz, 2014];

I Greedy approach [Goldstein and Lewenstein, 2011]: repeatedly
select an LCS without any marked letter;

X simple and fast (runs in O(n) time);
× approximation ratio between Ω(n0.43) and O(n0.69)

[Kaplan and Shafrir, 2006];
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Practice

10. Give pairwise MCSP distances between the following strings
(ignore capitals and whitespaces)

I Arrange A String
I A Staring Ranger
I A Garnering Tsar

11. Find a pair of strings for which Greedy behaves as badly as
possible (i.e. maximizing the approximation ratio)
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NP-hard
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FPT algorithm with parameter k only k21k
2
poly(n)

Improved FPT algorithm with k and d d2kpoly(n)
+ Allows for unbalanced strings

+ Implemented

Assignment of orthologous genes via genome rearrangement

X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi and T. Jiang 2005
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One block ↔ one seed

Goal: �nd a good set of seeds

Every rare element must be in the same block as a seed:

the set is complete

Two seeds cannot be in the same block:

the set is non-redundant

d e e a b c d a b c d d e b d e a a

e a e c b c d d e e a b c d d e b d

7/21



MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion

Seeds

Optimal solution OPT, seen as a matching

One block ↔ one seed

Goal: �nd a good set of seeds

Every rare element must be in the same block as a seed:

the set is complete

Two seeds cannot be in the same block:

the set is non-redundant

d e e a b c d a b c d d e b d e a a

e a e c b c d d e e a b c d d e b d

7/21



MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion

Seeds

Optimal solution OPT, seen as a matching

One block ↔ one seed

Goal: �nd a good set of seeds

Every rare element must be in the same block as a seed:

the set is complete

Two seeds cannot be in the same block:

the set is non-redundant

d e e a b c d a b c d d e b d e a a

e a e c b c d d e e a b c d d e b d

7/21



MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion

Seeds

Optimal solution OPT, seen as a matching

One block ↔ one seed

Goal: �nd a good set of seeds

Every rare element must be in the same block as a seed:

the set is complete

Two seeds cannot be in the same block:

the set is non-redundant

d e e a b c d a b c d d e b d e a a

e a e c b c d d e e a b c d d e b d

7/21



MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion

Seeds

Optimal solution OPT, seen as a matching

One block ↔ one seed

Goal: �nd a good set of seeds

Every rare element must be in the same block as a seed:

the set is complete

Two seeds cannot be in the same block:

the set is non-redundant

d e e a b c d a b c d d e b d e a a

e a e c b c d d e e a b c d d e b d

7/21



MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion

Seeds

Optimal solution OPT, seen as a matching

One block ↔ one seed

Goal: �nd a good set of seeds

Every rare element must be in the same block as a seed:

the set is complete

Two seeds cannot be in the same block:

the set is non-redundant

d e e a b c d a b c d d e b d e a a

e a e c b c d d e e a b c d d e b d

7/21



MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion

Seeds

Optimal solution OPT, seen as a matching

One block ↔ one seed

Goal: �nd a good set of seeds

Every rare element must be in the same block as a seed:

the set is complete

Two seeds cannot be in the same block:

the set is non-redundant

d e e a b c d a b c d d e b d e a a

e a e c b c d d e e a b c d d e b d

7/21



MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion

Seeds

Optimal solution OPT, seen as a matching

One block ↔ one seed

Goal: �nd a good set of seeds

Every rare element must be in the same block as a seed:

the set is complete

Two seeds cannot be in the same block:

the set is non-redundant

d e e a b c d a b c d d e b d e a a

e a e c b c d d e e a b c d d e b d

7/21



MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion

Algorithm Outline

Start with set of seeds T = ∅

Identify set of pairs containing 1 correct seed

Try each candidate in the set as a new seed, start again

No more possible set:

The set is complete, create a CSP corresponding to the seeds.
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e a e c b c d d e e a b c d d e b d

8/21



MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion

Algorithm Outline

Start with set of seeds T = ∅
Identify set of pairs containing 1 correct seed

Try each candidate in the set as a new seed, start again

No more possible set:

The set is complete, create a CSP corresponding to the seeds.

d e e a b c d a b c d d e b d e a a

e a e c b c d d e e a b c d d e b d

8/21



MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion

Algorithm Outline

Start with set of seeds T = ∅
Identify set of pairs containing 1 correct seed

Try each candidate in the set as a new seed, start again

No more possible set:

The set is complete, create a CSP corresponding to the seeds.

d e e a b c d a b c d d e b d e a a

e a e c b c d d e e a b c d d e b d

8/21



MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion

Algorithm Outline

Start with set of seeds T = ∅
Identify set of pairs containing 1 correct seed

Try each candidate in the set as a new seed, start again

No more possible set:

The set is complete, create a CSP corresponding to the seeds.

d e e a b c d a b c d d e b d e a a

e a e c b c d d e e a b c d d e b d

8/21



MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion

Algorithm Outline

Start with set of seeds T = ∅
Identify set of pairs containing 1 correct seed

Try each candidate in the set as a new seed, start again

No more possible set:

The set is complete, create a CSP corresponding to the seeds.

d e e a b c d a b c d d e b d e a a

e a e c b c d d e e a b c d d e b d

8/21



MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion

Algorithm Outline

Start with set of seeds T = ∅
Identify set of pairs containing 1 correct seed

Try each candidate in the set as a new seed, start again

No more possible set:

The set is complete, create a CSP corresponding to the seeds.

d e e a b c d a b c d d e b d e a a

e a e c b c d d e e a b c d d e b d

8/21



MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion

Algorithm Outline

Start with set of seeds T = ∅
Identify set of pairs containing 1 correct seed

Try each candidate in the set as a new seed, start again

No more possible set:

The set is complete, create a CSP corresponding to the seeds.

d e e a b c d a b c d d e b d e a a

e a e c b c d d e e a b c d d e b d

8/21



MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion

Algorithm Outline

Start with set of seeds T = ∅
Identify set of pairs containing 1 correct seed

Try each candidate in the set as a new seed, start again

No more possible set:

The set is complete, create a CSP corresponding to the seeds.

d e e a b c d a b c d d e b d e a a

e a e c b c d d e e a b c d d e b d

8/21



MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion

Algorithm Outline

Start with set of seeds T = ∅
Identify set of pairs containing 1 correct seed

Try each candidate in the set as a new seed, start again

No more possible set:

The set is complete, create a CSP corresponding to the seeds.

d e e a b c d a b c d d e b d e a a

e a e c b c d d e e a b c d d e b d

8/21



MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion

Algorithm Outline

Start with set of seeds T = ∅
Identify set of pairs containing 1 correct seed

Try each candidate in the set as a new seed, start again

No more possible set:

The set is complete, create a CSP corresponding to the seeds.

d e e a b c d a b c d d e b d e a a

e a e c b c d d e e a b c d d e b d

8/21



MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion

Algorithm Outline

Start with set of seeds T = ∅
Identify set of pairs containing 1 correct seed

Try each candidate in the set as a new seed, start again

No more possible set:

The set is complete, create a CSP corresponding to the seeds.

d e e a b c d a b c d d e b d e a a

e a e c b c d d e e a b c d d e b d

8/21



MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion

Algorithm Outline

Start with set of seeds T = ∅
Identify set of pairs containing 1 correct seed

Try each candidate in the set as a new seed, start again

No more possible set:

The set is complete, create a CSP corresponding to the seeds.

d e e a b c d a b c d d e b d e a a

e a e c b c d d e e a b c d d e b d

8/21



MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion

Algorithm Outline

Start with set of seeds T = ∅
Identify set of pairs containing 1 correct seed

Try each candidate in the set as a new seed, start again

No more possible set:

The set is complete, create a CSP corresponding to the seeds.

d e e a b c d a b c d d e b d e a a

e a e c b c d d e e a b c d d e b d

8/21



MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion

Algorithm Outline

Start with set of seeds T = ∅
Identify set of pairs containing 1 correct seed

Try each candidate in the set as a new seed, start again

No more possible set:

The set is complete, create a CSP corresponding to the seeds.

d e e a b c d a b c d d e b d e a a

e a e c b c d d e e a b c d d e b d

8/21



MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion

Algorithm Outline

Start with set of seeds T = ∅
Identify set of pairs containing 1 correct seed

Try each candidate in the set as a new seed, start again

No more possible set:

The set is complete, create a CSP corresponding to the seeds.

d e e a b c d a b c d d e b d e a a

e a e c b c d d e e a b c d d e b d

8/21



MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion

Algorithm Outline

Start with set of seeds T = ∅
Identify set of pairs containing 1 correct seed

Try each candidate in the set as a new seed, start again

No more possible set:

The set is complete, create a CSP corresponding to the seeds.

d e e a b c d a b c d d e b d e a a

e a e c b c d d e e a b c d d e b d

8/21



MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion

Finding new seeds (1)

Non-redundancy

In OPT, every (x , y) which is not in the same block as an already

present seed can be a new seed...

