Système

Gilles Roussel

Gilles.Roussel@univ-mlv.fr

http://igm.univ-mlv.fr/ens/Licence/L2/2012-2013/System/

Licence 2

7 avril 2015

C'est quoi un disque?

Système

Gilles Roussel

Disques

Optimisatio

Bas niveau

Partitions

Systeme

Cohávo

C'est quoi un disque?

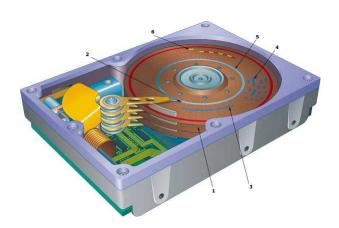
- les Rouss
- Disques

- Différents types de disques
 - disques magnétiques (disques durs, disquettes, etc.)
 - disques optiques (CDROM, CD-R, DVD, etc.)
 - mémoire flash (clefs USB, Solid-State Disk)
- Disque dur décomposé en :
 - plateaux (entre 1 et 10)
 - ayant deux faces liées à une tête ou head
 - contenant des pistes ou tracks (plusieurs milliers)
 - regroupées en cylindres par l'alignement des têtes (même si une seule est active à la fois)
 - décomposées en secteurs (entre 60 et 120) de taille
 « fixe » (en général 512 octets de données)
- Nombre de secteurs par piste variable sur les nouveaux disques (notion de zones)
 - Les zones externes du disque ont plus de pistes que les zones internes

C'est quoi un disque?

Système

Gilles Rousse


Disques

Bas niveau

Système de

fichiers FAT

Cohérence

 $\textcircled{c} \ \texttt{http://www.vnunet.fr/vnuimg/dossiers/svmmac/disquedur/disque.htm}$

Organisation du disque

Système

Silles Rousse

Disques

- Les secteurs sont ordonnés dans l'ordre des pistes, des faces et enfin des secteurs
 - Adressage CHS (Cylinder Head Sector)
- Minimiser le mouvement des têtes et la latence entre deux lectures de secteurs qui se suivent
 - Numérotation entrelacée et obliquité (décalage) de cylindre et de tête
- Décomposition en secteurs réalisée par formatage bas niveau

Ordonnancement des requêtes disque

- iilles Rousse
- lisques Optimisation

- Minimiser le temps d'accès :
 - positionnement du bras;
 - temps de rotation du plateau;
 - temps de transfert.
- Système ordonne les requêtes dans la file d'attente du disque
- Requête :
 - lecture ou écriture;
 - adresse disque;
 - adresse mémoire;
 - nombre d'octets.
- Différents algorithmes d'ordonnancement
 - Performances dépendent du nombre et du type des requêtes
 - Requêtes et leur ordonnancement dépendent du système de fichiers

FCFS: First Come First Served

10

Système

Gilles Roussel

Disques

Optimisation

Bas niveau

Partitions

Système de

fichiors

FAT

Cohérence

Pas d'optimisation

15

25

20

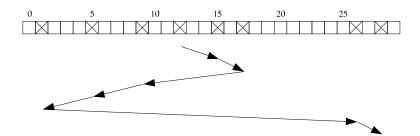
SSTF: Shortest Seek Time First

Système

Gilles Roussel

Disques

Optimisation


Bas niveau

.

Système de

FAT Cohérence

Cohérence RAID

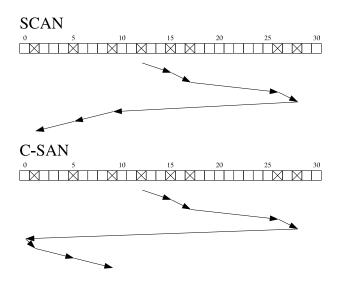
Risque de « famine »

SCAN ou algorithme de l'ascenseur

Système

Gilles Roussel

isques


Optimisation

Svetàma da

fichiers

FAT

Cohérence

Optimiser l'accès au disque

Système

• Éviter l'accès au disque à chaque lecture écriture

- Données gardées en mémoire aussi longtemps que possible
- Buffer cache chargé de la gestion des blocs en mémoire
- Problème de cohérence pour l'écriture
- Utilisation du read-ahead pour améliorer les performances en lecture

Formatage bas niveau

- Formatage bas niveau réalisé en usine
- Formatage bas niveau indépendant des systèmes d'exploitation
- Formatage bas niveau utilise de la place car il ajoute :
 - un espace inter-secteurs
 - un en-tête par secteur contenant en général son numéro (permet de positionner la tête) et d'autres informations sur le secteur
 - un code correcteur d'erreur (ECC) des données du secteur mis à jour à chaque écriture
 - des secteurs de rechanges pour les secteurs défectueux
- Explique (avec les problèmes d'unité) la différence entre la taille du disque vendue et la taille perçue

L'accès au secteurs

Système

Gillos Roussa

- Secteurs accédés via un contrôleur plus ou moins intelligent :
 - SCSI (Small Computer System Interface),
 - ATA (AT Attachement) ou IDE (Integrated Drive Electronics)
 - SATA (Serial ATA)
- Optimisation des déplacements pour plusieurs requêtes réalisée par le contrôleur et/ou le système
- Sous Unix disque vu comme un fichier accessible par bloc /dev/hda, /dev/sdb, etc.

Les partitions

- Possibilité de d
 - Possibilité de découper le disque en morceaux (partitions)
 - Partition : ensemble de cylindres contigus
 - Repérée par son cylindre de début et son cylindre de fin
 - Géométrie virtuelle CHS pour compatibilité
 - En fait, adressage logique LBA (*Logical Block Addressing*)
 - Sur PC :
 - Premier cylindre réservé
 - Secteur 0 ou MBR (Master Boot Record) contient une table de quatre partitions primaires (/dev/hda1, ... ,/dev/hda4)
 - Une des partitions peut être étendue pour créer une liste chaînée de tables partitions
 - Partitionnement réalisé via fdisk, sfdisk, etc.

Les partitions

Système

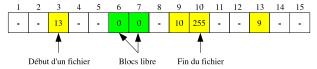
sfdisk -uS -x -1 /dev/hda

Disque /dev/hda: 4864 cylindres, 255 têtes, 63 secteurs/piste Unités= secteurs de 512 octets, décompte à partir de 0

Périph	Amorce	Début	Fir	#secteurs	Id	Système
/dev/hda1		63	112454	112392	de	Dell Utility
/dev/hda2	*	112455	24691904	24579450	7	HPFS/NTFS
/dev/hda3	24691905		78140159	53448255	f	W95 Ext'd (LBA)
/dev/hda4		0	-	. 0	0	Vide
/dev/hda5	24	1691968	45174779	20482812	b	W95 FAT32
-	45	5174780	47231099	2056320	5	Extended
-	24	1691905	24691904	. 0	0	Vide
-	24	1691905	24691904	. 0	0	Vide
/dev/hda6	45	5174843	47231099	2056257	82	Linux swap
-	47	7231100	63617399	16386300	5	Extended
-	45	5174780	45174779	0	0	Vide
-	45	5174780	45174779	0	0	Vide
/dev/hda7	47	7231163	63617399	16386237	83	Linux
-	63	3617400	67713974	4096575	5	Extended
-	47	7231100	47231099	0	0	Vide
-	47	7231100	47231099	0	0	Vide

lles Roussel Système

Les système de fichiers

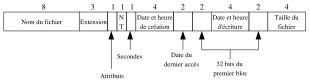

- Chaque partition est vue comme disque
- Organisation des secteurs pour créer les fichiers liée à un système de fichiers particulier
 - FAT-16, FAT-32 et VFAT (File Allocation Table)
 - NTFS (New Technology File System)
 - Ext2, Ext3, Ext4 (Extended File System)
 - ReiserFS
 - HFS (Hierarchical File System)
 - UFS (Unix File System)
- Type précisé dans la table des partitions
- Formatage haut niveau réalisé par mkfs, format, ...
- Fichier = ensemble de blocs (ou clusters)
- Un bloc correspond à plusieurs secteurs ⇒ taille minimale d'un fichier et perte de place

L'exemple de FAT

Système

Cillag Rouges

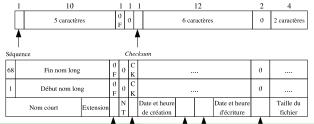
- Ensemble des blocs du fichiers chaînés dans la table d'allocation (FAT) qui occupe les premiers secteurs de la partition (64 Ko)
- FAT manipulée en mémoire (deux sauvegardes sur disque)
- Sert également à repérer les blocs libres


 Défragmentation = permettre au fichier de chaîner des blocs contigus pour éviter la latence d'accès

L'exemple de FAT

Système

- Gilles Roussel
- Optimisation
- artitions
- iystème de ichiers
- FAT Cohérer


- Répertoire = ficher ordinaire d'un type particulier
- Premier bloc contient le répertoire racine
- Contient la liste des entrées du répertoire
- Un entrée permet de récupérer à partir d'un nom :
 - le contenu du fichier
 - des méta-informations (dates, droits, etc.) sur le fichier
 - FAT ne permet pas une gestion multi-utilisateurs des droits

Attributs : répertoire, lecture seule, cachée, etc.