Every x which cannot be in the same block as any seed can be

part of a new seed.

y is one of the d copies of x in the other sequence: each such

pair is a candidate
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MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion

Finding new seeds (2)

Association graph

Link together pairs (x , y) that can be in the same block as a seed

Green edge: (x , y) can be part of the right-side of a seed

Red edge: (x , y) can be part of the left-side of a seed

Abundant vertices can be ignored.

Degree-0 vertices can be part of new seeds (rule 1).

What about degree-1 and degree-2 vertices?
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Odd Paths

Path of odd length

If (c1, c2, c3, . . . , c2p+1) is an odd path with c1 being rare

One of {c2i+1 | i = 1..p} is part of a seed.

NB: p ≤ d
Other half of the seed: any letter c in the other sequence.

Total number of seeds to try: at most d2.

1 3 5 7 92 4 6 8x x
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So far...

We know how to deal with single elements and rare odd paths.

What if our association graph has only even paths, cycles, and

abundant odd paths?

Then we can create a CSP based on our seeds!
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MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion

Constructing the solution

No more seeds can be found...

Create one block per seed

Extend the blocks to the left and right (details omitted)

Delete remaining (abundant) elements

Output the solution!

d e e a b c d a b c d d e b d e a a

e a e c b c d d e e a b c d d e b d
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MCSP Problem O(d2kn) FPT algorithm Implementation Conclusion

Theoretical Time Complexity

Time complexity:
d or d2 choices for each of the k seeds: d2k−1 branches

Computing the graph, looking for paths, etc.: O(kn)
Overall: O(d2kn)

The algorithm may try to optimize a second objective value.

Many duplicates, few blocks: from d2 to 3dk
If an odd path visits many times the same intervals, keep only

≤ 3k candidate seeds.

x u v a1 b a2 b a3 b a4 b a5 b a6 b a7 w y

x u v a b a b a b a b a b a w y
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Implementation
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Reduction rules

Reduction Rule 1
Merge strings with unique letters

Reduction Rule 3
Keep best match (one unique letter)

Reduction Rule 2
Remove obvious size-1 blocks

Reduction Rule 4
Keep best match (≤ 2 occurences)

a u v b

a u v b
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Reduction rules

Reduction Rule 1
Merge strings with unique letters

Reduction Rule 3
Keep best match (one unique letter)

Reduction Rule 2
Remove obvious size-1 blocks

Reduction Rule 4
Keep best match (≤ 2 occurences)

Reduction of genome size: from 40% to 85%
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Running time on biological data

Genomic sequences from: Borrelia burgdorferi, Treponema pallidum,

Escherichia coli, Bacillus subtilis, and Bacillus thuringiensis

Average letter occurences: from 1.02 to 1.24

Species 1 Species 2 n k d t (s)

B. burg. T. pall. 93 68 3 0.06

B. burg. E. coli 72 59 6 0.22

B. burg. B. sub. 91 63 6 0.15

B. burg. B. thur. 71 51 5 0.09

T. pall. E coli 93 78 5 0.35

T. pall. B. sub. 144 82 7 0.18

T. pall. B. thur. 128 76 6 0.15

E. coli B. sub. 287 234 7 41.06

E. coli B. thur. 282 221 10 18.64

B. sub. B. thur. 693 340 8 249.71

EnsemblBacteria database
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Running time on synthetic data

Generated sequences of size n = 1000

Average letter occurences: from 2 to 4

k t (s)

d = 6 d = 8

50 0.06 0.07

60 0.06 0.06

70 0.07 0.08

80 0.09 0.09

90 0.10 0.12

100 0.12 0.16

110 0.13 0.26

120 0.18 1.62

130 0.21 30.42
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Conclusion
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Conclusion

Practical FPT algorithms for MCSP with association graph:

O
(
d2kn

)

O
(
(3dk)kn

)

Open questions:

Extend algorithm to signed strings?

Practical running time with high number of duplications?

Constant-ratio approximation?
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