L'exemple de VFAT

- Noms longs nécessitent des entrées particulières
- Pour compatibilité ascendante :/dev/hdb4 /zip vfat defaults,noauto,user 0 0
 - deux noms pour un fichier; un nom FAT (8+3) et éventuellement un nom long
 - nom FAT = nom long tronqué + ~1, ~2, ...
 - nom long en unicode stocké dans plusieurs entrées précédant nom court
 - attribut indique que c'est une partie de nom long

Points de montage

Système

- Un système de fichiers par partition
- Points de montage regroupent plusieurs systèmes de fichiers en un seul
- Le fichier /ets/fstab définit les points de montage par défaut

```
/dev/hda8 /usr/local ext3 defaults 0 2
/dev/hda9 / ext3 defaults 0 2
/dev/hda2 /mnt/win vfat defaults 0 2
```

 Commande mount utilisée monter une partie du système de fichiers

```
# mkdir /mnt/c
# mount -t ntfs -o ro /dev/hda2 /mnt/c
```

■ Permet également de visualiser les partions montées

Points de montage

Système

Gilles Roussel

Optimisation

Bas niveau

Partitions

Système de

Système de fichiers

Cohérence RAID

lib lib lib -local sbin usr -bin bin bin sbin Program Files etc **TEMP** mnt win **WINDOWS**

Vérification d'intégrité

- Opérations sur fichier non atomique
- Plusieurs blocs mis à jour en mémoire puis sur le disque
- Suite d'opérations non atomiques
- Panne au milieu des opérations disques = incohérences
- Vérificateur tente de récupérer ce qu'il est possible de récupérer
- Nécessité de parcourir tout le disque : temps de vérification proportionnel à sa taille
- fsck, chdsk, vérifie que :
 - les blocs libres sont libres en parcourant l'arborescence
 - les blocs utilisés sont attachés à des fichiers
 - les blocs n'appartiennent qu'à un seul fichier
- Un bloc est modifié au démarrage et à l'arrêt normal pour dire qu'il n'y a pas eu d'arrêt brutal

Journalisation

- Gilles Rousse
- Disques Optimisation
- Partitions

 Système de
- ichiers FAT
- Cohérence

- Idée des transactions en base de données
- Problème d'atomicité
- Commencer par écrire ce qui doit être modifé (journal)
- Faire les modifications
- Effacer ce qui doit être modifié
- Si on arrête avant d'avoir fini d'écrire ce qui doit être modifié : système cohérent, rien à faire
- Si on arrête avant d'avoir effacer ce qui doit être modifié : on rejoue ce qui doit être modifié
- Sur-coût à l'exécution
- Vérifications au redémarrage non liées à la taille du disque

RAID

Système

Gilles Rousse

- Redundant Array of Inexpensive Disks (RAID) par opposition à Single Large Expensive Disk (SLED)
- Utiliser plusieurs disques pour en simuler un disque unique
- Améliore les performances
- Améliore la fiabilité
- Diminue le coût
- Réalisé de façon matérielle ou logicielle

Système

Gilles Roussel

Disques
Optimisation

Partitions

Système d fichiers

FAT

RAID

- Stripe mode (agrégat de bande)
- Paralléliser les requêtes de lecture-écriture
- Utile si requêtes de grande taille
- Pas de fiabilité

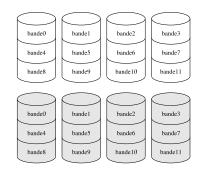
Système

Gilles Roussel

Disques

Bas niveau

Système de


FAT

Calada

RAID

Miroir

- Une écriture en parallèle sur deux disques
- Deux lectures en parallèle sur les disques

Système

Gilles Roussel

- Disques
- Bas niveau
- 'artitions
- fichiers
- FAT

RAID

- Travail au niveau octet
- Utilisation du code de Hamming (4/7)
- Disques synchrones = matériel

Système

Gilles Roussel

- Disques
- Bas niveau
- Système de
- FAT
- DAID

- Travail au niveau octet
- Utilisation d'un bit de parité
- Disques synchrones = matériel

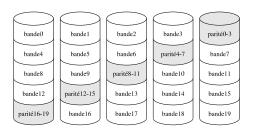
Système

illes Rousse

- Travail au niveau bloc
- Bloc de parité
- Si on modifie un secteur soit on relit :
 - tous les autres disques sauf celui de parité
 - les anciennes données du bloc et l'ancien bloc de parité
- Puis on écrit le bloc de parité

Système

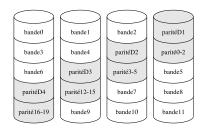
Gilles Rousse


- Disques
- Bas niveau

 Partitions

 Système de
- ichiers

 AT
- RAID


- Distribution du bloc de parité pour améliorer les performances
- Reconstitution du disque après panne complexe

Système

RAID 5

■ Avec bloc de parité par disque

RAID niveau 10, 0+1 et 50

- 10 disques de RAID0 constitués de miroirs RAID1
- 0+1 miroir RAID1 du disque RAID0 (perte d'un disque implique passage en RAID0)
- 50 (3+0) disques de RAID0 constitués de disques RAID3